分享:
分享到微信朋友圈
X
临床研究
联合临床指标和MR征象的列线图预测肝细胞癌肿瘤包绕型血管
孟存忠 赵帆 盛玉武

Cite this article as: MENG C Z, ZHAO F, SHENG Y W. Predicting vessels encapsulating tumor clusters in hepatocellular carcinoma using combination clinical biomarkers and MR features nomogram[J]. Chin J Magn Reson Imaging, 2025, 16(3): 58-62.本文引用格式:孟存忠, 赵帆, 盛玉武. 联合临床指标和MR征象的列线图预测肝细胞癌肿瘤包绕型血管[J]. 磁共振成像, 2025, 16(3): 58-62. DOI:10.12015/issn.1674-8034.2025.03.009.


[摘要] 目的 构建联合临床指标和MRI征象的列线图预测肝细胞癌(hepatocellular carcinoma, HCC)肿瘤包绕型血管(vessels encapsulating tumor clusters, VETC)。材料与方法 回顾性分析213例手术病理证实为HCC患者的临床及影像资料,根据时间顺序,按7∶3的比例将患者分为训练集和验证集,比较两组临床、病理及影像特征的差异。对训练集的临床指标及影像特征采用logistic单因素及多因素进行回归分析,确定VETC发生的独立危险因素。根据回归分析结果构建预测VETC的列线图,并在验证集中验证列线图的预测效能。结果 训练集纳入148例,验证集65例,两组临床、病理及影像特征差异无统计学意义(P均>0.05)。在训练集的logistic回归分析中,甲胎蛋白(alpha-fetoprotein, AFP)>400 ng/mL、肿瘤更大、肿瘤多发、肿瘤边缘不光整及出现肿瘤内动脉是预测VETC的独立危险因素。根据以上因素构建的列线图在训练集和验证集的C指数分别为0.825和0.817。结论 临床指标及MRI征象构建的列线图在预测VETC时具有较好的准确性,且能直观显示VETC的发生概率,可帮助临床制订个性化治疗的方案。
[Abstract] Objective To develop a nomogram combining clinical biomarkers and MRI features to predict vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC).Materials and Methods Retrospective analysis of clinical and imaging data of 213 patients with surgical pathologically confirmed HCC, and the patients were divided into training and validation cohorts in a ratio of 7∶3 according to chronological order, and the differences in clinical, pathological and imaging features between the two groups were compared. Univariate and multivariate logistic regression analysis were used to analyze the independent risk factors, including clinical biomarkers and imaging features for VETC in training cohort. Nomogram for predicting VETC were developed based on the results of regression analysis, and this nomogram was validated using the validation cohort.Results One hundred and forty-eight patients were included in the training cohort and 65 patients in the validation cohort, and there was no statistical difference in clinical, pathological and imaging features between the two groups. In the logistic regression analysis, AFP > 400 ng/mL, larger tumor diameter, greater number of tumors, non-smooth tumor margin and presence of intra-tumoral artery were the independent risk factors for predicting VETC. The C index of the nomogram developed based on the above factors was 0.825 and 0.817 in the training and validation cohort, respectively.Conclusions The nomogram developed by clinical biomarkers and MRI features has good accuracy in predicting VETC and can directly visualize the probability of VETC, which can facilitate personalized treatment plans.
[关键词] 肝细胞癌;肿瘤包绕型血管;临床指标;磁共振成像;影像征象;列线图
[Keywords] hepatocellular carcinoma;vessels encapsulating tumor clusters;clinical biomarker;magnetic resonance imaging;imaging feature;nomogram

孟存忠    赵帆    盛玉武 *  

武威市人民医院CT/MRI科,武威 733000

通信作者:盛玉武,E-mail: 631167315@qq.com

作者贡献声明:盛玉武设计本研究的方案,对稿件的重要内容进行了修改;孟存忠起草和撰写稿件,获取、分析或解释本研究的数据;赵帆获取、分析或解释本研究的数据,对稿件的重要内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-10-23
接受日期:2025-02-27
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.009
本文引用格式:孟存忠, 赵帆, 盛玉武. 联合临床指标和MR征象的列线图预测肝细胞癌肿瘤包绕型血管[J]. 磁共振成像, 2025, 16(3): 58-62. DOI:10.12015/issn.1674-8034.2025.03.009.

