分享:
分享到微信朋友圈
X
综述
瘤周影像组学在胶质瘤中的研究进展
欧阳群慧 华克磊 方来平 詹文峰 王伟 周天星 江桂华 刘萍

Cite this article as: OUYANG Q H, HUA K L, FANG L P, et al. Advances in the application of peritumoral radiomics in gliomas[J]. Chin J Magn Reson Imaging, 2025, 16(2): 149-153, 164.本文引用格式:欧阳群慧, 华克磊, 方来平, 等. 瘤周影像组学在胶质瘤中的研究进展[J]. 磁共振成像, 2025, 16(2): 149-153, 164. DOI:10.12015/issn.1674-8034.2025.02.024.


[摘要] 胶质瘤是颅内最常见的原发肿瘤,手术是其一线治疗方案,术后复发患者90%发生于瘤周脑区(peritumoral brain zone, PBZ)。PBZ是肿瘤组织与正常脑组织的交界区,是肿瘤微环境的重要部分并反映对周围组织的浸润行为。深入认识和挖掘PBZ的生物学信息对改善胶质瘤患者预后至关重要。近年来,影像组学在胶质瘤的分级、分子分型及预后评估等应用方面已取得显著进展,但主要聚焦于肿瘤实体部分。随着研究的深入,PBZ在胶质瘤生物学行为评估中的重要性逐渐被揭示,PBZ影像组学的研究逐渐成为热点。本文从PBZ的概念、意义及瘤周影像组学在胶质瘤中的应用包括鉴别诊断、分子分型、术后复发预测、预后预测等方面的研究进展进行综述,旨在提高对胶质瘤PBZ的认识,并为开展其相关研究提供思路和线索,最终为患者精准管理策略提供依据。
[Abstract] Glioma represents the most prevalent primary intracranial neoplasm, and surgical resection constitutes the preferred primary therapeutic regimen. Approximately 90% of postoperative recurrences in glioma patients occur within the peritumoral brain zone (PBZ), which serves as the boundary between tumor tissue and adjacent normal brain tissue. The PBZ is a pivotal component of the tumor microenvironment and provides insights into the invasive behavior of glioma towards surrounding tissues. A comprehensive understanding and exploration of the biological information contained within the PBZ are crucial for improving the prognosis of glioma patients. In recent years, radiomics has made significant progress in applications such as glioma grading, genotyping, and prognostic evaluation, but primarily focusing on the solid component. As research advances, the importance of the PBZ in assessing the biological behavior of gliomas has gradually come to light, rendering radiomic studies of the PBZ a key area of investigation. This article reviews the concept and significance of the PBZ, along with the advancements in the utilization of peritumoral radiomics in gliomas, including differential diagnosis, molecular typing, prediction of postoperative recurrence and prognosis prediction. The objective is to enhance the understanding of PBZ in gliomas, provide insights and guidelines for conducting pertinent research, and ultimately establish a foundation for precise management strategies for patients.
[关键词] 胶质瘤;瘤周脑区;影像组学;磁共振成像;人工智能
[Keywords] glioma;peritumoral brain zone;radiomics;magnetic resonance imaging;artificial intelligence

欧阳群慧    华克磊    方来平    詹文峰    王伟    周天星    江桂华    刘萍 *  

暨南大学附属广东省第二人民医院影像中心,广州 510317

通信作者:刘萍,E-mail: ping0625liu0318@163.com

作者贡献声明:刘萍、江桂华拟定本综述的写作思路,指导撰写稿件,并对稿件重要内容进行了修改,刘萍获得了国家自然科学基金青年科学基金项目和广州市科技计划项目的资助;欧阳群慧、华克磊、方来平、詹文峰、王伟、周天星负责起草和撰写稿件,获取、分析并解释本综述的参考文献;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本综述的准确性和诚信。


基金项目: 国家自然科学基金青年科学基金项目 82102004 广州市科技计划项目 2023A03J0276
收稿日期:2024-10-10
接受日期:2025-01-10
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.02.024
本文引用格式:欧阳群慧, 华克磊, 方来平, 等. 瘤周影像组学在胶质瘤中的研究进展[J]. 磁共振成像, 2025, 16(2): 149-153, 164. DOI:10.12015/issn.1674-8034.2025.02.024.

