分享:
分享到微信朋友圈
X
综述
抑郁症缰核的磁共振成像研究进展
侯琳 卞冰阳 张惠茅 张磊

Cite this article as: HOU L, BIAN B Y, ZHANG H M, et al. Advances in magnetic resonance imaging of the habenula in depression[J]. Chin J Magn Reson Imaging, 2025, 16(3): 104-108, 137.本文引用格式:侯琳, 卞冰阳, 张惠茅, 等. 抑郁症缰核的磁共振成像研究进展[J]. 磁共振成像, 2025, 16(3): 104-108, 137. DOI:10.12015/issn.1674-8034.2025.03.017.


[摘要] 缰核(habenula, Hb)是一对位于脑深部的灰质小核团,作为联系边缘前脑与中脑之间重要的枢纽,在情绪调控中发挥关键作用,缰核的过度兴奋已被证实与抑郁症的发病密切相关。磁共振成像技术不断发展以及同人工智能的深度融合,不仅加深了人们对缰核参与抑郁症的发病机制的认识,也帮助完善了抑郁症的诊疗及预后手段。本文着重对抑郁症缰核的MRI、分割及影像学改变进行总结,并探讨了目前的研究面临的技术挑战,从而为抑郁症的早期诊断及个性化治疗策略提供新的思路。
[Abstract] The habenula (Hb) is a pair of small grey nuclei located in the deep part of the brain, which plays a key role in emotion regulation as an important hub connecting the limbic forebrain and the midbrain, and overexcitability of this nucleus has been proved to be closely related to the onset of depression. The continuous development of MRI technology and its deep integration with artificial intelligence have not only deepened people's understanding of the involvement of the Hb in the pathogenesis of depression, but also helped to improve the diagnosis, treatment and prognosis of depression. In this paper, we provide a concise overview of the MRI, segmentation and imaging changes of the Hb in depression, discuss the challenges of current research, and provide new ideas for early diagnosis and personalized treatment strategies for depression.
[关键词] 缰核;抑郁症;磁共振成像;图像处理;深度学习
[Keywords] habenula;depression;magnetic resonance imaging;image processing;deep learning

侯琳    卞冰阳    张惠茅    张磊 *  

吉林大学第一医院放射科,长春 130021

通信作者:张磊,E-mail: zlei99@jlu.edu.cn

作者贡献声明:张磊、张惠茅设计本综述的方向和框架,对稿件的重要内容进行了修改;侯琳起草和撰写稿件,获取、分析和解释本研究的文献;卞冰阳获取、分析或解释本研究的文献,对稿件的重要内容进行了修改;张惠茅获得了吉林省科技发展计划项目和吉林省科技创新基地(平台)建设项目的资助;张磊获得了国家自然科学基金项目、吉林省科技发展计划项目和吉林省科技创新基地(平台)建设项目的资助;卞冰阳获得了吉林大学第一医院青年发展基金项目的资助。全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82102143 吉林省科技发展计划项目 YDZJ202402029CXJD 吉林省科技创新基地(平台)建设项目 YDZJ202402080CXJD 吉林大学第一医院青年发展基金项目 JDYY15202413
收稿日期:2024-11-30
接受日期:2025-03-10
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.017
本文引用格式:侯琳, 卞冰阳, 张惠茅, 等. 抑郁症缰核的磁共振成像研究进展[J]. 磁共振成像, 2025, 16(3): 104-108, 137. DOI:10.12015/issn.1674-8034.2025.03.017.

0 引言

       抑郁症是由各种原因引起的、以持续心情低落为主要症状的一种常见的精神障碍疾病。该病同时伴随一系列其他的症状,如快感丧失、注意困难、睡眠及饮食障碍、自罪感及自杀观念,以及认知、行为和社会功能方面的异常[1]。抑郁症发病率高、患病率高、自杀率高、复发率高,给个人及社会带来巨大的经济压力和精神负担。根据世界卫生组织2024年发布的全球疾病负担评估报告(Global Burden of Disease Study, GBD),抑郁障碍在2021年伤残调整生命年(Disability-Adjusted Life Year, DALY)的前25大主要病因中排名第12位,且预计截至2025年仍有缓慢而持续的增长[2, 3]。在国内,根据2013至2015年中国精神卫生调查(China Mental Health Survey, CMHS),抑郁症是患病率最高的情绪障碍疾病,也是仅次于焦虑障碍的第二大精神障碍疾病[4]。抑郁症的发病机制涉及遗传、神经生物学及社会文化心理等众多因素。目前抑郁症的病理生理机制尚未完全明确,主要存在几种假说,包括单胺类神经递质假说、下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal, HPA)轴假说、神经可塑性假说、免疫炎症假说、神经发生假说等,其中经典的单胺学说是目前抗抑郁药物作用的主要生物机制[5]

