分享:
分享到微信朋友圈
X
临床研究
基于ADC影像组学的机器学习模型预测子宫内膜癌肌层浸润深度的价值
崔靖 郭冉 信瑞强

Cite this article as: CUI J, GUO R, XIN R Q. Predictive value of machine learning model based on ADC radiomics in evaluating the invasion depth of endometrial carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(3): 77-82.本文引用格式:崔靖, 郭冉, 信瑞强. 基于ADC影像组学的机器学习模型预测子宫内膜癌肌层浸润深度的价值[J]. 磁共振成像, 2025, 16(3): 77-82. DOI:10.12015/issn.1674-8034.2025.03.012.


[摘要] 目的 探讨基于表观扩散系数(apparent diffusion coefficient, ADC)图构建的影像组学模型,对子宫内膜癌(endometrial carcinoma, EC)肌层浸润深度的预测价值,从而为临床制订治疗方案提供可靠依据。材料与方法 回顾性分析首都医科大学附属北京潞河医院2016年1月至2023年12月期间在术前接受盆腔MRI检查并经术后病理证实的155例EC患者的临床及MRI资料(浅肌层浸润114例,深肌层浸润41例),按照4∶1的比例随机分为训练集(n=124)和验证集(n=31)。采用ITK-SNAP软件在ADC图上逐层勾画肿瘤区域并进行特征提取,对提取出来的特征进行归一化处理,应用皮尔森相关系数分析(pearson correlation coefficients, PCC)及最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)对所有特征进行筛选降维,并按权重系数对筛选后的影像组学特征进行重要性排序,选择排名前10的特征,使用逻辑回归(logistic regression, LR)、随机森林(random forest, RF)、梯度提升机(gradient boosting machine, GBM)3种算法构建影像组学模型,并在验证集中对模型进行验证。使用受试者工作特征(receiver operating characteristic, ROC)曲线、校准曲线和决策曲线分析(decision curve analysis, DCA)对3种影像组学模型的性能进行分析评估。使用DeLong检验比较不同模型间曲线下面积(area under the curve, AUC)的差异。结果 LR、RF和GBM模型预测EC肌层浸润深度的AUC值分别是0.780(95% CI:0.762~0.804)、0.860(95% CI:0.846~0.879)、0.860(95% CI:0.843~0.877),RF和GBM模型的AUC值最高且相等。DeLong检验显示LR与RF及GBM模型的AUC值差异均有统计学意义(P=0.017,0.023),RF与GBM模型的AUC值差异无统计学意义(P=3.310)。校准曲线和DCA结果显示3种模型均具有较好的拟合度及临床实用性。结论 基于ADC图所构建的影像组学模型在EC肌层浸润深度的预测中具有良好的价值。
[Abstract] Objective To explore the predictive value of radiomics models based on apparent diffusion coefficient (ADC) in evaluating the myometrial invasion depth of endometrial carcinoma (EC), providing a reliable evidence for clinicians to formulate treatment plans.Materials and Methods Retrospective analysis of 155 patients with EC who underwent preoperative pelvic MR examination and were confirmed by pathology after operation from January 2016 to December 2023 in Beijing Luhe Hospital (superficial myometrial invasion = 114, deep invasion = 41), and randomly divided into training set (n = 124) and validation set (n = 31) in a 4∶1 ratio. The ITK-SNAP software was used to delineate the tumor regions layer by layer on the ADC maps, and the radiomics features were extracted, the extracted features were normalized. Pearson correlation coefficients (PCC) and least absolute shrinkage and selection operator (LASSO) were used to reduce features dimensionality, and the importance of the screened radiomics features was ranked according to the weight coefficient, the top 10 features were used to build radiomics models using three algorithms: logistic regression (LR), random forest (RF), and gradient boosting machine (GBM). The models were validated on the validation set. The performance of three radiomics models were evaluated by the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). The AUC values were compared using the DeLong test.Results The AUC values of the LR, RF, and GBM models in predicting the invasion depth of endometrial carcinoma were 0.780 (95% CI: 0.762 to 0.804), 0.860 (95% CI: 0.846 to 0.879), and 0.860 (95% CI: 0.843 to 0.877), respectively. The AUC values of the RF and GBM were the highest and equal. The DeLong test showed that there was a statistically significant difference in AUC values between LR, RF, and GBM models (P = 0.017, 0.023), while there was no statistically significant difference in AUC values between RF and GBM models (P = 3.310). The calibration curve and DCA curve show that all three models have good fit and clinical practicality.Conclusions The radiomics models based on ADC map have good value in predicting the invasion depth of EC.
[关键词] 子宫内膜肿瘤;肌层浸润;磁共振成像;影像组学;机器学习;表观扩散系数
[Keywords] endometrial carcinoma;myometrial invasion;magnetic resonance imaging;radiomics;machine learning;apparent diffusion coefficient