0 引言

       胶质瘤是最常见的原发脑肿瘤,约占颅内肿瘤的60%~70%[1],具有高致残率、高致死率和低治愈率的特点[2],给患者、家庭和社会带来沉重负担[3]。最大程度安全切除是高级别胶质瘤(high-grade gliomas, HGGs)的一线疗法[4],但胶质母细胞瘤(glioblastoma, GBM)患者术后约90%在PBZ复发[5]。PBZ是肿瘤与正常脑组织的交界区[6],影像学看似正常,但病理证实存在肿瘤细胞[5],且在细胞、分子及转录水平呈现异常[4]。PBZ参与构成肿瘤微环境,对肿瘤生长、侵袭和免疫抑制起重要作用[7]。因此,深入研究PBZ的生物学特征对于优化胶质瘤治疗策略和提高患者生存质量至关重要。

       由于解剖位置特殊、PBZ微环境异质性及样本获取伦理和技术限制,PBZ临床研究面临诸多挑战。开发无创评估工具对PBZ生物学特性至关重要。影像学检查,特别是MRI在胶质瘤诊断、分子分型和疗效评价中发挥重要作用[8]。近年来,影像组学通过分析医学图像中的海量信息[9, 10],实现了肿瘤无创异质性评估,显著改善了胶质瘤的临床管理[11]。然而,以往研究多集中于肿瘤核心部分[12, 13, 14],对PBZ潜在信息的关注不足。

       研究表明,胶质瘤的异质性不仅存在于肿瘤核心,还扩展到瘤周区[15]。瘤周微环境与细胞的相互作用可导致缺氧、血管生成和肿瘤浸润,影响GBM患者预后[16]。分析PBZ特征有助于评估肿瘤生物学。近年来,随着对PBZ的关注增加,瘤周影像组学取得一定进展[17, 18, 19]。本综述总结了瘤周影像组学在胶质瘤临床研究中的应用,分析其挑战并展望未来,以指导个体化精准治疗,保护患者正常脑组织功能。

1 瘤周区的概念及瘤周影像组学在当前胶质瘤中研究焦点的文献计量分析

       由于对PBZ既往关注不够,目前尚无准确或共识性的定义[20, 21]。狭义的PBZ指肿瘤周边血管源性水肿区域,在T2WI或T2液体衰减反转恢复 (fluid attenuated inversion recovery, FLAIR)序列表现为高信号区。广义的PBZ包括肿瘤周围几厘米内具有特异性分子和细胞改变的区域,该区域在影像学上无明显异常,手术易被忽视,且存在较高术后复发风险。因此,PBZ的实际范围可能超出T2WI或FLAIR高信号区[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]。LEMÈE等[5]将肿瘤从中心向外分为坏死区、活性肿瘤区、交界区和瘤周区四个部分。为全面了解胶质瘤瘤周影像组学的研究热点与进展,我们对近5年的文献进行了计量学和可视化分析。关键词共现图谱显示该领域主要关注胶质瘤分类、生存期、WHO分级、分子分型预测及鉴别诊断(图1A)。进一步聚类分析表明研究重点在于grade、molecular typing、survival、recurrence、differentiation和treatment response(图1B)。

       根据上述分析,我们分别聚焦胶质瘤的鉴别诊断、分级预测、分子分型预测、术后复发及患者预后逐一展开。

图1  胶质瘤瘤周影像组学研究领域文献计量学分析及可视化分析图。1A:胶质瘤瘤周影像组学研究领域关键词共现可视化图谱;1B:胶质瘤瘤周影像组学研究领域关键词聚类图谱。
Fig. 1  Bibliometric analysis and visualization plots of the research field on peritumoral radiomics of gliomas. 1A: Visualization map of keyword co-occurrence within the research field on peritumoral radiomics of gliomas; 1B: Clustering map of keywords in the same research field on peritumoral radiomics of gliomas.