       缰核(habenula, Hb)是属于上丘脑的一对脑深部核团,它紧邻背侧丘脑及第三脑室,包括内侧缰核(medial habenula, MHb)和外侧缰核(lateral habenula, LHb)。作为联系边缘前脑和中脑的关键枢纽,缰核——特别是外侧缰核,接受内侧前额叶皮质(medial prefrontal cortex, mPFC)、下丘脑外侧区(lateral hypothalamic area, LHA)等结构的纤维传入,并投射纤维至中脑脚间核(interpeduncular nucleus, IPN)、腹侧被盖区(ventral tegmental area, VTA)等结构[6]。鉴于这些联系,它在长期调控单胺能神经元活动中发挥重要作用,并参与调节睡眠、厌恶、疼痛和焦虑等过程[7]。早在2010年,一项抑郁症和精神分裂症患者的尸检研究报告称,与健康对照组相比,抑郁症患者的缰核体积较小,而在精神分裂症患者中未观察到类似的结果[8]。同年报道了首例采用LHb作为脑深部电刺激(deep brain stimulation, DBS)的靶点缓解难治性抑郁(treatment resistant depression, TRD)症状的病例,阐释了LHb与抑郁症状的潜在联系[9],自此之后,国内外相继报道LHb作为DBS靶点有效缓解TRD症状的临床案例[10, 11, 12]。近年来,胡海岚教授团队的研究揭示了LHb神经元N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDAR)依赖性爆发活动是导致抑郁症发生的充分条件,而氯胺酮能有效阻止LHb的神经元活动,进而解除对下游单胺能奖励中心的抑制,从而产生快速抗抑郁效果[13, 14]。随后,越来越多的研究聚焦于缰核在抑郁症病理生理过程中的作用机制。

       近年来,随着神经影像学技术的快速发展,尤其是MRI分辨率的不断提升及各种成像方法的发展应用,缰核的在体研究已从理论探索转变为现实。本文系统回顾了既往抑郁症缰核的MRI方案、分割方式,对相应的研究发现进行总结,并分析当前研究存在的局限性,从而深入探讨缰核作为影像学生物标志物在抑郁症早期诊断及预后评估中的潜能,为未来抑郁症发病机制的研究及个性化诊疗策略的制订提供新的方向。

1 高分辨率结构磁共振成像

       由于其低对比度及小体积(根据既往尸检报道,缰核体积约在30 mm3左右[8]),缰核在传统的二维T1加权图像(T1-weighted imaging, T1WI)及T2加权图像(T2-weighted imaging, T2WI)上成像效果不尽如人意。在常规结构MRI中,缰核在T1WI上相对于周围组织呈轻度高信号。从组织学角度看,这种T1WI高信号主要反映了缰核的高髓鞘含量,包括源自髓纹的传入纤维,投射至后屈束的传出纤维以及缰联合。因此,提高空间分辨率并优化对比噪声比(contrast-to-noise ratio, CNR)对于缰核的清晰可视化及描绘极为重要。磁化准备快速梯度回波序列(magnetization prepared rapid acquisition gradient echo, MPRAGE)是一个磁化准备(180°反转脉冲)的3D梯度回波序列,目前已经常规用于缰核的成像研究。磁化准备双快速梯度回波序列(magnetization prepared 2 rapid acquisition gradient echoes, MP2RAGE),是MPRAGE的改良,该序列在纵向磁化反转后,获得2个不同反转时间(inversion time, TI)图像。通过优化序列参数,产生一个组合图像(MP2RAGE-UNI),该图像具有良好的组织间对比,且不受射频场不均匀性的影响。此外,该序列同时能够提供具有准确T1值的定量图T1 mapping[15]。超高场强(7 T)MRI技术的开拓性应用进一步提高了缰核的成像对比度,也实现了体外缰核解剖学亚区结构的区分[16]。此外,基于T1与T2加权比值生成的髓鞘敏感图像对细微的髓鞘含量差异更为敏感,常用于皮质的成像,并在缰核的成像中也实现了良好的对比噪声比[17]。然而,与MPRAGE序列相比,这些序列扫描时间较长,且部分图像的质量依赖于重建算法,限制其在临床中的广泛应用。未来可以利用压缩感知技术等采集策略,在保证图像质量的同时适当缩短扫描时间,从而降低患者运动伪影出现的几率。