0 引言

       肝细胞癌(hepatocellular carcinoma, HCC)是最常见的肝脏恶性肿瘤,虽然目前治疗手段已经较多,如手术切除、肝移植、射频消融等,但术后复发的比例仍居高不下[1, 2]。HCC是高度血管化的肿瘤,容易发生早期血行转移。经典的癌细胞转移方式为上皮-间质转化,而肿瘤包绕型血管(vessels encapsulating tumor clusters, VETC)是最近提出的新的转移方式[3, 4]。VETC是指窦状血管相连成网,将肝癌细胞分割成独立的小单元并完全包绕,以整体的形式与瘤周静脉吻合而侵入血流,随血流定植在肝内或肝外,完成肝内或远处转移[5, 6]。和传统的转移模型比较,VETC中的肿瘤细胞无需获取迁移侵袭的能力,且能躲避免疫识别及攻击,因此更容易完成转移[7, 8]。研究证实,无论是肝局部切除或是肝移植,VETC均是HCC早期复发及预后不良的危险因素[9, 10, 11, 12]。因此,术前明确VETC风险有助于临床精准化及个性化的治疗。

       研究报道,临床指标及影像学征象在预测VETC上具有潜在价值,然而,以往的研究多集中在筛选VETC的危险因素,未能整合风险因素进行综合预测[13, 14]。本研究联合临床指标及MR征象构建预测VETC的列线图,并评估其预测的准确性。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,通过了武威市人民医院伦理委员会批准,免除受试者知情同意,批准文号:ESR002735。回顾性分析2018年8月至2024年6月期间就诊于武威市人民医院经病理证实的HCC病例。纳入标准:(1)行肝切除术后病理证实为HCC,且通过免疫组化明确VETC结果;(2)首诊为HCC,未经手术、射频消融、经导管栓塞化疗等治疗;(3)MR检查后一个月内进行了手术治疗。排除标准:(1)存在明确静脉癌栓;(2)图像质量不佳,不能用于分析。最终纳入213例,根据时间顺序,按7∶3的比例将2018年8月到2022年6月的患者纳入训练集,将2022年7月到2024年6月的患者纳入验证集。

1.2 临床资料、实验室检查及病理结果

       从本院影像归档和通信系统(picture archiving and communication system, PACS)系统收集患者临床及病理结果,包括年龄、性别、病毒性肝炎病史、血清甲胎蛋白(alpha-fetoprotein, AFP)、肝功能Child-Pugh分级、病理分级(Edmondson-Steiner分级)。

1.3 检查方法

       采用1.5 T Voyager超导型MR扫描仪(GE Healthcare,美国),16通道腹部线圈。扫描序列及参数如下:(1)T2WI压脂,视野(field of view, FOV)38 cm×38 cm,矩阵320×320,层厚6 mm,层间距1 mm,回波时间(echo time, TE)92 ms,重复时间(repetition time, TR)8200 ms;(2)扩散加权成像(diffusion weighted imaging, DWI),FOV 38 cm×38 cm,矩阵128×130,层厚6 mm,层间距1 mm,TE 79 ms,TR 5200 ms,b值分别为0、50和800 s/mm2;(3)动态增强使用肝脏容积加速扫描(liver acquisition with volume acceleration, LAVA)序列,FOV 38 cm×38 cm,翻转角12°,矩阵288×224,层厚5 mm,TE 1.6 ms,TR 4.5 ms,首先扫描蒙片,然后经高压注射器通过肘静脉注射钆喷酸葡胺(Gd-DTPA, Bayer Healthcare,德国),注射剂量为0.2 mmol/kg,流率2.0 mL/s,随后用20 mL生理盐水冲管,使用透视触发技术采集动脉双期(15~35 s),随后采集门静脉期(50~60 s)、过渡期(3 min)及延迟期(6 min)图像。

1.4 图像分析

       两名分别有10年及14年腹部诊断经验的副主任医师在知晓病理结果为HCC,但不知晓VETC结果的情况下分析征象。主要包括:(1)肿瘤最大径(在肿瘤最大层面测量最大径);(2)动态增强非边缘环状高强化及门静脉廓清(分别指动脉期肿瘤非边缘区域强化及门静脉期强化退出);(3)肿瘤数量(单发或多发);(4)肿瘤边缘(肿瘤边缘光整或不光整);(5)肿瘤内动脉(在动脉期肿瘤内观察到强化血管)。当两名医师判断存在分歧时协商判定。