2 瘤周影像组学用于胶质瘤的鉴别诊断

       在临床诊疗中,胶质瘤需要与单发脑转移瘤、恶性淋巴瘤、脑脓肿等病变鉴别[23]。传统方法依赖临床症状、体征和常规影像学检查,但存在局限性。瘤周影像组学通过深入分析病变区域,挖掘更多潜在信息,为胶质瘤的鉴别诊断提供新思路和依据。

       CSUTAK等[24]基于T2WI瘤周区域纹理分析,发现直方图第一百分位数和小波能量纹理参数是HGGs的独立预测因子(敏感度75.0%~87.5%,特异度53.85%~88.46%)。联合所有统计学差异参数的预测模型对HGGs的识别敏感度可达100%,特异度为66.7%,表明瘤周区域纹理分析能有效鉴别HGGs和单发脑转移瘤。XIAO等[25]利用T1-CE全肿瘤区、全肿瘤边缘向内5 mm至向外扩展5 mm的脑-肿瘤交界区以及全肿瘤+扩展的瘤周5 mm区的三个感兴趣区(region of interest, ROI)影像组学特征鉴别脑脓肿和GBM,其中全肿瘤影像组学特征联合瘤周水肿与全肿瘤体积比表现最佳。KIM等[26]基于T1-CE、T2WI和表观扩散系数(apparent diffusion coefficient, ADC),比较肿瘤强化区和全肿瘤联合瘤周水肿区的影像组学特征,以鉴别原发性中枢神经系统淋巴瘤(primary central nervous system lymphoma, PCNSL)和GBM,结果显示常规MRI结合瘤周影像组学可以很好地鉴别二者。DONG等[27]发现,瘤周水肿区的T1WI灰度大小区域矩阵(gray level size zone matrix, GLSZM)及T1-CE的灰度依赖矩阵(gray level dependence matrix, GLDM)、灰度游程矩阵(gray level run-length matrix, GLRLM)特征,结合决策树(decision tree, DT)、支持向量机(support vector machine, SVM)、神经网络(neural network, NN)、朴素贝叶斯(naive Bayes, NB)和k最近邻(k-nearest neighbor, KNN)分类器,可鉴别单发脑转移瘤(metastatic brain tumor,MET)和GBM。

       SAMANI等[28]利用磁共振扩散张量成像(diffusion tensor imaging, DTI)的自由水体积分数(free water volume fractions, FW-VF)参数和卷积神经网络(convolutional neural network, CNN)特征,以85%的准确率区分胶质瘤和MET。PARVAZE等[29]通过分析脑转移瘤(brain metastasis, BM)、脑膜瘤和GBM的T1-CE瘤周水肿纹理特征,并使用随机森林(random forest, RF)实现了GBM和BM的分类。BATHLA等[30]基于多参数MRI(multiple parameter, mpMRI)的T1WI、T2WI、FLAIR、T1-CE和扩散加权成像(diffusion-weighted imaging, DWI)肿瘤核心(enhancing tumor, ET)和肿瘤周围区域(peritumoral region, PTR)图像,结合机器学习(machine learning, ML)或深度学习(deep learning, DL),对GBM、BM和PCNSL进行分类。结果显示,基于T1-CE-ET和T2-PTR数据集的DL模型表现最佳,曲线下面积(area under the curve, AUC)为0.854,表明PTR的影像组学特征对鉴别胶质瘤具有重要价值。

       以上研究显示,MRI瘤周影像组学能有效鉴别胶质瘤。结合瘤内和瘤周特征及多模态影像可提高诊断准确性,但也会增加模型复杂性和特征冗余。未来需甄别有价值的序列和区域特征,以提升模型泛化能力和临床实用性。

3 瘤周影像组学用于胶质瘤分级的术前预测

       不同级别的胶质瘤治疗方案和预后差异显著[31]。低级别胶质瘤主要通过手术切除辅以放化疗,预后较好[32];高级别胶质瘤则采用最大范围安全切除结合放化疗,预后较差[33]。术前无创准确预测胶质瘤分级对制订手术方案和后续治疗至关重要,但目前依赖有创的病理活检[34],无法全面反映肿瘤内部情况。

       CHENG等[35]从多中心的285名患者术前mpMRI中提取肿瘤内部(intratumoral volume, ITV)和周围(peritumoral volume, PTV)特征,设计算法捕捉指定半径的周围区域信息来解决PBZ边界不清的问题。结合PTV和ITV后的影像学标签AUC值达到0.975,优于现有方法且泛化性能强,实现胶质瘤分级的准确、非侵入性预测。MALIK等[36]提取42名GBM和36名LGG患者的常规MRI序列(T1-CE、T2-FLAIR、DWI)的PBZ影像组学特征,使用四种机器学习分类器建模,AdaBoost(Adaptive Boosting)分类器表现最优,AUC为0.96。TAN等[37]基于T1-CE的瘤内影像组学模型、瘤周水肿及T2-FLAIR的瘤内联合瘤周水肿区开发六种影像组学模型,发现融合瘤内和瘤周特征的XGBoost(eXtreme Gradient Boosting)分类器在区分LGG和HGG方面表现出色,凸显了PBZ在胶质瘤分级预测中的重要性。