2 缰核分割技术

2.1 基于手动勾画的分割方法

       高分辨率MRI的发展使缰核的在体研究成为现实。尸检研究发现,抑郁症患者缰核体积小于正常人[8]。目前,抑郁症患者缰核的体积改变的研究日益受到关注,早期缰核MRI的研究主要依赖于研究者手动勾画感兴趣区域,这种方法虽然具有个体特异性以及一定的可靠性,但费时且对勾画者解剖学知识有较高的要求[18]。一项3 T MR研究发现,未用药抑郁症患者缰核大于正常人[19];而同年另一项7 T MRI研究发现,未用药抑郁症患者与正常人体积无明显差异[20]。这些结果与先前的尸检结果亦不相符,这说明未来需要在大样本队列中利用更加高效、稳健的自动分割方法,以进一步验证缰核体积改变与抑郁症的相关性。

2.2 基于髓鞘敏感图的自动分割方法

       KIM等开发了一种基于髓鞘敏感图像(即T1W/T2W图像)的半自动及全自动分割方案,并在同一扫描仪器内和不同扫描仪器间均实现了较高的一致性(Dice系数均>0.60)。该方案包括:(1)缰核感兴趣区域初始化;(2)基于直方图的阈值化;(3)区域生长;(4)几何约束;(5)部分体积估计[21, 22]。相较于手动勾画,该方法更具客观性,且能有效减少人为误差。然而,考虑到髓鞘敏感图的图像分辨率会影响分割的准确性,未来应在不同分辨率的图像数据集中验证其方法,以提升其临床适用性。

2.3 基于MAGeTbrain的自动分割方法

       GERMANN等提出了一种全自动分割方案,可在较大的年龄范围内和不同的图像采集参数条件下均能实现稳健的分割效果[23]。该方法基于多个自动生成模板脑分割算法(Multiple Automatically Generated Templates Brain Segmentation Algorithm, MAGeTbrain),通过多数票决法融合5个图谱共102个模板,生成最终的分割结果。由于该方法依赖于图像配准,因此对配准精度要求较高且需要一定计算时间。未来可结合深度学习优化配准框架,以提高配准精度并缩短配准时间[24]

2.4 基于深度学习的自动分割方法

       深度学习技术,尤其是卷积神经网络(convolutional neural networks, CNN)近年在医学影像处理领域取得了显著的进展,其在脑深部核团的自动分割任务已经展现出了优秀的性能[25, 26, 27]。2021年,一项首次利用3D U-Net的深度学习分割模型在小样本正常人7 T MR图像中实现了较高的可靠性(准确率、召回率和Dice系数分别为0.869、0.865和0.852)[28]。随后,KYURAGI等[29]开展了一项多中心的、基于3D U-Net分割模型效能研究。结果显示,模型在测试集中表现出了可靠的分割性能(Dice系数为0.866),且具有较高的可重复性(平均绝对百分比误差为6.66)。此外,通过调整阈值,该模型在不同成像条件下(如磁场强度、空间分辨率和成像序列)的验证集中均实现了良好的分割性能(Dice系数>0.80)。根据分割结果,他们发现,同性别抑郁症患者与正常人之间缰核的体积差异无统计学意义——这一结果与既往几项基于手动分割的研究结果相似[20, 30, 31]。除此之外,他们还发现女性抑郁症患者缰核体积呈现出随抑郁严重程度加重而减小的趋势。尽管该研究纳入了多个外部数据集,但在抑郁症亚组分析中,样本量仍然有限。未来应引入更大规模的数据集以进一步验证这一研究结果。

3 功能磁共振成像

3.1 静息态功能磁共振成像

       近年来,静息态功能磁共振成像(resting-state functional MRI, rs-fMRI)已广泛应用于研究大脑功能变化。rs-fMRI通过测量静息状态下不同脑区自发的血氧水平依赖(blood oxygenation level dependent, BOLD)信号波动,并估计它们的相互作用,从而识别精神疾病中的脑内结构的异常功能连接。与任务态功能磁共振成像不同,rs-fMRI不需要对被检查者形成刺激,且能揭示脑区间错综复杂的相互作用[32]。一项针对首发的未用药抑郁症患者研究发现,与健康对照组相比,病例组缰核与背外侧前额叶皮层之间连接显著增强[33]。BARREIROS等[34]的研究进一步揭示了抑郁症亚型间的功能连接差异:与治疗敏感的患者相比,TRD患者左侧缰核与左侧楔前叶及右侧中央前回的连接增强。GOSNELL等[35]的研究则表明,抗抑郁治疗无效者右侧缰核与中缝核的功能连接减弱,而左侧缰核与蓝斑的连接增强。