1.5 病理结果及VETC判定

       一名有12年肝脏病变诊断经验的病理科副主任医师进行对HCC标本进行病理分级及VETC评估。VETC阳性定义为经免疫组织化学染色后,在整个或局部HCC区域中见到被CD34阳性血管包绕的窦状肿瘤细胞簇。

1.6 统计学分析

       使用SPSS 23.0及R 4.2.0软件进行统计分析,比较训练集及验证集临床、病理及影像征象是否存在差异。计量资料数据以均数±标准差表示,采用独立样本t检验,计数资料以频数(百分比)表示,采用χ2检验或Fisher精确概率法。在训练集中,对VETC阳性组及阴性组参数进行对比,计算差异具有统计学意义的计量参数的截断值。采用logistic单因素及多因素回归分析临床影像特征预测VETC的独立影响因素。根据以上危险因素构建列线图,分别绘制训练集及验证集的校准曲线并计算C指数。P<0.05表示差异有统计学意义。

2 结果

2.1 训练集及验证集分组及对比

       纳入的213例HCC病例中,训练集148例,验证集65例。两组临床资料、病理结果及影像征象之间差异均无统计学意义(P>0.05;表1),表明分组具有较好的随机性。

表1  两组患者临床资料、病理结果及影像征象对比
Tab. 1  Comparison of clinical data, pathological findings and imaging features between the two groups of patients

2.2 训练集VETC阳性组与阴性组对比

       在148例HCC病例中,VETC阳性组60例,VETC阴性组88例。对两组临床资料、实验室检查及病理结果进行对比,其中,VETC阳性组AFP>400 ng/mL(38.3% vs. 21.6%,P=0.027)、病理分级(60.0% vs. 36.4%,P=0.005)、肿瘤最大径[(4.55±1.29)cm vs.(3.21±1.02)cm,P<0.001]、肿瘤多发(9.5% vs. 4.7%,P=0.002)、肿瘤边缘不光整(76.7% vs. 45.5%,P<0.001)及出现肿瘤内动脉(31.7% vs. 8.0%,P<0.001)与VETC阴性组间差异有统计学意义,而其他参数组间差异无统计学意义(P>0.05)(表2)。VETC阳性病例影像表现见图1、图2。

图1  男,62岁,肝S8段HCC,肿瘤最大径2.6 cm,VETC(-)。1A:T2表现为中等高信号,1B:动脉早期均质显著强化,边界清晰;1C:动脉晚期强化程度减低,略高于肝实质;1D:门静脉期可见强化退出。图2 男,48岁,轻度肝硬化,肝S5段HCC,肿瘤最大径6.4 cm,VETC(+)。2A:T2表现为混杂高信号,2B:动脉早期可见肿瘤内血管(红箭头);2C:动脉晚期可见混杂中度强化,边界不清,高于正常肝实质;2D:门静脉期可见强化退出。HCC:肝细胞癌;VETC:肿瘤包绕型血管。
Fig. 1  A 62-year-old male with hepatocellular carcinoma in liver S8, tumor maximal diameter is 2.6 cm, VETC (-). 1A: T2 shows moderate to high signal intensity; 1B: Homogeneous and significant enhancement in early arterial phase with well-defined margin; 1C: Enhancement decreases in late arterial phase and is slightly higher than that of liver parenchyma; 1D: Enhancement washout in portal venous phase. Fig. 2 A 48-year-old male with hepatocellular carcinoma in liver S5, tumor maximal diameter is 6.4 cm, VETC (+). 2A: T2 shows heterogeneous high signal intensity; 2B: Intra-tumor vessels (red arrow) are seen in early arterial phase; 2C: Moderate heterogeneously enhancement in late arterial phase with ill-defined margin and is higher than that of liver parenchyma; 2D: Enhancement washout in portal venous phase. VETC: vessels encapsulating tumor clusters.
表2  训练集VETC阳性组与阴性组临床资料、病理结果及影像征象对比
Tab. 2  Comparison of clinical data, pathological findings and imaging features between VETC-positive and negative groups in training cohort