       以上研究表明,MRI瘤周区域(包括瘤周水肿和肿瘤核心外扩展区)影像组学技术在术前无创预测胶质瘤病理分级方面具有潜力,通过整合瘤内和瘤周特征,进一步提升了预测效能,达到了较高的AUC值。

4 瘤周影像组学用于胶质瘤的分子分型预测

       2016年WHO首次在中枢神经系统肿瘤分类中引入分子分型[38],2021年WHO CNS 5[31]进一步强调了分子标志物的重要性,深化了胶质瘤的诊断与分级,并为个体化治疗和预后评估提供了依据[39]。当前研究多集中于结合影像组学预测胶质瘤分子分型,而对PBZ的单独分析较少。PBZ采样存在偏倚、伦理问题及异质性挑战,相关研究有限,但尸检证实其存在浸润性肿瘤[7]。NIMBALKAR等[40]通过实时定量聚合酶链反应(quantitative polymerase chain reaction, qPCR)验证了8个基因在PBZ中的上调表达,特别是丝氨酸蛋白酶抑制剂A类成员3(Serpin Family A Member 3, SERPINA3)蛋白在PBZ中的高表达促进了胶质瘤细胞的侵袭性。这一发现表明PBZ具有独特的基因表达特征,可能成为潜在的生物标志物。尽管病理组织活检仍是分子分型的“金标准”[34],影像组学在预测分子标志物方面具有无创、便捷、可重复的优势。

       LIN等[41]利用MRI集成(magnetic resonance imaging compilation, MAGIC)技术的T1WI、T2WI和质子密度(proton density, PD)定量参数图,研究了ET、非强化区(non-enhancing tumour and necrosis, NET)和瘤周水肿区(peritumoral edema, PE)在区分胶质瘤级别及预测异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)突变和1p/19q编码状态中的价值。结果显示,结合ET、NET和PE三个区域的AUC最高,表明这些参数能为分子分型预测模型提供重要信息。SUN等[42]的研究表明,基于T1WI和T2WI的瘤周影像组学(向外扩展5~20 mm)在预测Ki-67和p53水平方面具有价值,特别是T2WI瘤周10 mm区域的p53预测模型AUC为0.709,20 mm区域的Ki-67预测模型AUC为0.773,进一步证明了瘤周影像组学特征对胶质瘤分子分型预测的重要性。VILS等[43]通过T1-CE序列和自主开发的半自动分割工具,扩展肿瘤周围区并结合瘤周及瘤内VOI来预测GBM患者的O6甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA methyltransferase, MGMT)状态,发现纳入瘤周区域后预测性能最佳,显示了瘤周影像组学特征在预测MGMT状态方面的潜力。

       以上研究表明,多模态瘤内、瘤周联合的影像组学特征在胶质瘤分子分型预测方面具有潜在的应用价值,为指导影像引导的多点穿刺、精准评价胶质瘤的分子分型提供依据。

5 瘤周影像组学预测胶质母细胞瘤术后复发、患者预后

       GBM 5年生存期不到10%[44],由于浸润性生长方式[45],术后5年90%的患者会经历复发,而约90%的复发发生在瘤周[5]。无创预测GBM术后复发、PBZ的浸润范围和预后并对患者进行危险分层能够有效改善预后同时指导精准手术切除。

       GAO等[46]通过将PBZ向外扩展3 mm发现瘤内和瘤周影像组学特征对预测患者生存同样重要。联合分析这些区域的影像组学特征可提高三年生存率预测的准确性,具有潜在临床指导价值。CHOUGULE等[47]利用29名GBM患者的T1-CE、FLAIR和ADC图像建立机器学习模型预测复发区域,远处和局部复发的准确率分别为80.1%和71.4%。RATHORE等[48] 将GBM患者瘤周水肿区定义为邻近肿瘤ROI(N-ROI)和肿瘤远隔ROI(F-ROI),并提取特征建立预测模型,测试和验证队列中的准确率分别为87.51%和89.54%。REN等[49]基于多中心GBM复发患者术前、术后及随访MRI PBZ的两个亚区(复发或肿瘤浸润、非复发或水肿),联合四种机器学习分类器发现CatBoost(Categorical Boosting)分类器在测试集中的AUC为0.81±0.09,准确率为84%±6%,表明PBZ可能是预测复发高危区域的关键,为手术和放疗提供潜在指导。