       随着rs-fMRI的发展,越来越多的研究表明大脑功能连接存在时变特性,这一发现使研究者们的关注重点由传统的静态功能连接(static functional connectivity, sFC)转向动态功能连接(dynamic functional connectivity, dFC)研究领域。与sFC相比,dFC能够捕捉静息状态下不同脑区之间潜藏的动态协调模式,这使其在研究神经系统疾病的环路机制和预后发展中展现出独特的优势,并作为较sFC更为敏感的影像学生物标志物,为疾病的早期诊断和干预提供重要依据。通过测量dFC,研究者们发现缰核与不同脑区的动态连接模式不仅与抑郁症严重程度相关,还与自杀意念存在关联[36, 37],且这些连接模式具有偏侧性。TARAKU等[38]通过测量接受氯胺酮治疗后抑郁症患者的sFC和dFC的改变,揭示了氯胺酮通过调节缰核与视觉皮层、顶叶及小脑区域的功能连接发挥抗抑郁作用。这些研究表明,抗抑郁药物的治疗机制可能通过调节与缰核相关的神经环路(如默认模式网络)来实现,而并非直接作用于相关脑区。这说明了缰核的功能连接特征不仅可作为抑郁症预后评估的生物标志物,更为开发新的治疗策略提供了潜在方向。然而,现有的研究仍存在一定的局限性。受限于成像分辨率,目前缰核的研究无法细分到解剖学亚区。考虑到内外侧缰核在结构和功能上存在差异[7],尤其是外侧缰核已被证实在抑郁症发病机制中发挥着更为关键的作用[7, 39],因此,开发更高空间分辨率的成像技术是未来重点的研究方向。此外,缰核的小体积也使其容易受到部分容积效应和周围结构(如背内侧丘脑)信号的影响,因此,建议后续研究在高场强下,采用优化后的空间分辨率对现有的发现进行验证,以提高研究结果的可靠性。

3.2 扩散成像

       现有的高分辨率结构成像难以进行缰核解剖学亚区的区分。然而,已有研究表明7 T超高场强扩散加权成像(diffusion-weighted imaging, DWI)能够对在体和离体的内外侧缰核进行区分[16, 40]。此外,STROTMANN等利用概率束成像算法识别出内、外侧缰核分别传递至边缘前脑及脑干的不同纤维束区[40]。GOSNELL等利用扩散张量成像(diffusion-tensor imaging, DTI)对抑郁症患者缰核的传入和传出纤维进行可视化及表征,研究发现,治疗无效者右侧缰核传入纤维束各向异性分数(fractional anisotropy, FA)显著降低[35]。这一发现可能与先前报道的抑郁症患者缰核体积减小存在潜在关联[8],提示传入纤维减少可能会导致缰核的神经元数目减少,从而引发病理生理改变。DTI主要的局限性在于不能重建复杂的纤维束网络,而高角分辨率扩散成像(high angular resolution diffusion imaging, HARDI)能够更加准确地描绘体素之间复杂的纤维结构特征[41],因此,未来研究应采用HARDI等先进的纤维束成像技术,结合基于纤维束追踪的空间统计方法,从而探究抑郁症相关缰核神经回路的异常连接模式。这将有助于深入阐释缰核上游输入通路的功能失调与抑郁症发病机制之间的因果关系。

4 定量磁化成像

       作为重要的辅助因子,铁离子参与了脑内髓鞘的形成、代谢以及神经递质,尤其是单胺能系统递质的合成,进而影响认知及情绪行为[42]。异常铁沉积已被证实与多种神经退行性疾病有关,如帕金森病、阿尔茨海默及亨廷顿病[43, 44, 45]。已有动物研究发现小鼠海马的异常铁沉积与抑郁症存在显著关联[46, 47],但具体关系仍待进一步阐释。为了证实脑内铁含量与抑郁症之间的相关性,建立可靠的定量成像方法量化铁的指征尤为重要。定量磁化成像(quantitative susceptibility mapping, QSM)是一种基于组织磁化率差异的定量成像技术,该技术通过扫描三维梯度回波序列(gradient echo sequence, GRE)获得相位图像及幅值图像,利用重建过程中的不同算法,处理相位图像数据并消除背景场的影响,从而实现组织磁化率的量化[48]。QSM的重建过程包括:(1)图像采集;(2)参考区域提取;(3)相位解缠绕;(4)背景场去除;(5)磁偶极子反演[49]。鉴于铁是皮质下灰质结构磁化率变化的重要原因,QSM已被广泛用于神经退行性疾病中异常铁沉积的研究[46, 48]。近年来,这一技术也逐渐拓展至抑郁症的研究[51, 52, 53]。WANG等利用QSM成像发现晚年抑郁患者缰核的铁沉积含量随疾病进展而增加[54],这一发现为阐明抑郁症中脑铁代谢的动态变化提供了证据,同时也提示了铁代谢参与调控抑郁症治疗的潜在可能性[55]。考虑到正常人缰核内部磁化率分布不均匀[56],且脑内结构的磁化率有随年龄增长而增加的趋势[48],未来应进一步完善基于大样本的纵向研究,以阐明缰核磁化率随着年龄增长的变化轨迹。