崔靖    郭冉    信瑞强 *  

首都医科大学附属北京潞河医院放射科,北京101199

通信作者:信瑞强,E-mail: rxin@ccmu.edu.cn

作者贡献声明:信瑞强设计本研究的方案,对稿件重要内容进行了修改;崔靖起草和撰写稿件,获取、分析和解释本研究的数据;郭冉获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-09-04
接受日期:2025-03-04
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.012
本文引用格式:崔靖, 郭冉, 信瑞强. 基于ADC影像组学的机器学习模型预测子宫内膜癌肌层浸润深度的价值[J]. 磁共振成像, 2025, 16(3): 77-82. DOI:10.12015/issn.1674-8034.2025.03.012.

0 引言

       子宫内膜癌(endometrial carcinoma, EC)是最常见的生殖系统恶性肿瘤之一,近几年来其发病率、死亡率不断上升[1, 2, 3],严重影响患者的身体健康。根据肌层浸润深度,可将EC分为浅肌层浸润和深肌层浸润,肌层浸润深度<50%或无肌层浸润为浅肌层浸润,肌层浸润深度≥50%为深肌层浸润[4]。目前EC患者主要的治疗方案仍为手术切除辅以术后放化疗,肌层浸润深度对EC患者手术方式的选择及预后具有重要意义,浅肌层浸润通常不需要进行淋巴结清扫,且具有良好的预后,而深肌层浸润通常需要进行盆腔淋巴结清扫,且预后效果差,易复发[5, 6, 7]。因此,术前评估EC患者的肌层浸润深度对指导临床制订治疗方案具有重要的意义。

       MRI具有较高的软组织对比度及空间分辨力,是EC的常规检查手段之一,但常规MRI依赖于医师的经验水平,存在较大的主观差异[8, 9, 10]。扩散加权成像(diffusion-weighted imaging, DWI)能够反映组织中细胞外水分子的扩散运动和分布状态,通过表观扩散系数(apparent diffusion coefficient, ADC)值来定量显示[11, 12, 13]。已有研究表明,ADC值与EC肌层浸润深度有关[14, 15, 16],ADC值联合常规MRI可以提高EC肌层浸润预测的准确度[17],但ADC值难以全面反映肿瘤组织内部的空间异质性,因此需要一种更加客观、准确且全面的技术来评估肌层浸润深度。影像组学是一种无创、客观、定量的预测方法,它通过大量提取影像特征,构建与验证模型,从而反映肿瘤异质性与微观生物学特征[18, 19, 20],但基于ADC影像组学模型预测EC肌层浸润深度的研究较少,且既往研究多使用逻辑回归(logistic regression, LR)和随机森林(random forest, RF)算法构建模型[21, 22, 23],梯度提升机(gradient boosting machine, GBM)算法未曾被应用,GBM是一种强大的基于决策树的集成学习方法,可以有效提高模型的整体性能。因此本研究旨在探讨基于ADC影像组学特征构建的不同机器学习模型对EC肌层浸润深度的预测价值。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经首都医科大学附属北京潞河医院医学伦理委员会批准,免除受试者知情同意,批准文号:2024-LHKY-101-01。回顾性分析首都医科大学附属北京潞河医院2016年1月至2023年12月期间在术前接受盆腔MRI检查并经术后病理证实的EC患者的临床及MRI资料。纳入标准:(1)经术后病理证实为EC患者;(2)术前行盆腔MR扫描,且间隔时间小于4周,扫描序列包括常规平扫、DWI、增强扫描等;(3)术前及MRI扫描前未行放化疗等治疗;(4)临床资料完整。排除标准:(1)影像资料不完整或图像质量差无法进行评估;(2)病变直径<1 cm或肿瘤出血明显,影响ROI勾画。