       PRASANNA等[22]利用多模态MRI的PBZ、强化区和坏死区影像组学特征预测GBM患者的生存期,发现PBZ特征能更好地捕捉肿瘤异质性,优于核心区(如增强区和坏死区)及临床因素,更准确地预测长生存期(>18个月)和短生存期(<7个月)。另有研究[50]收集134名GBM患者的多模态MRI数据(T1-CE,T1WI,T2WI,FLAIR),提取五类ROI(坏死+非增强区、强化区、水肿区、坏死+非增强+强化区、全肿瘤+水肿区)的影像组学特征,建立生存预测模型。结果显示,水肿区在预测无进展生存期(progression-free survival, PFS)方面表现最佳,表明PBZ影像组学特征对PFS有独特贡献。LATYSHEVA等[51]使用限制性谱成像技术(restriction spectrum imaging, RSI)将强化区向外扩展5 mm、5~10 mm和10~15 mm定义为强化周围区(PEZ)、瘤周近区域(NZ)和瘤周远区域(FZ),发现RSI细胞指数,尤其是PEZ和NZ中的指数与较短生存期相关。基于RSI的瘤周区特征有助于优化手术切除范围、指导活检和放射治疗规划,从而显著改善患者治疗效果。

       瘤周影像组学在评估胶质瘤复发和预后方面已取得良好预测效果,但仍需更多长期随访研究以验证其预测价值。预测胶质瘤PBZ复发的意义在于通过调整手术策略,扩大切除范围,从而延长患者生存期。未来可基于术前MRI图像建立更准确的预测模型。

6 总结与展望

       影像组学在胶质瘤研究中的应用日益深化,尤其在揭示瘤周微环境特征方面发挥了重要作用,对PBZ的研究将对胶质瘤尤其是GBM的治疗具有深远影响,可推动靶向药物研发和精准手术规划,从而降低复发率和并发症。结合PBZ特征与机器学习,可实现个性化手术导航,改善患者预后。未来需要开展多中心、大样本的前瞻性研究,系统收集和分析不同治疗阶段的影像数据,挖掘PBZ影像组学特征与疗效之间的关联。当前在胶质瘤PBZ研究中,不同研究对PBZ的定义和分割方法多样化,缺乏统一标准。(1)影像学上,部分研究将PBZ定义为T1-CE未强化但在T2WI和FLAIR序列呈高信号的水肿区域,该方法易于识别且可重复性强,适用于研究和临床实践。(2)另一些研究通过定量体素扩展对比增强的肿瘤核心来定义PBZ,以期找到最佳瘤周范围,改善患者预后并降低术后神经功能受损风险。借助机器学习的数据处理能力,可以制订精准切除方案,指导神经外科手术,推动个性化医疗发展,提升治疗效果和生存质量。(3)部分研究尝试利用分子标志物表达来界定PBZ[40],但尚未发现稳定可靠的分子标志物,仍需进一步研究。当前对瘤周区域的分割主要包括手动和半自动分割。手动分割由经验丰富的放射科医生根据T2WI、T2-FLAIR及T1-CE等序列勾勒术后增强和水肿区域,虽然精准但耗时且难以大规模应用。半自动分割结合软件工具或算法,如3D-Slicer和GLISTR,先自动生成肿瘤边界,再经人工微调以提高精度,兼具效率与准确性,但仍需人工干预。自动分割在处理边界模糊或特征不典型的图像时应用较少,准确性不如手动或半自动方法。

       基于瘤周影像组学的胶质瘤研究面临以下挑战:(1)缺乏图像获取标准,导致数据可比性低,影响研究成果的广泛适用性。(2)ROI勾画方式不一致,使得特征提取不稳定,影响模型稳定性和可靠性。(3)特征选择和建模方法差异大,模型预测性能参差不齐,难以通过扩大样本量验证泛化能力。(4)瘤周范围界定模糊,不同研究所用PBZ大小各异,需确定最佳PBZ范围以准确反映胶质瘤微环境信息。(5)影像组学特征与组织病理学相关性不足,需要前瞻性研究验证生物标志物,提高临床认可度。综上所述,为了建立更为准确、可靠的预测模型以辅助胶质瘤治疗的临床决策,未来需要更多关于瘤周影像组学的研究,特别是在图像获取标准化、ROI勾画一致性、多模态图像融合应用、瘤周范围界定以及影像组学与病理组织学的相关性研究等方面进行进一步的探索和优化。

