分享:
分享到微信朋友圈
X
综述
多发性硬化胶质淋巴系统的研究进展
宋元君 赵鹤 高阳

Cite this article as: SONG Y J, ZHAO H, GAO Y. Research progress in glymphatic system of multiple sclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(3): 133-137.本文引用格式:宋元君, 赵鹤, 高阳. 多发性硬化胶质淋巴系统的研究进展[J]. 磁共振成像, 2025, 16(3): 133-137. DOI:10.12015/issn.1674-8034.2025.03.022.


[摘要] 多发性硬化(multiple sclerosis, MS)是一种中枢神经系统的慢性炎性脱髓鞘疾病,伴随神经功能损伤,其具体病理机制尚不明了。近年来胶质淋巴系统(glymphatic system, GS)在MS中的作用引起广泛关注,GS功能可能与代谢废物堆积和神经炎症反应有关,并进一步影响患者的认知功能。本综述回顾了MS的GS相关研究,聚焦其与认知损伤的关系,以期为MS的病理生理过程及诊断、治疗提供新的见解。
[Abstract] Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with neurological impairment, and its specific pathological mechanism is unknown. Recently, there has been a lot of concern about the role of the glymphatic system (GS) in MS, which may be associated with metabolic waste accumulation and neuroinflammatory responses, and further affect patients' cognitive function. This review reviews the GS-related studies of MS and focuses on its relationship with cognitive impairment, in order to provide new insights into the pathophysiological process, diagnosis, and treatment of MS.
[关键词] 多发性硬化;胶质淋巴系统;认知;磁共振成像
[Keywords] multiple sclerosis;glymphatic system;cognition;magnetic resonance imaging

宋元君 1   赵鹤 2   高阳 2*  

1 内蒙古医科大学,呼和浩特 010000

2 内蒙古医科大学附属医院影像诊断科,呼和浩特 010050

通信作者:高阳,E-mail: 1390903990@qq.com

作者贡献声明:高阳、赵鹤构建了本文的框架,指示写作方向,对稿件重要的内容进行了修改;宋元君起草和撰写稿件,获取、分析和解释本研究的数据,对稿件重要的内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-02-01
接受日期:2025-03-10
中图分类号:R445.2  R744.51 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.022
本文引用格式:宋元君, 赵鹤, 高阳. 多发性硬化胶质淋巴系统的研究进展[J]. 磁共振成像, 2025, 16(3): 133-137. DOI:10.12015/issn.1674-8034.2025.03.022.

0 引言

       多发性硬化(multiple sclerosis, MS)是一种自身免疫性中枢神经系统(central nervous system, CNS)疾病,主要表现为反复发作的神经功能障碍,具有渐进性[1]。该病的特征是免疫攻击中枢神经系统,导致髓鞘脱失及神经纤维损伤[2]。随着研究的深入,MS的发病机制逐渐被揭示,尽管现有的治疗手段已在缓解症状、延缓疾病进展方面取得一定成效,但对于其病理过程的全面理解仍存在诸多挑战[3]

       近年来,胶质淋巴系统(glymphatic system, GS)的发现及研究为理解MS的病理生理机制提供了全新的视角。GS是一种液体运输和清除系统,命名源于其与外周淋巴系统的功能相似性,以及结构中胶质细胞的参与[4]。在MS中,GS可能发挥着清除累积的免疫细胞、代谢废物以及异常蛋白的重要作用[5]。胶质细胞的功能障碍、液体循环不畅等因素,可能加剧神经损伤,推动MS进展[6]。探索GS在MS中的作用,可能为我们提供新的治疗靶点或干预策略。

1 GS及其调节因素

       GS是大脑中独特的废物清除通道,依赖星形胶质细胞足突周围的4型水通道蛋白(aquaporin-4, AQP4),通过脑脊液(cerebrospinal fluid, CSF)与间质液(interstitial fluid, ISF)的流动来清除大脑的代谢废物[7, 8]图1)。GS与脑膜淋巴管共同构成了颅内的淋巴系统,具体而言,CSF通过动脉周围间隙流入脑实质,与ISF进行物质交换,并携带大脑中的代谢废物和有毒物质。然后,这些废物通过星形胶质细胞的AQP4蛋白向静脉周围间隙流动,沿静脉周围间隙向大脑脑膜方向流动,在那里它们被收集到位于静脉窦附近的脑膜淋巴管中,最终进入全身淋巴系统或通过静脉系统排出体外[4, 9, 10]