5 总结与展望

       尽管缰核的影像学研究已取得一定进展,但由于缰核体积较小、成像分辨率受限、分割方法不同以及抑郁症患者在临床特征和用药史等方面存在异质性,现有研究结论仍存在争议。为进一步推进该领域发展,未来研究可着重关注以下方面:首先,考虑到现有抑郁症受试者数量较少、药物治疗及物理治疗情况存在差异,且可能合并其他精神障碍疾病的情况,未来应该在更大的样本量中制定更详细的问题;其次,多对比定量成像技术(如MAGIC、STAGE、MRF以及MulTiPlex序列)已经在脱髓鞘疾病、脑肿瘤等神经系统疾病中得到了广泛应用[57, 58, 59, 60]。通过应用多参数的定量对比,有助于优化序列提高缰核的可视性,并为缰核微观结构的病理差异提供参考数据;最后,人工智能技术,尤其是深度学习已经展示了其在图像分割、重建、识别和分类的巨大潜能[61],深度学习算法结合基于放射组学的临床模型在脑肿瘤的诊断及预后评估中表现出良好的性能[62],而在精神疾病中研究尚处于起步阶段。未来利用深度学习建立稳健性好和泛化性强的缰核分割模型,并联合放射组学及临床数据构建抑郁症的分类及预后预测模型,从而指导患者个性化管理和治疗亟待学者们进一步的研究。

       综上所述,针对于抑郁症缰核的磁共振成像、分割及影像学研究目前已经取得显著进展。相信磁共振成像技术,特别是高分辨率多模态定量成像技术的不断发展,以及同影像组学及人工智能等前沿技术的相互融合能为抑郁症的精准分型、疗效预测及预后评估提供新的技术支撑,最终实现抑郁症精准医疗的目标。