2.3 训练集单因素及多因素logistic回归分析

       将以上临床、病理及影像特征进行单因素及多因素回归分析,结果显示,AFP>400 ng/mL、肿瘤最大径>4.095 cm(截断值)、肿瘤多发、肿瘤边缘不光整及出现肿瘤内动脉是预测VETC的危险因素(表3),而其他因素则与VETC无相关性。

表3  训练集预测VETC的单因素及多因素变量logistic回归分析
Tab. 3  Logistic regression of univariate and multivariate analyses for prediction of VETC in training cohort

2.4 列线图构建及验证

       使用以上差异具有统计学意义的因素构建预测VETC的列线图(图3A)并绘制校准曲线,训练集校准曲线(图3B)显示有较好的拟合度,C指数值为0.825,表明此预测模型在训练集中有较好的准确度。继续用验证集数据进行验证,验证集校准曲线(图3C)显示拟合度亦较好,C指数为0.817,表明此列线图在验证集中亦较为稳定。

图3  临床及影像特征构建预测VETC的列线图(3A)、训练集校准曲线(3B)及验证集校准曲线(3C)。VETC:肿瘤包绕型血管;AFP:甲胎蛋白。
Fig. 3  Clinical and imaging features were developed to predict VETC in nomogram (3A), calibration curve of training cohort (3B), and calibration curve of validation cohort (3C). VETC: vessels encapsulating tumor clusters; AFP: alpha fetoprotein.

3 讨论

       本研究结果表明,血清AFP>400 ng/mL、肿瘤最大径、肿瘤多发、肿瘤边缘不光整及肿瘤内动脉是VETC发生的独立危险因素。结合以上临床及影像特征构建预测VETC的列线图,在训练集及验证集中均具有较高的准确度。因此,本预测模型可直观反映个体VETC的发生率,为临床制订个性化的治疗方案中提供依据。

3.1 患者临床资料与VETC相关性

       本研究中,年龄、性别、病毒性肝炎病史及Child-Pugh分级与VETC的发生没有相关性,这与以往的研究结果类似[15]。在血清标志物方面,本研究发现,AFP>400 ng/mL是预测VETC的独立危险因素,这与YANG等[16]的研究结果类似,而在QU等[17]的研究中,AFP水平与VETC发生无关。这些研究结果的差异可能与选择偏倚或纳入的样本有关。

3.2 MRI影像特征与VETC相关性

       在影像特征方面,USTA等[18]报道肿瘤直径越大,异质性越高,尤其是超过5 cm后,肿瘤复发率显著提高。本研究中,VETC阳性患者肿瘤直径大于阴性患者,而回归分析表明,即便肿瘤最大径小于5 cm,VETC的风险也显著增加,这与以往的研究结果类似[19]。这可能原因是瘤体越大,越容易侵犯邻近血管,从而促使VETC的发生。肿瘤边缘是否光整与肿瘤的生长模式有关,单结节均匀生长则边缘光整,单结节不规则外生性生长或多结节融合生长则表现为边缘不光整,而后两类生长模式侵袭性更强,发生VETC的风险显著升高[20]。肿瘤内动脉征象与肿瘤血管生成丰富,同时伴有静脉及基质侵犯有关,这一征象常见于特定的分子类型的HCC中,表明肿瘤有较强的侵袭性[21]。上述因素在预测VETC中的价值虽已有报道,但以上征象的判断多基于主观经验,且因为纳入人群的差异,不同研究之间诊断效能仍存在差异[22]。此外,基于动态增强成像的影像组学在预测VETC中的价值也有报道,然而不同组学研究的可重复性及鲁棒性仍需证实,且其诊断的准确性相比影像征象并未有显著提高[23, 24, 25]。因此,以传统影像征象构建的预测模型在临床具有更好的实用性。

3.3 临床指标及MRI影像特征构建列线图的价值

       本研究在以往研究的基础上,整合VETC的临床及影像危险因素构建列线图,这一预测模型在训练集和验证集均表现有较好的效能。列线图通过对每个危险因素赋分,直观显示不同危险因素的权重,预测个体VETC的发生率,因此在个体化治疗中具有显著的实用价值,也更方便临床推广使用[26, 27, 28]

3.4 不足与展望

       本研究不足之处在于:首先,研究为回顾性研究,可能存在选择偏倚;其次,虽然使用验证集进行了验证,但病例来源仍为单中心,多中心研究能提高模型的稳定性;最后,因条件所限,本单位肝脏特异性对比剂使用较少,而研究报道肝胆期信号征象与VETC的发生具有一定的相关性[29, 30]。后续研究将继续补充特异性对比剂病例,以拓展研究的适用性。