       GS受到多种因素的动态调节,比如APQ4的极性、睡眠/觉醒、动脉搏动以及呼吸等[11, 12]。流体力学是GS运作的基本驱动力,也受到压力梯度、体液流动方向和大脑内部压力变化的影响,推动代谢产物从细胞间隙向血管周围间隙流动[13]

图1  胶质淋巴系统流动示意图。脑脊液通过动脉周围间隙进入脑实质,位于血管周围的星形胶质细胞末端足突内的4型水通道蛋白促进了脑脊液与间质液的交换,随后,液体向静脉周围间隙移动。在移动时,液体收集有毒分子和代谢产物,实现清除作用。AQP4:4型水通道蛋白。
Fig. 1  Schematic illustration of glymphatic system flow. Cerebrospinal fluid (CSF) enters the brain parenchyma through arterial perivascular spaces. The exchange between CSF and interstitial fluid is facilitated by aquaporin-4 (AQP4) water channels located in the endfeet of perivascular astrocytes. The fluid then moves toward venous perivascular spaces, collecting toxic molecules and metabolic waste products during transit to achieve clearance.

2 GS功能评估技术

       以往主要依赖鞘内或静脉内注射对比剂,再通过磁共振成像追踪对比剂的流动和清除过程,来评估GS功能[14]

       2017年,TAOKA等[15]首次提出沿血管周围空间扩散指数(diffusion tensor index along the perivascular space, DTI-ALPS)这一概念,利用侧脑室层面投射纤维、联络纤维和髓静脉相互垂直的空间几何关系原理,无创评估GS功能。之后的研究[16]表明ALPS指数与传统鞘内注射对比剂评估的结果一致性较高,证明了该指标的应用潜力。DTI-ALPS指数计算基于MRI序列,其中磁敏感加权成像(susceptibility weighted imaging, SWI)用于定位髓静脉,扩散张量成像(diffusion tensor imaging, DTI)获取的彩色编码的各向异性分数(fractional anisotropy, FA)图以及沿x、y、z轴的扩散图用于勾画(region of interest, ROI)并计算扩散率[17]。传统的计算流程包括:在彩色编码的FA图上选取侧脑室体部层面,分别于投射纤维和联络纤维上勾画ROI,并获取投射纤维(Dx proj)和联络纤维(Dx assoc)的x轴扩散率、投射纤维的y轴扩散率(Dy proj)以及联络纤维的z轴扩散率(Dz assoc)。然后通过公式:平均值(Dxproj, Dxassoc)/平均值(Dyproj, Dzassoc),计算得到ALPS指数[15]图2)。ROI可以手动、自动或半自动勾画,自动勾画可以减少人为误差并提高效率。实际应用中,侧脑室体部水平的ROI可能会与白质病变存在重叠,这会导致扩散率测量受到脱髓鞘影响。因此,某些情况下手动勾画ROI是必要的。尽管DTI-ALPS的应用非常简单方便,但沿血管周围空间的扩散只是整个废物清理过程的一个步骤,完整的废物清除过程还涉及淋巴管的完整性、CSF和ISF的循环以及可能存在的壁动脉周围引流机制。正如TAOKA在最近的总结中所指出,ALPS指数应表述为“高”或“低”,而不应直接用以定义胶质淋巴功能异常[18]

       其他技术像脉络丛体积[19]、血管周围间隙(perivascular space, PVS)体积测量[8, 20]为GS功能的评估提供了更全面的视角,较高的脉络从体积与较慢的淋巴清除率有关,PVS扩张与淋巴功能受损有关,PVS的异常扩张可能反映了GS的流量减少[21]。此外,体素内不相干运动扩散加权成像(intravoxel incoherent motion-diffusion weighted imaging, IVIM)[22]通过区分白质高信号区域与增大血管周围间隙液体的自由扩散,揭示水分子在不同环境中的扩散行为。磁共振波谱(magnetic resonance spectroscopy, MRS)[23]通过检测脑内代谢物浓度的变化,间接反映GS的状态。脑组织动力学成像(global blood-oxygen-level-dependent signals and cerebrospinal fluid, gBOLD-CSF)[24]通过低频血氧水平依赖性(blood oxygen level-dependent, BOLD)信号与CSF动力学的相关性揭示CSF运动情况,而CSF运动是GS的重要组成部分。