1.2 扫描设备及方法

       MRI扫描采用联影uMR 780 3.0 T和西门子Magnetom Skyra 3.0 T MR扫描仪,患者取仰卧位,适度充盈膀胱,采用腹部相控阵线圈,自动生成ADC图。扫描序列及参数详见表1

表1  MRI扫描序列及参数
Tab. 1  MRI scan sequence and parameters

1.3 图像分割、特征提取与模型建立

       所有图像在分割前,都进行N4ITK偏差校正进行图像预处理并被重采样成1 mm×1 mm×1 mm,以消除不同扫描设备、参数带来的误差。将所有图像导出至个人电脑,由一名具有3年工作经验的放射科医师使用ITK-SNAP 3.8.0软件(http://www.itksnap.org/pmwiki/pmwiki.php),在ADC图上,参照横断面及矢状面T2WI、增强T1WI及DWI图像,沿肿瘤边缘手动逐层勾画整体肿瘤组织,软件将自动生成一个三维体积感兴趣区(volume of interest, VOI)(图1),然后由一位具有10年工作经验的放射科医师进行复核,进行勾画时无需避开囊变、坏死区。采用Python软件的pyradiomics包(https://pypi.org/project/pyradiomics/)进行特征提取,提取的影像组学特征包括以下7类:一阶统计量(first order statistics)、形状(shape)、灰度共生矩阵(grey level cooccurrence matrix, GLCM)、灰度游程长度矩阵(grey level run length matrix, GLRLM)、灰度区域大小矩阵(grey level size zone matrix, GLSZM)、邻域灰度差分矩阵(neighbouring gray tone difference matrix, NGTDM)及灰度依赖矩阵(gray level dependence matrix, GLDM)。按照4∶1的比例随机将155例EC患者分为训练集和验证集。

       采用Z-score对提取的每个ADC影像组学特征值进行归一化处理,方法如下:Z=(x-μ)/σ,其中μ为所有特征值的均值,σ为所有特征值的标准差。随后采用Pearson相关系数(Pearson correlation coefficients, PCC)对特征进行降维,遍历所有特征,两两计算Pearson相关系数,当相关系数r>0.8时,随机去除其中一个,该方法可减少具有高度相似性的特征。最后采用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)算法经五折交叉验证的方法得到调优参数λ,根据λ筛选系数非零的组学特征,并按权重系数对筛选后的特征进行重要性排序,选择排名前10的影像组学特征,使用LR、RF及GBM算法构建影像组学模型。在模型训练阶段,我们使用五折交叉验证结果评价预测模型的准确性。

图1  女,60岁,深肌层浸润EC患者。1A:增强T1WI显示子宫腔内肿瘤,强化程度低于正常肌层;1B:DWI图病变呈高信号;1C:ADC图病变呈低信号;1D:ADC图上EC病变区域ROI勾画;1E:逐层勾画EC病变区域后重建获得的三维体积ROI。EC:子宫内膜癌;DWI:扩散加权成像;ADC:表观扩散系数;ROI:感兴趣区。
Fig. 1  A 60-year-old female EC patient with deep myometrial invasion. 1A: T1WI enhanced image shows a tumor in the uterine cavity, and the degree of EC enhancement is lower than that of the normal myometrium; 1B: DWI shows hyperintensity; 1C: ADC map shows hypointensity; 1D: ROI delineation of endometrial carcinoma on ADC map; 1E: The 3D image of endometrial carcinoma is obtained after delineating the outline of all slices of the tumor. EC: endometrial carcinoma; DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient; ROI: region of interest.