4 结论

       综上所述,AFP>400 ng/mL、肿瘤最大径、肿瘤数量、肿瘤边缘不光整及肿瘤内动脉是预测VETC的危险因素。联合以上因素构建的预测VETC的列线图在训练集和验证集均表现为较好的准确度,这有助于HCC患者术前制订更准确的方案,改善预后。

[1]
GANESAN P, KULIK L M. Hepatocellular carcinoma: new developments[J]. Clin Liver Dis, 2023, 27(1): 85-102. DOI: 10.1016/j.cld.2022.08.004.
[2]
SINGAL A G, KANWAL F, LLOVET J M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy[J]. Nat Rev Clin Oncol, 2023, 20(12): 864-884. DOI: 10.1038/s41571-023-00825-3.
[3]
WANG Y, DENG B C. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023, 42(3): 629-652. DOI: 10.1007/s10555-023-10084-4.
[4]
RENNE S L, WOO H Y, ALLEGRA S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 183-195. DOI: 10.1002/hep.30814.
[5]
RHEE H, PARK Y N, CHOI J Y. Advances in understanding hepatocellular carcinoma vasculature: implications for diagnosis, prognostication, and treatment[J]. Korean J Radiol, 2024, 25(10): 887-901. DOI: 10.3348/kjr.2024.0307.
[6]
TOSHIDA K, ITOH S, TOSHIMA T, et al. Clinical significance of mechanistic target of rapamycin expression in vessels that encapsulate tumor cluster-positive hepatocellular carcinoma patients who have undergone living donor liver transplantation[J]. Ann Gastroenterol Surg, 2023, 8(1): 163-171. DOI: 10.1002/ags3.12735.
[7]
ZHANG P Y, ONO A, FUJII Y, et al. The presence of vessels encapsulating tumor clusters is associated with an immunosuppressive tumor microenvironment in hepatocellular carcinoma[J]. Int J Cancer, 2022, 151(12): 2278-2290. DOI: 10.1002/ijc.34247.
[8]
SHIGEMATSU Y, TANAKA K, AMORI G, et al. Potential involvement of oncostatin M in the immunosuppressive tumor immune microenvironment in hepatocellular carcinoma with vessels encapsulating tumor clusters[J]. Hepatol Res, 2024, 54(4): 368-381. DOI: 10.1111/hepr.13988.
[9]
WANG Y Y, DONG K, WANG K, et al. Effect of vessels that encapsulate tumor clusters (VETC) on the prognosis of different stages of hepatocellular carcinoma after hepatectomy[J]. Dig Liver Dis, 2023, 55(9): 1288-1294. DOI: 10.1016/j.dld.2023.03.008.
[10]
LIN W P, LU L H, ZHENG R L, et al. Vessels encapsulating tumor clusters: a novel efficacy predictor of hepatic arterial infusion chemotherapy in unresectable hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(19): 17231-17239. DOI: 10.1007/s00432-023-05444-0.
[11]
KAWASAKI J, TOSHIMA T, YOSHIZUMI T, et al. Prognostic impact of vessels that encapsulate tumor cluster (VETC) in patients who underwent liver transplantation for hepatocellular carcinoma[J]. Ann Surg Oncol, 2021, 28(13): 8186-8195. DOI: 10.1245/s10434-021-10209-5.
[12]
WANG M M, CAO L, WANG Y Z, et al. The prognostic value of vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma: a systematic review and meta-analysis[J]. Clin Transl Oncol, 2024, 26(8): 2037-2046. DOI: 10.1007/s12094-024-03427-2.
[13]
CHEN H L, DONG H, HE R L, et al. Optimizing predictions: improved performance of preoperative gadobenate-enhanced MRI hepatobiliary phase features in predicting vessels encapsulating tumor clusters in hepatocellular carcinoma-a multicenter study[J]. Abdom Radiol, 2024, 49(10): 3412-3426. DOI: 10.1007/s00261-024-04283-y.
[14]
高苗慧, 周怡然, 朱绍成. Gd-EOB-DTPA增强MRI评估肝细胞癌微血管转移模式的研究进展[J]. 磁共振成像, 2023, 14(7): 160-165. DOI: 10.12015/issn.1674-8034.2023.07.029.
GAO M H, ZHOU Y R, ZHU S C. Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI[J]. Chin J Magn Reson Imag, 2023, 14(7): 160-165. DOI: 10.12015/issn.1674-8034.2023.07.029.
[15]