       实际上,GS、ISF动力学和脑废物排泄机制极其复杂,单一方法似乎不能反映整个GS的功能,结合多种方法综合评估是必要的。

图2  基于扩散率图的ALPS指数计算示意图及白质纤维与血管周围间隙空间关系示意图。2A:彩色编码的FA图、左侧大脑半球投射纤维(蓝色)和联络纤维(绿色)上感兴趣区域的勾画示意图以及对应的x轴、y轴和 z轴方向上的扩散率图用以计算ALPS指数;2B:投射纤维、联络纤维与血管周围间隙的空间关系示意图。FA:各向异性分数;ALPS:沿血管周围空间。
Fig. 2  Schematic diagram of ALPS index calculation based on diffusion rate map and spatial relationship between white matter fibers and perivascular spaces. 2A: Color-coded fractional anisotropy (FA) map showing schematic delineation of regions of interest (ROIs) in the projection fibers (blue) and association fibers (green) of the left cerebral hemisphere, along with diffusivity maps along the x-, y-, and z-axis directions, used for calculating the ALPS index. 2B: Schematic illustration of the spatial relationships among projection fibers, association fibers, and perivascular spaces. FA: fractional anisotropy; ALPS: along the perivascular space.

3 MS与GS功能异常

       MS的发病机制涉及一系列复杂的病理生理过程,包括局灶性炎性细胞浸润、小胶质细胞激活、脱髓鞘及轴突退变,最终导致复发性和进行性残疾[25]。GS作为维持脑内液体稳态、中枢免疫调控及炎症反应的重要组成部分,在MS复杂的病理机制中发挥作用[26]

       以往评估了不同临床表型MS的GS功能,得出了较一致的结论,复发缓解型MS(relapsing remitting multiple sclerosis, RRMS)和继发进展型MS(secondary progressive multiple sclerosis, SPMS)患者的淋巴功能都降低,后者明显受损[6, 27]。随着病情进展,GS功能的进一步受损可能与日益加重的神经功能障碍直接相关。此外,GS的功能与病程、临床残疾指标相关,研究[6]表明DTI-ALPS指数在发病后4年内下降,此后没有进一步恶化。MS进入稳定期后,可能与GS功能变化趋于平缓、临床症状稳定或免疫治疗的干预效果相关。总之,GS在MS中的作用可能不仅是清除代谢废物,还可能在疾病进展中发挥着更复杂的适应性变化或缓解作用。鉴别诊断方面,KIM等[28]发现MS和视神经脊髓炎谱系障碍患者的DTI-ALPS指数无明显差异,提示尽管两种疾病的病因不同,但GS功能改变可能是这两种疾病的共同特征和最终结果。

       GS功能异常与神经炎症和脑小血管之间存在复杂且尚未阐明的相互作用[29]。研究发现MS患者基底神经节水平的PVS扩大,且与更大的脱髓鞘斑块负荷密切相关[20]。MS的脱髓鞘斑块通常伴随免疫细胞浸润和炎性因子的释放,静脉周围间隙的液体流动减缓,促使促炎分子在静脉壁附近积聚[6]。这也支持了“中央静脉”征的病理机制,即在白质脱髓鞘斑块中常常伴随静脉血管的存在[30, 31]。传统观点认为,MS患者PVS扩张与神经炎症密切相关[32]。但最新研究结果[33, 34]表明,MS患者PVS扩张并不直接与免疫细胞的积累相关,而更倾向于反映小血管病变的特征。这提示PVS扩张可能不仅仅是炎症过程的结果,还可能受脑小血管功能障碍的影响。总之,GS可能不仅是炎症的“受害者”,也可能是炎症级联反应的“放大器”,最终推动疾病进展,这需要进一步的验证说明。

       研究表明[35],通过调节脑膜淋巴管中CSF和免疫细胞的排出路径,可能有助于干预神经免疫性疾病。MANDOLESI等[36]研究证实了MS患者在接受一个周期的流体动力学强化方案治疗后,生活质量有积极的改善。类似的,既往报道一例原发进展型MS(primary progressive multiple sclerosis, PPMS)且血管周围间隙扩张患者,在CSF分流后症状得到短暂改善[37],尽管存在轶事性、潜在安慰剂效应等因素的干扰,但也提示通过靶向干预GS功能障碍有可能减缓MS症状。