[1]
CUI L, LI S, WANG S, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment[J/OL]. Signal Transduction and Targeted Therapy, 2024, 9: 30 [2024-11-11]. https://www.nature.com/articles/s41392-024-01738-y. DOI: 10.1038/s41392-024-01738-y.
[2]
GBD 2021 Diseases And Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet (London, England), 2024, 403(10440): 2133-2161. DOI: 10.1016/S0140-6736(24)00757-8.
[3]
2021 FORECASTING COLLABORATORS GBD. Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021[J]. Lancet (London, England), 2024, 403(10440): 2204-2256. DOI: 10.1016/S0140-6736(24)00685-8.
[4]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/S2215-0366(18)30511-X.
[5]
PEREZ-CABALLERO L, TORRES-SANCHEZ S, ROMERO-LÓPEZ-ALBERCA C, et al. Monoaminergic system and depression[J]. Cell and Tissue Research, 2019, 377(1): 107-113. DOI: 10.1007/s00441-018-2978-8.
[6]
ROMAN E, WEININGER J, LIM B, et al. Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus[J]. Brain Struct Funct, 2020, 225(5): 1437-1458. DOI: 10.1007/s00429-020-02069-8.
[7]
ABLES J L, PARK K, IBAÑEZ-TALLON I, et al. Understanding the habenula: A major node in circuits regulating emotion and motivation[J/OL]. Pharmacol Res, 2023, 190: 106734 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S1043661823000907?via%3. DOI: 10.1016/j.phrs.2023.106734.
[8]
RANFT K, DOBROWOLNY H, KRELL D, et al. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia[J]. Psychol Med, 2010, 40(4): 557-567. DOI: 10.1017/S0033291709990821.
[9]
SARTORIUS A, KIENING K L, KIRSCH P, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient[J/OL]. Biol Psychiatry, 2010, 67(2): e9-e11 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0006322309010476?via%3Dihub. DOI: 10.1016/j.biopsych.2009.08.027.
[10]
WANG Z, CAI X, QIU R, et al. Case Report: Lateral Habenula Deep Brain Stimulation for Treatment-Resistant Depression[J/OL]. Front Psychiatry, 2021, 11: 616501 [2024-11-11]. https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.616501/full. DOI: 10.3389/fpsyt.2020.616501.
[11]
ZHANG C, ZHANG Y, LUO H, et al. Bilateral Habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features[J/OL]. Transl Psychiatry, 2022, 12(1): 52 [2024-11-11]. https://www.nature.com/articles/s41398-022-01818-z. DOI: 10.1038/s41398-022-01818-z.
[12]
WANG Z, JIANG C, GUAN L, et al. Deep brain stimulation of habenula reduces depressive symptoms and modulates brain activities in treatment-resistant depression[J]. Nature Mental Health, 2024, 2: 1045-1052. DOI: 10.1038/s44220-024-00286-2.
[13]
CUI Y, HU S, HU H. Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine[J]. Trends in Neurosciences, 2019, 42(3): 179-191. DOI: 10.1016/j.tins.2018.12.002.
[14]
MA S, CHEN M, JIANG Y, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb[J]. Nature, 2023, 622(7984): 802-809. DOI: 10.1038/s41586-023-06624-1.
[15]
TROTIER A J, DILHARREGUY B, ANANDRA S, et al. The Compressed Sensing MP2RAGE as a Surrogate to the MPRAGE for Neuroimaging at 3 T[J]. Investigative Radiology, 2022, 57(6): 366-378. DOI: 10.1097/RLI.0000000000000849.
[16]
STROTMANN B, KÖGLER C, BAZIN P L, et al. Mapping of the internal structure of human habenula with ex vivo MRI at 7T[J/OL]. Front Hum Neurosci, 2013, 7: 878 [2024-11-11]. https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00878/full.2013.00878/full. DOI: 10.3389/fnhum.2013.00878.
[17]
GLASSER M F, VAN ESSEN D C, et al. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI[J]. T J Neurosci, 2011, 31(32): 11597-11616. DOI: 10.1523/JNEUROSCI.2180-11.2011.
[18]
LAWSON R P, DREVETS W C, J Pet al ROISER. Defining the habenula in human neuroimaging studies[J]. NeuroImage, 2013, 64: 722-727. DOI: 10.1016/j.neuroimage.2012.08.076.
[19]
LIU W H, VALTON V, WANG L Z, et al. Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder[J]. Soc Cogn Affect Neurosci, 2017, 12(9): 1520-1533. DOI: 10.1093/scan/nsx074.
[20]
SCHMIDT F M, SCHINDLER S, ADAMIDIS M, et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI[J]. Eur Arch Psychiatry Clin Neurosci, 2017, 267(2): 107-115. DOI: 10.1007/s00406-016-0675-8.
[21]
KIM J W, NAIDICH T P, ELY B A, et al. Human habenula segmentation using myelin content[J]. NeuroImage, 2016, 130: 145-156. DOI: 10.1016/j.neuroimage.2016.01.048.
[22]
KIM J W, NAIDICH T P, JOSEPH J, et al. Reproducibility of myelin content-based human habenula segmentation at 3 Tesla[J]. Hum Brain Mapp, 2018, 39(7): 3058-3071. DOI: 10.1002/hbm.24060.
[23]
GERMANN J, GOUVEIA F V, MARTINEZ R C R, et al. Fully Automated Habenula Segmentation Provides Robust and Reliable Volume Estimation Across Large Magnetic Resonance Imaging Datasets, Suggesting Intriguing Developmental Trajectories in Psychiatric Disease[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(9): 923-929. DOI: 10.1016/j.bpsc.2020.01.004.
[24]
CHEN X, WANG X, ZHANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J/OL]. Medical image analysis, 2022, 79: 102444 [2025-03-08]. https://doi.org/10.1016/j.media.2022.102444. DOI: 10.1016/j.media.2022.102444.