ZHU Y Y, YANG L L, WANG M, et al. Preoperative MRI features to predict vessels that encapsulate tumor clusters and microvascular invasion in hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 167: 111089 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/37713969/. DOI: 10.1016/j.ejrad.2023.111089.
[16]
YANG J W, DONG X, WANG G L, et al. Preoperative MRI features for characterization of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Abdom Radiol, 2023, 48(2): 554-566. DOI: 10.1007/s00261-022-03740-w.
[17]
QU Q, LIU Z X, LU M T, et al. Preoperative gadoxetic acid-enhanced MRI features for evaluation of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma: creating nomograms for risk assessment[J]. J Magn Reson Imaging, 2024, 60(3): 1094-1110. DOI: 10.1002/jmri.29187.
[18]
USTA S, KAYAALP C. Tumor diameter for hepatocellular carcinoma: why should size matter?[J]. J Gastrointest Cancer, 2020, 51(4): 1114-1117. DOI: 10.1007/s12029-020-00483-z.
[19]
FENG Z C, LI H L, ZHAO H F, et al. Preoperative CT for characterization of aggressive macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma[J]. Radiology, 2021, 300(1): 219-229. DOI: 10.1148/radiol.2021203614.
[20]
WANG M M, CAO L, WANG Y Z, et al. Prediction of vessels encapsulating tumor clusters pattern and prognosis of hepatocellular carcinoma based on preoperative gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid magnetic resonance imaging[J]. J Gastrointest Surg, 2024, 28(4): 442-450. DOI: 10.1016/j.gassur.2024.02.004.
[21]
AKIBA J, NAKAYAMA M, KONDO R, et al. Immunophenotypes and tumor immune microenvironment in hepatocellular carcinoma with macrotrabecular massive and vessels encapsulating tumor clusters[J]. In Vivo, 2024, 38(2): 640-646. DOI: 10.21873/invivo.13483.
[22]
PAN J H, HUANG H Z, ZHANG S Y, et al. Intraindividual comparison of CT and MRI for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma[J]. Eur Radiol, 2025, 35(1): 61-72. DOI: 10.1007/s00330-024-10944-9.
[23]
DONG X, YANG J W, ZHANG B H, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 59(1): 108-119. DOI: 10.1002/jmri.28745.
[24]
ZHANG C, ZHONG H, ZHAO F, et al. Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma: Machine learning model based on contrast-enhanced computed tomography[J]. World J Gastrointest Oncol, 2024, 16(3): 857-874. DOI: 10.4251/wjgo.v16.i3.857.
[25]
FAN Y F, YU Y X, WANG X M, et al. Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 349-359. DOI: 10.2147/JHC.S293755.
[26]
CHEN H L, HE R L, GU M T, et al. Nomogram prediction of vessels encapsulating tumor clusters in small hepatocellular carcinoma≤3 cm based on enhanced magnetic resonance imaging[J]. World J Gastrointest Oncol, 2024, 16(5): 1808-1820. DOI: 10.4251/wjgo.v16.i5.1808.
[27]
ZHOU L S, QU Y, QUAN G N, et al. Nomogram for predicting microvascular invasion in hepatocellular carcinoma using gadoxetic acid-enhanced MRI and intravoxel incoherent motion imaging[J]. Acad Radiol, 2024, 31(2): 457-466. DOI: 10.1016/j.acra.2023.06.028.
[28]
CHEN F M, DU M Z, QI X M, et al. Nomogram estimating vessels encapsulating tumor clusters in hepatocellular carcinoma from preoperative gadoxetate disodium-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(6): 1893-1905. DOI: 10.1002/jmri.28488.
[29]
FAN Y F, YU Y X, HU M J, et al. Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma[J/OL]. Br J Radiol, 2021, 94(1119): 20200950 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/33417489/. DOI: 10.1259/bjr.20200950.
[30]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.

上一篇 基于CEMRI瘤内瘤周影像组学预测肝细胞癌分化程度的研究
下一篇 全瘤ADC直方图参数联合影像生物标志物预测直肠腺癌神经脉管浸润的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2