       当前研究多基于DTI-ALPS指数反映MS潜在的GS功能异常,并初步探索了GS功能的相关影响因素。目前研究仍存在以下局限性:(1)缺乏GS作用机制的直接证据;(2)现有研究多为横断面设计,缺乏对GS功能动态演变的长期追踪证据;(3)DTI-ALPS指数作为GS功能的无创影像标志物,其敏感性和特异性仍需进一步验证。

4 MS认知障碍与GS功能异常的关联性研究

       认知障碍(cognitive impairment, CI)是MS患者常见的症状和体征,对日常生活和工作有深远影响,而信息处理速度和情景记忆是MS患者最常受到影响的认知领域[38, 39]。MS认知障碍的患病率在不同的生命周期中各不相同,有时可能难以与老年人的其他疾病区分开来[40]

       既往研究表明[41, 42, 43, 44],MS认知障碍与特定白质纤维束的损伤导致的皮层-皮层下连接受损,以及丘脑与皮层之间的断连有关,大脑网络的变化会导致广泛的认知功能障碍,而灰质萎缩可能是认知能力下降的早期迹象。最近的研究发现[45]儿童MS患者的ALPS指数与认知评分呈弱相关关系,纳入多个因素后,ALPS指数仍然是认知损伤的独立预测因素,这表明GS功能异常可能是导致MS认知障碍的重要因素。类似地,CSOMÓS等[46]研究发现RRMS患者的左侧大脑半球的ALPS指数与信息处理速度显著相关,进一步支持了GS在MS免疫病理机制中的潜在作用。MS患者认知损伤过程中,GS可能直接发挥作用或介导其他病理过程,导致突触信号受损到退行性改变的一系列神经生理学改变。GS功能异常时,可能会导致大脑内的代谢废物无法有效排出,加剧大脑皮层的功能退化,从而影响认知功能,特别是涉及记忆、执行功能和处理速度的脑区[45, 47]

       近期基础研究揭示了GS功能调控在认知保护中的潜在价值。一项衰老实验模型的研究[48]表明,自主运动可通过增强脑膜淋巴管引流效率,加速β-淀粉样蛋白等毒性代谢产物的清除,进而减少淀粉样斑块沉积,显著改善小鼠空间认知功能。另一项实验研究[49]发现,通过上调星形胶质细胞终足AQP4的表达,改善GS运输动力学,发挥保护认知作用。类似的,YAO等[50]发现褪黑激素可以通过调节AQP4极化的昼夜节律来缓解小鼠的抑郁样行为和认知功能障碍。这些发现提示GS通路可能成为干预认知衰退的新型治疗靶点,其调控策略或可拓展至MS患者的认知障碍管理。

       目前已明确GS功能异常是MS患者认知障碍的重要影响因素,但具体的机制解析不足,GS功能与脑萎缩、白质病变负荷、血脑屏障通透性等影像指标的交互作用机制尚未量化。

5 小结与展望

       本文综述了GS功能及其调节因素以及MRI如何评估GS功能,并探讨了GS在MS的病理生理过程中的可能作用及其与认知损伤的复杂关系,为深入理解MS的机制及优化诊断与治疗提供了新的视角。未来的研究应进一步聚焦以下方面。第一,病理机制研究。通过结合动物模型和临床数据,探索GS功能障碍如何影响MS的特定病理过程,如脱髓鞘损伤、轴突变性和免疫紊乱。第二,标准化评估GS功能的影像学方法,以期为MS的诊断和疗效评估提供更精准的生物标志物。第三,纵向研究。通过大规模、长期随访研究,评估GS功能障碍在MS不同病程阶段中的动态变化及其对疾病进展的预测价值。第四,干预与治疗。基于GS的作用机制,开发针对性的干预策略,以期为MS患者提供新的治疗选择。