[25]
BELIVEAU V, NØRGAARD M, BIRKL C, et al. Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging[J]. Hum Brain Mapp, 2021, 42(15): 4809-4822. DOI: 10.1002/hbm.25604.
[26]
ZHAO W, WANG Y, ZHOU F, et al. Automated Segmentation of Midbrain Structures in High-Resolution Susceptibility Maps Based on Convolutional Neural Network and Transfer Learning[J/OL]. Front Neurosci, 2022, 16 [2024-11-11]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.801618/full. DOI: 10.3389/fnins.2022.801618.
[27]
CHAI C, QIAO P, ZHAO B, et al. Brain gray matter nuclei segmentation on quantitative susceptibility mapping using dual-branch convolutional neural network[J/OL]. Artif Intell Med, 2022, 125: 102255 [2024-11-11]. https://linkinghub.elsevier.com/retrieve/pii/S0933-3657(22)00020-3. DOI: 10.1016/j.artmed.2022.102255.
[28]
LIM S H, YOON J, KIM Y J, et al. Reproducibility of automated habenula segmentation via deep learning in major depressive disorder and normal controls with 7 Tesla MRI[J/OL]. Sci Rep, 2021, 11(1): 13445 [2024-11-11]. https://www.nature.com/articles/s41598-021-92952-z. DOI: 10.1038/s41598-021-92952-z.
[29]
KYURAGI Y, OISHI N, HATAKOSHI M, et al. Segmentation and Volume Estimation of the Habenula Using Deep Learning in Patients With Depression[J/OL]. Biol Psychiatry Glob Open Sci, 2024, 4(4): 100314 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S2667174324000272?via%3Dihub. DOI: 10.1016/j.bpsgos.2024.100314.
[30]
CARCELLER-SINDREU M, DE DIEGO-ADELIÑO J, SERRA-BLASCO M, et al. Volumetric MRI study of the habenula in first episode, recurrent and chronic major depression[J]. Eur Neuropsychopharmacol, 2015, 25(11): 2015-2021. DOI: 10.1016/j.euroneuro.2015.08.009.
[31]
LUAN S X, ZHANG L, WANG R, et al. A resting-state study of volumetric and functional connectivity of the habenular nucleus in treatment-resistant depression patients[J/OL]. Brain Behav, 2019, 9(4): e01229 [2024-11-11]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.1229. DOI: 10.1002/brb3.1229.
[32]
RAIMONDO L, OLIVEIRA Ĺ. A. F., HEIJJ, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. NeuroImage, 2021, 243: 118503 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S105381192100776X?via%3Dihub. DOI: 10.1016/j.neuroimage.2021.118503.
[33]
WU Z, WANG C, MA Z, et al. Abnormal functional connectivity of habenula in untreated patients with first-episode major depressive disorder[J/OL]. Psychiatry Res, 2020, 285: 112837 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0165178119320876?via%3Dihub. DOI: 10.1016/j.psychres.2020.112837.
[34]
BARREIROS A R, BREUKELAAR I, MAYUR P, et al. Abnormal habenula functional connectivity characterizes treatment-resistant depression[J/OL]. Neuroimage Clin, 2022, 34: 102990 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S2213158222000559?via%3Dihub. DOI: 10.1016/j.nicl.2022.102990.
[35]
GOSNELL S N, CURTIS K N, VELASQUEZ K, et al. Habenular connectivity may predict treatment response in depressed psychiatric inpatients[J]. J Affect Disord, 2019, 242: 211-219. DOI: 10.1016/j.jad.2018.08.026.
[36]
ZHU Z, WANG S, LEE T M C, et al. Habenula functional connectivity variability increases with disease severity in individuals with major depression[J]. J Affect Disord, 2023, 333: 216-224. DOI: 10.1016/j.jad.2023.04.082.
[37]
QIAO D, ZHANG A, SUN N, et al. Altered Static and Dynamic Functional Connectivity of Habenula Associated with Suicidal Ideation in First-Episode, Drug-Naïve Patients With Major Depressive Disorder[J/OL]. Front Psychiatry, 2020, 11: 608197 [2024-11-11]. https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.608197/full. DOI: 10.3389/fpsyt.2020.608197.
[38]
TARAKU B, Loureiro J R, Sahib A K, et al. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression[J/OL]. Brain Behav, 2024, 14(6): e3511 [2025-03-08]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11187958/. DOI: 10.1002/brb3.3511
[39]
ZHANG G M, WU H Y, CUI W Q, et al. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence[J/OL]. Front Psychiatry, 2022, 13: 1043846 [2024-11-11]. https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2022.1043846/full. DOI: 10.3389/fpsyt.2022.1043846.
[40]
STROTMANN B, HEIDEMANN R M, ANWANDER A, et al. High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla[J]. J Magn Reson Imaging, 2014, 39(4): 1018-1026. DOI: 10.1002/jmri.24252.
[41]
VAISH A, RAJWADE A, GUPTA A. TL-HARDI: Transform learning based accelerated reconstruction of HARDI data[J/OL]. Computers in Biology and Medicine, 2022, 143: 105212 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S001048252200004X?via%3Dihub. DOI: 10.1016/j.compbiomed.2022.105212.
[42]
BARINGER S L, SIMPSON I A, CONNOR J R. Brain iron acquisition: An overview of homeostatic regulation and disease dysregulation[J]. Journal of Neurochemistry, 2023, 165(5): 625-642. DOI: 10.1111/jnc.15819.