[1]
OSTROM Q T, CIOFFI G, WAITE K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018[J]. Neuro Oncol, 2021, 23: iii1-iii105. DOI: 10.1093/neuonc/noab200.
[2]
WELLER M, WEN P Y, CHANG S M, et al. Glioma[J/OL]. Nat Rev Dis Primers, 2024, 10(1): 33 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38724526/. DOI: 10.1038/s41572-024-00516-y.
[3]
PÖHLMANN J, WELLER M, MARCELLUSI A, et al. High costs, low quality of life, reduced survival, and room for improving treatment: an analysis of burden and unmet needs in glioma[J/OL]. Front Oncol, 2024, 14: 1368606 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38571509/. DOI: 10.3389/fonc.2024.1368606.
[4]
RODGERS L T, VILLANO J L, HARTZ A M S. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models[J/OL]. Cancers (Basel), 2024, 16(15): 2638 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39123366/. DOI: 10.3390/cancers16152638.
[5]
LEMÉE J M, CLAVREUL A, MENEI P. Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone[J]. Neuro Oncol. 2015, 17(10): 1322-1332. DOI: 10.1093/neuonc/nov119.
[6]
SILVA M, VIVANCOS C, DUFFAU H. The Concept of «Peritumoral Zone» in Diffuse Low-Grade Gliomas: Oncological and Functional Implications for a Connectome-Guided Therapeutic Attitude[J/OL]. Brain Sci. 2022;12(4):504 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/35448035/. DOI: 10.3390/brainsci12040504.
[7]
TREVISI G, MANGIOLA A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma[J/OL]. Cancers (Basel), 2023, 15(22): 5460 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/35448035/. DOI: 10.3390/cancers15225460.
[8]
ELLINGSON B M, SANVITO F, CLOUGHESY T F, et al. A Neuroradiologist's Guide to Operationalizing the Response Assessment in Neuro-Oncology (RANO) Criteria Version 2.0 for Gliomas in Adults[J]. AJNR Am J Neuroradiol, 2024, 45(12): 1846-1856. DOI: 10.3174/ajnr.A8396.
[9]
HEIDARI M, SHOKRANI P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma[J/OL]. J Med Signals Sens, 2024, 14: 7 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38993200/. DOI: 10.4103/jmss.jmss_30_22.
[10]
AERTS H J, VELAZQUEZ E R, LEIJENAAR R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J/OL]. Nat Commun, 2014, 5: 4644 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/24892406/. DOI: 10.1038/ncomms5006.
[11]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[12]
SHAHEEN A, BUKHARI S T, NADEEM M. Overall Survival Prediction of Glioma Patients With Multiregional Radiomics[J/OL]. Front Neurosci, 2022, 16: 911065 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/35873825/. DOI: 10.3389/fnins.2022.911065.
[13]
INDORIA A, KULANTHAIVELU K, PRASAD C, et al. Radiomics features for the discrimination of tuberculomas from high grade gliomas and metastasis: a multimodal study[J]. Neuroradiology, 2024, 66(11): 1979-1992. DOI: 10.1007/s00234-024-03435-7.
[14]
LIU X, JIANG Z, ROTH H R, et al. Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: A two-center study[J/OL]. Neurooncol Adv, 2024, 6(1): vdae108 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39027132/. DOI: 10.1093/noajnl/vdae108.
[15]
HAN Q, LU Y, WANG D, et al. Glioblastomas with and without peritumoral fluid-attenuated inversion recovery (FLAIR) hyperintensity present morphological and microstructural differences on conventional MR images[J]. Eur Radiol, 2023, 33(12): 9139-9151. DOI: 10.1007/s00330-023-09924-2.
[16]
BALLESTÍN A, ARMOCIDA D, RIBECCO V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features[J/OL]. Front Immunol, 2024, 15: 1347877 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38487525/. DOI: 10.3389/fimmu.2024.1347877.
[17]
ZHAO Y, ZHANG J, WANG N, et al. Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma[J/OL]. BMC Cancer. 2023, 23(1): 1026 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/37875815/. DOI: 10.1186/s12885-023-11491-0.
[18]