[1]
THOMPSON A J, BANWELL B L, BARKHOF F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria[J]. Lancet Neurol, 2018, 17(2): 162-173. DOI: . DOI: 10.1016/S1474-4422(17)30470-2.
[2]
TAFTI D, EHSAN M, XIXIS K L. Multiple Sclerosis[M]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; March20, 2024.
[3]
AMIN M, HERSH C M. Updates and advances in multiple sclerosis neurotherapeutics[J]. Neurodegener Dis Manag, 2023, 13(1): 47-70. DOI: DOI:10.2217/nmt-2021-0058.
[4]
ILIFF J J, WANG M, LIAO Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J/OL]. Sci Transl Med, 2012, 4(147): 147ra111-147ra111 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/22896675/. DOI: 10.1126/scitranslmed.3003748.
[5]
HABLITZ L M, NEDERGAARD M. The glymphatic system: a novel component of fundamental neurobiology[J]. J Neurosci, 2021, 41(37): 7698-7711. DOI: 10.1523/JNEUROSCI.0619-21.2021.
[6]
CAROTENUTO A, CACCIAGUERRA L, PAGANI E, et al. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability[J]. Brain, 2022, 145(8): 2785-2795. DOI: 10.1093/brain/awab454.
[7]
IISHIDA K, YAMADA K, NISHIYAMA R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration[J/OL]. J Exp Med, 2022, 219(3): e20211275 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/35212707/. DOI: 10.1084/jem.20211275.
[8]
PHAM W, LYNCH M, SPITZ G, et al. A critical guide to the automated quantification of perivascular spaces in magnetic resonance imaging[J/OL]. Front Neurosci, 2022, 16: 1021311 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/36590285/. DOI: 10.3389/fnins.2022.1021311.
[9]
REHMAN M U, SEHAR N, RASOOL I, et al. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases[J/OL]. Int J Geriatr Psychiatry, 2024, 39(6): e6104 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/38877354/. DOI: 10.1002/gps.6104.
[10]
GAO Y, LIU K, ZHU J. Glymphatic system: an emerging therapeutic approach for neurological disorders[J/OL]. Front Mol Neurosci, 2023, 16: 1138769 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/37485040/. DOI: 10.3389/fnmol.2023.1138769.
[11]
BOESPFLUG E L, ILIFF J J. The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-β, and sleep[J]. Biol Psychiatry, 2018, 83(4): 328-336. DOI: 10.1016/j.biopsych.2017.11.031.
[12]
ASTARA K, POURNARA C, DE NATALE E R, et al. A novel conceptual framework for the functionality of the glymphatic system[J]. J Neurophysiol, 2023, 129(5): 1228-1236. DOI: 10.1152/jn.00360.2022.
[13]
WANG D J J, HUA J, CAO D, et al. Neurofluids and the glymphatic system: anatomy, physiology, and imaging[J/OL]. Br J Radiol, 2023, 96(1151): 20230016 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/37191063/. DOI: 10.1259/bjr.20230016.
[14]
RICHMOND S B, RANE S, HANSON M R, et al. Quantification approaches for magnetic resonance imaging following intravenous gadolinium injection: a window into brain‐wide glymphatic function[J]. Eur J Neurosci, 2023, 57(10): 1689-1704. DOI: 10.1111/ejn.15974.
[15]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35: 172-178. DOI: 10.1007/s11604-017-0617-z.
[16]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/34118396/. DOI: 10.1016/j.neuroimage.2021.118257.
[17]
牛训玲, 王承炎, 刘华琼, 等. DTI-ALPS在脑类淋巴系统相关神经系统疾病中的应用进展[J]. 磁共振成像, 2024, 15(5): 192-197. DOI: 10.12015/issn.1674-8034.2024.05.031.
NIU X L, WANG C Y, LIU H Q, et al. Advances in the application of DTI-ALPS in brain glymphoid system related neurological diseases[J]. Chin J Magn Reson Imaging, 2024, 15(5): 192-197. DOI: 10.12015/issn.1674-8034.2024.05.031
[18]
TAOKA T, ITO R, NAKAMICHI R, et al. Diffusion tensor image analysis ALong the perivascular space (DTI-ALPS): revisiting the meaning and significance of the method[J]. Magn Reson Med Sci, 2024, 23(3): 268-290. DOI: 10.2463/mrms.rev.2023-0175.
[19]
XIE Y, ZHU H, YAO Y, et al. Enlarged choroid plexus in relapsing-remitting multiple sclerosis may lead to brain structural changes through the glymphatic impairment[J/OL]. Mult Scler Relat Disord, 2024, 85: 105550 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/38493535/. DOI: 10.1016/j.msard.2024.105550.