1.4 统计学分析

       统计学分析采用SPSS 25.0软件。对计量资料进行正态分布检验,符合正态分布采用独立样本t检验,以均值±标准差表示,计数资料采用χ2检验比较组间差异。使用受试者工作特征(receiver operating characteristic, ROC)曲线进行分析,计算曲线下面积(area under the curve, AUC),评估不同模型预测EC肌层浸润深度的敏感度、特异度及准确度。使用DeLong检验比较不同模型间AUC差异。通过校准曲线和Hosmer-Lemeshow拟合优度检验分析各个模型的校准性能。采用决策曲线分析(decision curve analysis, DCA)评估各个模型的临床应用价值。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       本研究共纳入155例EC患者病例,其中浅肌层浸润病例114例,深肌层浸润病例41例,按照4∶1随机分组后,训练集124例(浅肌层浸润91例,深肌层浸润33例),验证集31例(浅肌层浸润23例,深肌层浸润8例)。患者的年龄、病理类型及组织学分级在训练集和验证集差异均无统计学意义。具体结果详见表2

表2  训练集和验证集患者间一般资料比较
Tab. 2  Comparison of general data between patients in the training and validation sets

2.2 影像组学特征筛选

       从每位患者ADC图像中共提取出1595个影像组学特征,应用PCC分析及LASSO算法对所有特征进行筛选降维,并按权重系数对筛选后的影像组学特征进行重要性排序,排名前10位的特征依次为:

       wavelet-LHL_gldm_DependenceNonUniformity、log-sigma-3-mm-3D_gldm_GrayLevelNonUniformity、log-sigma-3-mm-3D_firstorder_TotalEnergy、log-sigma-5-mm-3D_gldm_GrayLevelNonUniformity、wavelet-LLH_gldm_DependenceNonUniformity、square_firstorder_Energy、original_shape_SurfaceArea、squareroot_gldm_GrayLevelNonUniformity、log-sigma-3-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis、original_gldm_DependenceNonUniformity,包括7个灰度相关矩阵特征(gray level dependence matrix, GLDM),2个一阶特征(first order),1个形状特征(shape)(图2)。

图2  LASSO算法影像组学特征筛选。2A:五折交叉验证后的正则化参数alpha值,在均值(黑色虚线)的最低点处选定最优正则化参数alpha值为0.012 5;2B:LASSO降维后排名前10位的影像组学特征名称及其权重系数。图3 三种模型预测EC肌层浸润深度的ROC曲线。LASSO:最小绝对收缩和选择算子;EC:子宫内膜癌;ROC:受试者工作特征;RF:随机森林;GBM:梯度提升机;LR:逻辑回归。
Fig. 2  LASSO algorithm for image omics feature screening. 2A: After 5-fold cross validation, select the optimal regularization parameter alpha value of 0.012 5 at the lowest point of the mean (black dashed line); 2B: The names and weight coefficients of the top 10 radiomics features after LASSO dimensionality reduction. Fig. 3 ROC curves of three models for predicting the myometrial invasion depth of EC. LASSO: least absolute shrinkage and selection operator; ROC: receiver operating characteristic; EC: endometrial carcinoma; RF: random forest; GBM: gradient boosting machine; LR: logistic regression.