MAO N, SHI Y, LIAN C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol, 2022, 32(5): 3207-3219. DOI: 10.1007/s00330-021-08414-7.
[19]
JIANG W, MENG R, CHENG Y, et al. Intra- and Peritumoral Based Radiomics for Assessment of Lymphovascular Invasion in Invasive Breast Cancer[J]. J Magn Reson Imaging, 2024, 59(2): 613-625. DOI: 10.1002/jmri.28776.
[20]
FAN H, LUO Y, GU F, et al. Artificial intelligence-based MRI radiomics and radiogenomics in glioma[J/OL]. Cancer Imaging, 2024, 24(1): 36 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38486342/. DOI: 10.1186/s40644-024-00682-y.
[21]
GIAMBRA M, DI CRISTOFORI A, VALTORTA S, et al. The peritumoral brain zone in glioblastoma: where we are and where we are going[J]. J Neurosci Res, 2023, 101(2): 199-216. DOI: 10.1002/jnr.25134.
[22]
PRASANNA P, PATEL J, PARTOVI S, et al. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings[J]. Eur Radiol, 2017, 27(10): 4188-4197. DOI: 10.1007/s00330-016-4637-3.
[23]
YU H, CHEN M, HUANG Y, et al. Differential Diagnosis of Intracranial Malignant Tumors Using MRI Based on Morphological Features and Signal Intensity Ratio of Lesions[J]. Altern Ther Health Med, 2023, 29(8): 816-821.
[24]
CSUTAK C, ȘTEFAN P A, LENGHEL L M, et al. Differentiating High-Grade Gliomas from Brain Metastases at Magnetic Resonance: The Role of Texture Analysis of the Peritumoral Zone[J/OL]. Brain Sci, 2020, 10(9): 638 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/32947822/. DOI: 10.3390/brainsci10090638.
[25]
XIAO D, WANG J, WANG X, et al. Distinguishing brain abscess from necrotic glioblastoma using MRI-based intranodular radiomic features and peritumoral edema/tumor volume ratio[J]. J Integr Neurosci, 2021, 20(3): 623-634. DOI: 10.31083/j.jin2003066.
[26]
KIM Y, CHO H H, KIM S T, et al. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI[J]. Neuroradiology, 2018, 60(12): 1297-1305. DOI: 10.1007/s00234-018-2091-4.
[27]
DONG F, LI Q, JIANG B, et al. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers[J]. Eur Radiol, 2020, 30(5): 3015-3022. DOI: 10.1007/s00330-019-06460-w.
[28]
SAMANI Z R, PARKER D, WOLF R, et al. Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases[J/OL]. Sci Rep, 2021, 11(1): 14469 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34262079/. DOI: 10.1038/s41598-021-93804-6.
[29]
PARVAZE P S, BHATTACHARJEE R, VERMA Y K, et al. Quantification of Radiomics features of Peritumoral Vasogenic Edema extracted from fluid-attenuated inversion recovery images in glioblastoma and isolated brain metastasis, using T1-dynamic contrast-enhanced Perfusion analysis[J/OL]. NMR Biomed, 2023, 36(5): e4884 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/36453877/. DOI: 10.1002/nbm.4884.
[30]
BATHLA G, DHRUBA D D, SONI N, et al. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods[J]. J Neuroradiol. 2024, 51(3): 258-264. DOI: 10.1016/j.neurad.2023.08.007.
[31]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[32]
MORSHED R A, YOUNG J S, HERVEY-JUMPER S L, et al. The management of low-grade gliomas in adults[J]. J Neurosurg Sci, 2019, 63(4): 450-457. DOI: 10.23736/S0390-5616.19.04701-5.
[33]
MACDONALD T J, AGUILERA D, KRAMM C M. Treatment of high-grade glioma in children and adolescents[J]. Neuro Oncol, 2011, 13(10): 1049-1058. DOI: 10.1093/neuonc/nor092
[34]
GAO M, HUANG S, PAN X, et al. Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas[J/OL]. Front Oncol, 2020, 10: 1676 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33014836/. DOI: 10.3389/fonc.2020.01676.
[35]
CHENG J, LIU J, YUE H, et al. Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features From Multiparametric MRI Images[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(2): 1084-1095. DOI: 10.1109/TCBB.2020.3033538.
[36]
MALIK N, GERAGHTY B, DASGUPTA A, et al. MRI radiomics to differentiate between low grade glioma and glioblastoma peritumoral region[J]. J Neurooncol, 2021, 155(2): 181-191. DOI: 10.1007/s11060-021-03866-9.