[20]
KOLBE S C, GARCIA L M, YU N, et al. Lesion volume in relapsing multiple sclerosis is associated with perivascular space enlargement at the level of the basal ganglia[J]. AJNR Am J Neuroradiol, 2022, 43(2): 238-244. DOI: 10.3174/ajnr.A7398.
[21]
ZHANG J, LIU S, WU Y, et al. Enlarged Perivascular Space and Index for Diffusivity Along the Perivascular Space as Emerging Neuroimaging Biomarkers of Neurological Diseases[J/OL]. Cell Mol Neurobiol, 2023, 44(1): 14 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/38158515/. DOI: 10.1007/s10571-023-01440-7.
[22]
WONG S M, BACKES W H, DRENTHEN G S, et al. Spectral diffusion analysis of intravoxel incoherent motion MRI in cerebral small vessel disease[J]. J Magn Reson Imaging, 2020, 51(4): 1170-1180. DOI: 10.1002/jmri.26920.
[23]
AKIYAMA Y, YOKOYAMA R, TAKASHIMA H, et al. Accumulation of macromolecules in idiopathic normal pressure hydrocephalus[J]. Neurol Med Chir, 2021, 61(3): 211-218. DOI: 10.2176/nmc.oa.2020-0274.
[24]
WANG Z, SONG Z, ZHOU C, et al. Reduced coupling of global brain function and cerebrospinal fluid dynamics in Parkinson's disease[J]. J Cereb Blood Flow Metab, 2023, 43(8): 1328-1339. DOI: 10.1177/0271678X231164337.
[25]
HAKI M, AL-BIATI H A, AL-TAMEEMI Z S, et al. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment[J/OL]. Medicine, 2024, 103(8): e37297 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/38394496/. DOI: 10.1097/MD.0000000000037297.
[26]
BAYOUMI A, HASAN K M, THOMAS J A, et al. Glymphatic dysfunction in multiple sclerosis and its association with disease pathology and disability[J]. Mult Scler, 2024, 30(13): 1609-1619. DOI: 10.1177/13524585241280842.
[27]
TOMIZAWA Y, HAGIWARA A, HOSHINO Y, et al. The glymphatic system as a potential biomarker and therapeutic target in secondary progressive multiple sclerosis[J/OL]. Mult Scler Relat Disord, 2024, 83: 105437 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/38244527/. DOI: 10.1016/j.msard.2024.105437.
[28]
KIM M, HWANG I, PARK J H, et al. Comparative analysis of glymphatic system alterations in multiple sclerosis and neuromyelitis optica spectrum disorder using MRI indices from diffusion tensor imaging[J/OL]. Human Brain Mapping, 2024, 45(5): e26680 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/38590180/. DOI: 10.1002/hbm.26680.
[29]
BORRELLI S, LECLERCQ S, PASI M, et al. Cerebral small vessel disease and glymphatic system dysfunction in multiple sclerosis: A narrative review[J/OL]. Mult Scler Relat Disord, 2024, 91: 105878 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/39276600/. DOI: 10.1016/j.msard.2024.105878.
[30]
PREZIOSA P, ROCCA M A, FILIPPI M. Central vein sign and iron rim in multiple sclerosis: ready for clinical use?[J]. Curr Opin Neurol, 2021, 34(4): 505-513. DOI: 10.1097/WCO.0000000000000946.
[31]
RIMKUS C M, OTSUKA F S, NUNES D M, et al. Central vein sign and paramagnetic rim lesions: susceptibility changes in brain tissues and their implications for the study of multiple sclerosis pathology[J/OL]. Diagnostics, 2024, 14(13): 1362 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/39001252/. DOI: 10.3390/diagnostics14131362.
[32]
INEICHEN B V, OKAR S V, PROULX S T, et al. Perivascular spaces and their role in neuroinflammation[J]. Neuron, 2022, 110(21): 3566-3581. DOI: 10.1016/j.neuron.2022.10.024.
[33]
INEICHEN B V, CANANAU C, PLATTÉN M, et al. Dilated Virchow-Robin spaces are a marker for arterial disease in multiple sclerosis[J/OL]. EBioMedicine, 2023, 92 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/37253317/. DOI: 10.1016/j.ebiom.2023.104631.
[34]
BORRELLI S, GUISSET F, VANDEN BULCKE C, et al. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis[J]. Mult Scler, 2024, 30(8): 983-993. DOI: 10.1177/13524585241256881.
[35]