2.3 模型建立及效能评价

       采用LR、RF及GBM算法对所选择出的10个最佳特征构建EC肌层浸润深度的预测模型。ROC曲线分析结果显示,LR、RF及GBM模型在测试集中的AUC值分别为0.780(95% CI:0.762~0.804),0.860(95% CI:0.846~0.879),0.860(95% CI:0.843~0.877)(表3,图3)。DeLong检验显示,LR与RF、GBM模型AUC值差异均有统计学意义(P=0.017、0.023),RF与GBM模型AUC值差异无统计学意义(P=3.310)。校准曲线显示3种模型预测结果与实际观测值之间具有良好的一致性(图4A)。DCA结果显示3种模型均具有较好的临床实用性(图4B)。

图4  各模型校准曲线(4A)和DCA图(4B)。DCA:决策曲线分析;AUC:曲线下面积。
Fig. 4  The calibration curve (4A) and DCA diagram of each model. DCA: decision curve analysis; AUC: area under the curve.
表3  三种影像组学模型预测EC肌层浸润深度的效能比较
Tab. 3  Comparison of the efficacy of three radiomics models in predicting the invasion depth of endometrial carcinoma

3 讨论

       EC手术方式的选择及预后与肌层浸润深度关系密切,深肌层浸润需要进行盆腔淋巴结清扫,并且随着浸润深度的增加,盆腔淋巴结的转移率随之增加,患者5年生存率降低[24, 25, 26]。常规MRI是EC患者最主要的影像检查手段,但其具有较大的主观性,且易受EC合并子宫肌瘤、子宫腺肌症,及肿瘤位于宫角等因素而误诊、漏诊[27]。本研究基于ADC影像组学特征值,使用LR、RF和GBM三种算法分别构建影像组学模型,预测EC肌层浸润的AUC值分别是0.780,0.860,0.860,其中RF和GBM模型的AUC值最高且相等,三者均具有较高的拟合度和临床实用性,表明基于ADC图所构建的影像组学模型具备术前无创评估EC肌层浸润深度的潜力,能够为临床医师制订治疗方案提供可靠依据。

3.1 影像组学特征的筛选、分析及应用

       近年来影像组学成为研究的热门,影像组学可大量提取肉眼所无法观察到的影像特征,从而客观反映肿瘤的异质性及微观生物学特征[28, 29, 30]。UENO等[31]的研究表明,基于MRI纹理特征可以预测EC肌层浸润深度,且与人眼识别具有高度的一致性,但此研究仅提取出180种特征,提取特征种类和数量较少。YTRE-HAUGE等[32]的研究表明,基于ADC图的高熵可以预测EC肌层浸润深度,但此研究仅利用了ROI的二维纹理参数,无法反映肿瘤的空间异质性信息。本研究基于影像组学方法对全肿瘤进行特征提取,所提取的特征种类和数量更多,能提供更多的信息,此外,本研究基于原始图像及经过8种滤波器(小波变换、高斯、指数、梯度、局部二值模式、对数、平方、平方根)变换生成派生图像,共提取出1595个影像组学特征。这些处理手段有助于减少图像的噪声及伪影,以及对图像进行多维度特征提取,从而深度分析病变,进一步提高影像组学模型的预测效能。

       本研究共纳入114例浅肌层浸润EC患者,31例深肌层浸润EC患者,通过手动逐层勾画肿瘤整体区域,提取影像组学特征,经过特征筛选后,排名前10位的影像组学特征中有7个灰度相关矩阵特征,2个一阶特征,1个形状特征,这些特征是分别基于原始图像、高斯滤波器、平方、平方根滤波器、小波变换后提取出来的,具体包含依赖非均匀性、灰度非均匀性、大依赖分布的度量、总能量、能量、表面积,其中权重系数排名最高的特征为依赖非均匀性、其次为灰度非均匀性,均属于GLDM特征。依赖非均匀性可量化整个图像中依赖关系的相似性,值越高表示异质性越高,灰度非均匀性可量化图像中灰度级强度值的相似性[33, 34],表明在ADC图像中,浅肌层浸润和深肌层浸润EC患者图像纹理异质性和灰度差异与EC肌层浸润深度有关。