[43]
MAHONEY-SÁNCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease[J/OL]. Prog Neurobiol, 2021, 196: 101890 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0301008220301453?via%3Dihub. DOI: 10.1016/j.pneurobio.2020.101890.
[44]
WANG Q, SUN J, CHEN T, et al. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease[J]. ACS Chem Neurosci, 2023, 14(19): 3564-3587. DOI: 10.1021/acschemneuro.3c00343.
[45]
MI Y, GAO X, XU H, et al. The Emerging Roles of Ferroptosis in Huntington's Disease[J]. Neuromolecular Med, 2019, 21(2): 110-119. DOI: 10.1007/s12017-018-8518-6.
[46]
CAO H, ZUO C, HUANG Y, et al. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression[J/OL]. Behav Brain Res, 2021, 407: 113261 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0166432821001492?via%3Dihub. DOI: 10.1016/j.bbr.2021.113261.
[47]
ZENG T, LI J, XIE L, et al. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression[J/OL]. J Neuroinflammation, 2023, 20(1): 212 [2024-11-11]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02875-x. DOI: 10.1186/s12974-023-02875-x.
[48]
NIKPARAST F, GANJI Z, DANESH DOUST M, et al. Brain pathological changes during neurodegenerative diseases and their identification methods: How does QSM perform in detecting this process?[J/OL]. Insights Imaging, 2022, 13(1): 74 [2024-11-11]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-022-01207-6. DOI: 10.1186/s13244-022-01207-6.
[49]
刘现伟, 钟京谕, 刘军, 等.定量磁敏感图在大脑以外区域临床应用中的研究进展[J].医学影像学杂志, 2024, 34(8):130-133.
LIU X W, ZHONG J Y, LIU J, et al. Advances in quantitative susceptibility mapping(QSM)for clinical applications in regions outside the brain[J]. Journal of Medical Imaging, 2024, 34(8):130-133.
[50]
GUAN X, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping[J/OL]. NeuroImage, 2024, 289: 120547 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S1053811924000429?via%3Dihub. DOI: 10.1016/j.neuroimage.2024.120547.
[51]
LIANG W, ZHOU B, MIAO Z, et al. Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder[J/OL]. Nutrients, 2024, 16(13): 2073 [2024-11-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11243628/. DOI: 10.3390/nu16132073.
[52]
DUAN X, XIE Y, ZHU X, et al. Quantitative Susceptibility Mapping of Brain Iron Deposition in Patients with Recurrent Depression[J]. Psychiatry Investig, 2022, 19(8): 668-675. DOI: 10.30773/pi.2022.0110.
[53]
SHIBUKAWA S, KAN H, HONDA S, et al. Alterations in subcortical magnetic susceptibility and disease-specific relationship with brain volume in major depressive disorder and schizophrenia[J/OL]. Transl Psychiatry, 2024, 14(1): 164 [2024-11-11]. https://www.nature.com/articles/s41398-024-02862-7. DOI: 10.1038/s41398-024-02862-7.
[54]
WANG F, ZHANG M, LI Y, et al. Alterations in brain iron deposition with progression of late-life depression measured by magnetic resonance imaging (MRI)-based quantitative susceptibility mapping[J]. Quant Imaging Med Surg, 2022, 12(7): 3873-3888. DOI: 10.21037/qims-21-1137.
[55]
ZHANG G, LV S, ZHONG X, et al. Ferroptosis: a new antidepressant pharmacological mechanism[J/OL]. Front Pharmacol, 2023, 14: 1339057 [2024-11-11]. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1339057/full. DOI: 10.3389/fphar.2023.1339057.
[56]
HE N, SETHI SK, ZHANG C, et al. Visualizing the lateral habenula using susceptibility weighted imaging and quantitative susceptibility mapping[J]. Magn Reson Imaging, 2020, 65: 55-61. DOI: 10.1016/j.mri.2019.09.005.
[57]
崔峰, 王聪, 王娅, 等. MAGiC技术的基本原理及临床研究进展[J]. 临床放射学杂志, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
CUI F, WANG C, WANG Y, et al. Fundamentals of MAGiC technology and progress in clinical research[J]. Journal of Clinical Radiology, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
[58]
HAACKE E M, CHEN Y, UTRIAINEN D, et al. STrategically Acquired Gradient Echo (STAGE) imaging, part III: Technical advances and clinical applications of a rapid multi-contrast multi-parametric brain imaging method[J]. Magn Reson Imaging, 2020, 65: 15-26. DOI: 10.1016/j.mri.2019.09.006.
[59]
MONGA A, SINGH D, DE MOURA H L, et al. Emerging Trends in Magnetic Resonance Fingerprinting for Quantitative Biomedical Imaging Applications: A Review[J/OL]. Bioengineering, 2024, 11(3): 236 [2024-11-11]. https://www.mdpi.com/2306-5354/11/3/236. DOI: 10.3390/bioengineering11030236.
[60]
YE Y, LYU J, HU Y, et al. MULTI-parametric MR imaging with fLEXible design (MULTIPLEX)[J]. Magn Reson Med, 2022, 87(2): 658-673. DOI: 10.1002/mrm.28999.
[61]
MAZUROWSKI M A, BUDA M, SAHA A, et al. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI[J]. J Magn Reson Imaging, 2019, 49(4): 939-954. DOI: 10.1002/jmri.26534.
[62]
PARK J E, KICKINGEREDER P, KIM H S, et al. Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging[J]. Korean J Radiol, 2020, 21(10): 1126-1137. DOI: 10.3348/kjr.2019.0847.

上一篇 广泛性焦虑障碍的磁共振成像研究进展
下一篇 针刺治疗脑卒中后抑郁的多模态MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2