LAAKER C, BAENEN C, KOVÁCS K G, et al. Immune cells as messengers from the CNS to the periphery: The role of the meningeal lymphatic system in immune cell migration from the CNS[J/OL]. Front Immunol, 2023, 14: 1233908 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/37662908/. DOI: 10.3389/fimmu.2023.1233908.
[36]
MANDOLESI S, NIGLIO T, LENCI C. May Glymphatic Drainage Improve Life Quality in Progressive Multiple Sclerosis Outpatients?[J]. Med Devices, 2024: 417-426. DOI: 10.2147/MDER.S480815.
[37]
SCOLLATO A, LOLLI F, LASTRUCCI G, et al. Case report: A multiple sclerosis patient with imaging features of glymphatic failure benefitted from CSF flow shunting[J/OL]. Front Neurosci, 2022, 16: 863117 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/36389221/. DOI: 10.3389/fnins.2022.863117.
[38]
WOJCIK C, FUCHS T A, TRAN H, et al. Staging and stratifying cognitive dysfunction in multiple sclerosis[J]. Mult Scler, 2022, 28(3): 463-471. DOI: 10.1177/13524585211011390.
[39]
HELED E, ALONI R, ACHIRON A. Cognitive functions and disability progression in relapsing-remitting multiple sclerosis: A longitudinal study[J]. Appl Neuropsychol Adult, 2021, 28(2): 210-219. DOI: 10.1080/23279095.2019.1624260.
[40]
FILIPPI M, PREZIOSA P, BARKHOF F, et al. The ageing central nervous system in multiple sclerosis: the imaging perspective[J]. Brain, 2024, 147(11): 3665-3680. DOI: 10.1093/brain/awae251.
[41]
ROCCA M A, MARGONI M, BATTAGLINI M, et al. Emerging perspectives on MRI application in multiple sclerosis: moving from pathophysiology to clinical practice[J/OL]. Radiology, 2023, 307(5): e221512 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/37278626/. DOI: 10.1148/radiol.221512.
[42]
JELLINGER K A. Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms[J]. J Neural Transm, 2024: 1-29. DOI: 10.1007/s00702-024-02786-y.
[43]
PINTER D, KHALIL M, PIRPAMER L, et al. Long-term course and morphological MRI correlates of cognitive function in multiple sclerosis[J]. Mult Scler, 2021, 27(6): 954-963. DOI: 10.1177/1352458520941474.
[44]
WILCOX O, AMIN M, HANCOCK L, et al. Associations between cognitive impairment and neuroimaging in patients with multiple sclerosis[J]. Arch Clin Neuropsychol, 2024, 39(2): 196-203. DOI: 10.1093/arclin/acad070.
[45]
MARGONI M, PAGANI E, MEANI A, et al. Cognitive impairment is related to glymphatic system dysfunction in pediatric multiple sclerosis[J]. Ann Neurol, 2024, 95(6): 1080-1092. DOI: 10.1002/ana.26911.
[46]
CSOMÓS M, VERÉB D, KOCSIS K, et al. Evaluation of the glymphatic system in relapsing remitting multiple sclerosis by measuring the diffusion along the perivascular space[J/OL]. Magn Reson Imaging, 2025: 110319 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/39756667/. DOI: 10.1016/j.mri.2025.110319.
[47]
韩婧, 王庆军, 王超慧, 等. 多发性硬化患者灰质萎缩与认知功能领域损害的相关性研究[J]. 中华内科杂志, 2024, 63(7): 666-673. DOI: 10.3760/cma.j.cn112138-20231129-00350.
HAN J, WANG Q J, WANG C H, et al. A study of the correlation between gray matter atrophy in multiple sclerosis and impairment of cognitive function domains[J]. Zhonghua Nei Ke Za Zhi, 2024, 63(7): 666-673. DOI: 10.3760/cma.j.cn112138-20231129-00350.
[48]
HE X, LIU D, ZHANG Q, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice[J/OL]. Front Mol Neurosci, 2017, 10: 144 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/28579942/ DOI: 10.3389/fnmol.2017.00144.
[49]
LIU X, HAO J, YAO E, et al. Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems[J]. Brain Behav Immun, 2020, 89: 357-370. DOI: 10.1016/j.bbi.2020.07.022.
[50]
YAO D, LI R, HAO J, HUANG H, et al. Melatonin alleviates depression-like behaviors and cognitive dysfunction in mice by regulating the circadian rhythm of AQP4 polarization[J/OL]. Transl Psychiatry, 2023, 13(1): 310 [2025-02-01]. https://pubmed.ncbi.nlm.nih.gov/37802998/. DOI: 10.1038/s41398-023-02614-z.

上一篇 中枢神经系统疾病与脑淋巴系统的研究进展
下一篇 乳腺癌化疗所致周围神经病变诱发中枢异常的多模态MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2