[37]
TAN R, SUI C, WANG C, et al. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study[J/OL]. Front Oncol, 2024, 14: 1401977 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38803534/. DOI: 10.3389/fonc.2024.1401977.
[38]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[39]
SINGH G, SINGH A, BAE J, et al. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates[J/OL]. Cancer Imaging, 2024, 24(1): 133 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39375809/. DOI: 10.1186/s40644-024-00769-6.
[40]
NIMBALKAR V P, KRUTHIKA B S, SRAVYA P, et al. Differential gene expression in peritumoral brain zone of glioblastoma: role of SERPINA3 in promoting invasion, stemness and radioresistance of glioma cells and association with poor patient prognosis and recurrence[J]. J Neurooncol. 2021, 152(1): 55-65. DOI: 10.1007/s11060-020-03685-4.
[41]
LIN D, LIU J, KE C, et al. Radiomics Analysis of Quantitative Maps from Synthetic MRI for Predicting Grades and Molecular Subtypes of Diffuse Gliomas[J]. Clin Neuroradiol, 2024, 34(4): 817-826. DOI: 10.1007/s00062-024-01421-3.
[42]
SUN X, PANG P, LOU L, et al. Radiomic prediction models for the level of Ki-67 and p53 in glioma[J/OL]. J Int Med Res. 2020, 48(5): 300060520914466 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/32431205/. DOI: 10.1177/0300060520914466.
[43]
VILS A, BOGOWICZ M, TANADINI-LANG S, et al. Radiomic Analysis to Predict Outcome in Recurrent Glioblastoma Based on Multi-Center MR Imaging From the Prospective DIRECTOR Trial[J/OL]. Front Oncol, 2021, 11: 636672 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33937035/. DOI: 10.3389/fonc.2021.636672.
[44]
YABO Y A, HEILAND D H. Understanding glioblastoma at the single-cell level: Recent advances and future challenges[J/OL]. PLoS Biol, 2024, 22(5): e3002640 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/38814900/. DOI: 10.1371/journal.pbio.3002640.
[45]
CUDDAPAH V A, ROBEL S, WATKINS S, et al. A neurocentric perspective on glioma invasion[J]. Nat Rev Neurosci, 2014, 15(7): 455-465. DOI: 10.1038/nrn3765.
[46]
GAO M, CHENG J, QIU A, et al. Magnetic resonance imaging (MRI)-based intratumoral and peritumoral radiomics for prognosis prediction in glioma patients[J/OL]. Clin Radiol, 2024, 79(11): e1383-e1393 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/39218720/. DOI: 10.1016/j.crad.2024.08.005.
[47]
CHOUGULE T, GUPTA R K, SAINI J, et al. Radiomics signature for temporal evolution and recurrence patterns of glioblastoma using multimodal magnetic resonance imaging[J/OL]. NMR Biomed, 2022, 35(3): e4647 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34766380/. DOI: 10.1002/nbm.4647.
[48]
RATHORE S, AKBARI H, DOSHI J, et al. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning[J/OL]. J Med Imaging (Bellingham), 2018, 5(2): 021219 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/29531967/. DOI: 10.1117/1.JMI.5.2.021219.
[49]
REN J, ZHAI X, YIN H, et al. Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma[J]. Neurol Ther, 2023, 12(5): 1729-1743. DOI: 10.1007/s40120-023-00524-2.
[50]
WANG B, ZHANG S, WU X, et al. Multiple Survival Outcome Prediction of Glioblastoma Patients Based on Multiparametric MRI[J/OL]. Front Oncol, 2021, 11: 778627 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/34900728/. DOI: 10.3389/fonc.2021.778627.
[51]
LATYSHEVA A, GEIER O M, HOPE T R, et al. Diagnostic utility of Restriction Spectrum Imaging in the characterization of the peritumoral brain zone in glioblastoma: Analysis of overall and progression-free survival[J/OL]. Eur J Radiol, 2020, 132: 109289 [2024-10-10]. https://pubmed.ncbi.nlm.nih.gov/33002815/. DOI: 10.1016/j.ejrad.2020.109289.

上一篇 基于动脉自旋标记的血脑屏障评估方法在中枢神经系统疾病中的研究进展
下一篇 MRI机器学习在垂体神经内分泌肿瘤预后评估中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2