3.2 机器学习算法的选择及价值

       不同的机器学习算法构建的模型具有不同的预测结果,因此选择合适的机器学习算法对构建影像组学模型具有重要意义。既往关于预测EC肌层浸润深度的研究多使用LR和RF算法来构建影像组学模型[35],而本研究增加了GBM算法。GBM是一种强大的基于决策树的集成学习方法,通过迭代构建并组合多个弱学习器,逐步减小预测残差,从而提升模型的整体性能。本研究构建的LR、RF及GBM影像组学模型均显示出良好的预测效能,RF及GBM模型的AUC值要高于LR模型,但RF和GBM模型AUC差异无统计学意义。校准曲线显示三种模型的预测曲线均贴近实际曲线,表明三种模型的拟合度均较好。DCA结果显示三种模型均可临床获益。

3.3 本研究的局限性

       (1)本研究为单中心回顾性研究,研究的样本量小,特别是深肌层浸润患者,未来需要进一步扩大样本量来验证模型。(2)本研究采用的是人工分割方法,可能存在偏差,未来将探索使用半自动或深度学习的方法来进行分割。(3)本研究数据来自两台磁共振机器,可能会降低研究的准确性,未来尽可能采用一台机器进行研究。

4 结论

       基于ADC图所构建的影像组学模型在EC肌层浸润深度的预测中具有良好的价值。

[1]
MAKKER V, MACKAY H, RAY-COQUARD I, et al. Endometrial cancer[J/OL]. Nat Rev Dis Primers, 2021, 7: 88 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/34887451/. DOI: 10.1038/s41572-021-00324-8.
[2]
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[3]
PU C L, Biyuan, XU K, et al. Glycosylation and its research progress in endometrial cancer[J]. Clin Transl Oncol, 2022, 24(10): 1865-1880. DOI: 10.1007/s12094-022-02858-z.
[4]
周琦, 吴小华, 刘继红, 等. 子宫内膜癌诊断与治疗指南(第四版)[J]. 中国实用妇科与产科杂志, 2018, 34(8): 880-886. DOI: 10.19538/j.fk2018080114.
ZHOU Q, WU X H, LIU J H, et al. Guidelines to the diagnosis and treatment of endometrial carcinoma(4th edition)[J]. Chin J Pract Gynecol Obstet, 2018, 34(8): 880-886. DOI: 10.19538/j.fk2018080114.
[5]
中国抗癌协会妇科肿瘤专业委员会. 子宫内膜癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 501-512. DOI: 10.19401/j.cnki.1007-3639.2021.06.08.
Gynecological Oncology Professional Committee of China Anti Cancer Association. Guidelines for diagnosis and treatment of endometrial cancer (2021 edition)[J]. China Oncol, 2021, 31(6): 501-512. DOI: 10.19401/j.cnki.1007-3639.2021.06.08.
[6]
ZHANG Q, YU X D, LIN M, et al. Multi-b-value diffusion weighted imaging for preoperative evaluation of risk stratification in early-stage endometrial cancer[J/OL]. Eur J Radiol, 2019, 119: 108637 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/31446209/. DOI: 10.1016/j.ejrad.2019.08.006.
[7]
LARSON D M, CONNOR G P, BROSTE S K, et al. Prognostic significance of gross myometrial invasion with endometrial cancer[J]. Obstet Gynecol, 1996, 88(3): 394-398. DOI: 10.1016/0029-7844(96)00161-5.
[8]
STANZIONE A, CUOCOLO R, DEL GROSSO R, et al. Deep myometrial infiltration of endometrial cancer on MRI: a radiomics-powered machine learning pilot study[J]. Acad Radiol, 2021, 28(5): 737-744. DOI: 10.1016/j.acra.2020.02.028.
[9]
WANG L J, TSENG Y J, WEE N K, et al. Diffusion-weighted imaging versus dynamic contrast-enhanced imaging for pre-operative diagnosis of deep myometrial invasion in endometrial cancer: a meta-analysis[J]. Clin Imaging, 2021, 80: 36-42. DOI: 10.1016/j.clinimag.2021.06.027.
[10]
LIN G, HUANG Y T, CHAO A, et al. Endometrial cancer with cervical stromal invasion: diagnostic accuracy of diffusion-weighted and dynamic contrast enhanced MR imaging at 3T[J]. Eur Radiol, 2017, 27(5): 1867-1876. DOI: 10.1007/s00330-016-4583-0.
[11]
MAHESHWARI E, NOUGARET S, STEIN E B, et al. Update on MRI in evaluation and treatment of endometrial cancer[J]. Radiographics, 2022, 42(7): 2112-2130. DOI: 10.1148/rg.220070.
[12]
DE MUZIO F, FUSCO R, SIMONETTI I, et al. Functional assessment in endometrial and cervical cancer: diffusion and perfusion, two captivating tools for radiologists[J]. Eur Rev Med Pharmacol Sci, 2023, 27(16): 7793-7810. DOI: 10.26355/eurrev_202308_33435.
[13]
ZHANG G W, XU Z L, ZHENG J Y, et al. Prognostic value of multi b-value DWI in patients with locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(3): 1928-1937. DOI: 10.1007/s00330-022-09159-7.
[14]
NOUGARET S, REINHOLD C, ALSHARIF S S, et al. Endometrial cancer: combined MR volumetry and diffusion-weighted imaging for assessment of myometrial and lymphovascular invasion and tumor grade[J]. Radiology, 2015, 276(3): 797-808. DOI: 10.1148/radiol.15141212.
[15]
CHEN J Y, FAN W M, GU H L, et al. The value of the apparent diffusion coefficient in differentiating type II from type I endometrial carcinoma[J]. Acta Radiol, 2021, 62(7): 959-965. DOI: 10.1177/0284185120944913.
[16]
ZHANG K Y, ZHANG Y, FANG X, et al. Nomograms of combining apparent diffusion coefficient value and radiomics for preoperative risk evaluation in endometrial carcinoma[J/OL]. Front Oncol, 2021, 11: 705456 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/34386425/. DOI: 10.3389/fonc.2021.705456.
[17]
RAJA S, SHARMA P K, SUBRAMONIAN S G, et al. Enhancing preoperative assessment of endometrial cancer: the role of diffusion-weighted magnetic resonance imaging in evaluating myometrial invasion[J/OL]. Cureus, 2024, 16(6): e62111 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/38993436/. DOI: 10.7759/cureus.62111.
[18]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[19]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[20]
丁思萱, 孟欢, 殷小平. 子宫内膜癌的影像组学研究进展[J]. 磁共振成像, 2023, 14(4): 188-192. DOI: 10.12015/issn.1674-8034.2023.04.033.
DING S X, MENG H, YIN X P. Research progress of radiomics in endometrial cancer[J]. Chin J Magn Reson Imag, 2023, 14(4): 188-192. DOI: 10.12015/issn.1674-8034.2023.04.033.
[21]
LEFEBVRE T L, UENO Y, DOHAN A, et al. Development and validation of multiparametric MRI-based radiomics models for preoperative risk stratification of endometrial cancer[J]. Radiology, 2022, 305(2): 375-386. DOI: 10.1148/radiol.212873.
[22]
刘娟娟. 基于影像组学在子宫内膜癌组织学分级及肌层浸润预测中的应用研究[D]. 蚌埠: 蚌埠医学院, 2023. DOI: 10.26925/d.cnki.gbbyc.2023.000419.
LIU J J. Study on the application of imageology in histological grading and muscle infiltration prediction of endometrial cancer[D]. Bangbu: Bengbu Medical College, 2023. DOI: 10.26925/d.cnki.gbbyc.2023.000419.
[23]
韩雨晴. 全子宫MRI影像组学特征对子宫内膜癌肌层浸润深度的预测价值[D]. 济南: 山东大学, 2021. DOI: 10.27272/d.cnki.gshdu.2021.004414.
HAN Y Q. Predictive value of MRI features of whole uterus on myometrial infiltration depth of endometrial carcinoma[D]. Jinan: Shandong University, 2021. DOI: 10.27272/d.cnki.gshdu.2021.004414.
[24]
PRAKASAN A M, DHAS M, JAGATHNATHKRISHNA K M, et al. Prognostic factors for survival in patients with carcinoma endometrium[J]. South Asian J Cancer, 2023, 11(4): 309-314. DOI: 10.1055/s-0041-1735563.
[25]
马园, 侯孟岩, 周芳, 等. 酰胺质子转移成像和体素内不相干运动成像评估早期子宫内膜癌的风险分层[J]. 中国医学影像学杂志, 2022, 30(6): 600-605. DOI: 10.3969/j.issn.1005-5185.2022.06.015.
MA Y, HOU M Y, ZHOU F, et al. Amide proton transfer imaging and intravoxel incoherent motion in evaluating risk stratification of early-stage endometrial cancer[J]. Chin J Med Imag, 2022, 30(6): 600-605. DOI: 10.3969/j.issn.1005-5185.2022.06.015.
[26]
张玉荣, 李丹丹. 彩超与CT鉴别诊断子宫内膜癌患者病理分期、子宫肌层浸润深度的应用价值[J]. 中国CT和MRI杂志, 2022, 20(9): 135-137. DOI: 10.3969/j.issn.1672-5131.2022.09.050.
ZHANG Y R, LI D D. Value of color ultrasound and CT in differentiating the pathological stage and the depth of myometrial invasion of endometrial cancer patients[J]. Chin J CT MRI, 2022, 20(9): 135-137. DOI: 10.3969/j.issn.1672-5131.2022.09.050.
[27]
YAN B, LIANG X F, ZHAO T T, et al. Preoperative prediction of deep myometrial invasion and tumor grade for stage I endometrioid adenocarcinoma: a simple method of measurement on DWI[J]. Eur Radiol, 2019, 29(2): 838-848. DOI: 10.1007/s00330-018-5653-2.
[28]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[29]
NISHIKAWA T, OHKA F, AOKI K, et al. Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas[J]. Brain Tumor Pathol, 2023, 40(2): 85-92. DOI: 10.1007/s10014-023-00459-4.
[30]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[31]
UENO Y, FORGHANI B, FORGHANI R, et al. Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification-A preliminary analysis[J]. Radiology, 2017, 284(3): 748-757. DOI: 10.1148/radiol.2017161950.
[32]
YTRE-HAUGE S, DYBVIK J A, LUNDERVOLD A, et al. Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer[J]. J Magn Reson Imaging, 2018, 48(6): 1637-1647. DOI: 10.1002/jmri.26184.
[33]
WANG X, SONG G, JIANG H T, et al. Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma?[J]. Abdom Radiol, 2021, 46(9): 4289-4300. DOI: 10.1007/s00261-021-03090-z.
[34]
KIM Y J. Machine learning models for sarcopenia identification based on radiomic features of muscles in computed tomography[J/OL]. Int J Environ Res Public Health, 2021, 18(16): 8710 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/34444459/. DOI: 10.3390/ijerph18168710.
[35]
郭冉, 沈秀芝, 信瑞强, 等. 基于MRI影像组学的随机森林模型预测子宫内膜癌肌层浸润深度的初步研究[J]. 磁共振成像, 2020, 11(12): 1133-1137. DOI: 10.12015/issn.1674-8034.2020.12.011.
GUO R, SHEN X Z, XIN R Q, et al. Predictive value of random forest based on MRI radiomics in evaluating the invasion depth of endometrial carcinoma[J]. Chin J Magn Reson Imag, 2020, 11(12): 1133-1137. DOI: 10.12015/issn.1674-8034.2020.12.011.

上一篇 基于术前多参数MRI的深度迁移学习预测子宫内膜癌淋巴脉管间隙浸润
下一篇 基于T2WI影像组学鉴别穿透性胎盘植入的价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2