分享:
分享到微信朋友圈
X
综述
乳腺癌化疗所致周围神经病变诱发中枢异常的多模态MRI研究进展
范宇捷 廖海

Cite this article as: FAN Y J, LIAO H. Progress of multimodal MRI research on central abnormalities induced by chemotherapy-induced peripheral neuropathy in breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(3): 138-142.本文引用格式:范宇捷, 廖海. 乳腺癌化疗所致周围神经病变诱发中枢异常的多模态MRI研究进展[J]. 磁共振成像, 2025, 16(3): 138-142. DOI:10.12015/issn.1674-8034.2025.03.023.


[摘要] 化疗所致周围神经病变(chemotherapy-induced peripheral neuropathy, CIPN)是乳腺癌患者常见不良反应之一,其不仅影响外周神经,还可能通过复杂的神经-免疫-内分泌途径导致中枢神经系统的功能与结构异常。近年来,随着多模态MRI技术的快速发展,功能MRI(functional MRI, fMRI)、结构MRI(structural MRI, sMRI)、扩散张量成像(diffusion tensor imaging, DTI)、灌注加权成像(perfusion-weighted imaging, PWI)、动脉自旋标记(arterial spin labeling, ASL)、磁共振波谱(magnetic resonance spectroscopy, MRS)等影像学方法,为研究CIPN诱发中枢异常的病变机制提供了新的视角,能够全面揭示脑微结构变化与功能网络重组。本文综述了多模态MRI技术在乳腺癌CIPN诱发中枢异常研究中的临床应用及其潜在价值,为该疾病的早期诊断与精准防治提供了技术参考。
[Abstract] Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse reaction in breast cancer patients, affecting not only the peripheral nervous system but also leading to structural and functional abnormalities in the central nervous system through complex neuro-immune-endocrine pathways. In recent years, with the rapid development of multimodal MRI, functional MRI (fMRI), structural MRI (sMRI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS) have provided new insights into the etiopathogenesis of CIPN-induced central abnormalities. These methods enable a comprehensive assessment of brain microstructural changes and functional network reorganization. This review summarizes the clinical applications and potential value of multimodal MRI techniques in studying central abnormalities induced by CIPN in breast cancer patients, providing a technical reference for early diagnosis and precise prevention and treatment of the disease.
[关键词] 乳腺癌;化疗所致周围神经病变;磁共振成像;中枢异常;病变机制
[Keywords] breast cancer;chemotherapy-induced peripheral neuropathy;magnetic resonance imaging;central abnormalities;etiopathogenesis

范宇捷    廖海 *  

广西医科大学附属肿瘤医院放射科,南宁 530021

通信作者:廖海,E-mail: 42442427@qq.com

作者贡献声明:廖海设计本综述的框架,对稿件重要内容进行了修改,获得了国家自然科学基金项目资助;范宇捷起草和撰写稿件,获取、分析本研究的综述文献;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81960570
收稿日期:2025-01-19
接受日期:2025-03-10
中图分类号:R445.2  R745 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.023
本文引用格式:范宇捷, 廖海. 乳腺癌化疗所致周围神经病变诱发中枢异常的多模态MRI研究进展[J]. 磁共振成像, 2025, 16(3): 138-142. DOI:10.12015/issn.1674-8034.2025.03.023.

0 引言

       化疗所致周围神经病变(chemotherapy-induced peripheral neuropathy, CIPN)是一种常见的、与化疗药物(奥沙利铂、长春新碱、紫杉醇等)相关的剂量限制性不良反应,约52.7%的化疗患者会发生CIPN[1],表现为四肢远端对称性疼痛、麻木和触觉异常[2]。研究表明,CIPN的发病时间较为隐匿,多数患者在化疗后1至6个月内出现症状[3],其持续发展可影响患者的生活质量下降,严重者可出现抑郁、焦虑、失眠和疲劳等神经症状,最终诱发患者中枢异常[4, 5, 6],尤其在乳腺癌患者中,CIPN的中枢异常更为显著[7]。因此,早期诊断及有效防治乳腺癌CIPN诱发中枢异常具有重要意义

       研究发现,CIPN不仅局限于外周神经的损伤,还可能通过复杂的神经-免疫-内分泌途径引发中枢神经系统的功能与结构异常[8, 9]。这些中枢异常可能是导致患者长期疼痛、认知功能障碍以及情绪失调的关键机制。然而,目前临床上对CIPN的诊断主要依赖于主观性较强的评估量表[3],缺乏统一且客观的诊断标准。针对CIPN引发的中枢异常机制的研究仍然较少,这阻碍了对其早期诊断与防治的进一步探索。

       近年来,多模态MRI技术的发展为研究乳腺癌CIPN诱发中枢机制提供了强有力的工具。该技术可早期、敏感检测到人脑细微变化,已被广泛用于人脑的高级识别、处理的研究[10]。通过整合功能MRI(functional MRI, fMRI)、结构MRI(structural MRI, sMRI)、扩散张量成像(diffusion tensor imaging, DTI)等多种成像方法,可以全面揭示脑区的微观结构变化与功能网络重组[11],这为CIPN诱发中枢异常的病理机制研究开辟了新的方向。本文就多模态MRI技术在乳腺癌CIPN中枢病变机制中的潜在应用价值展开综述,旨在为该疾病早诊早治和精准防控提供一种可靠的技术手段。

1 多模态MRI技术简述

       多模态MRI技术是将多种fMRI/sMRI技术融合而发展起来的现代医学影像学方法,主要包括3D结构像T1加权结构像、血氧水平依赖成像(blood oxygen level-dependent, BOLD)、灌注加权成像(perfusion-weighted imaging, PWI)、扩散加权成像(diffusion weighted imaging, DWI)、DTI、动脉自旋标记(arterial spin labeling, ASL)以及磁共振波谱(magnetic resonance spectroscopy, MRS)等成像技术。结合先进的多模态MRI技术和合理的数据分析方法,可提取到丰富的脑功能活动、皮层厚度、灰质体积、灰质密度以及白质各向异性、纤维连接数目等功能和结构信息,为脑研究提供了从结构到功能的丰富量化信息,提高了大脑疾病的影像诊断能力[12, 13]

       乳腺癌CIPN患者的中枢调控机制可能涵盖从分子和细胞微观结构到宏观组织形态、从血流代偿到脑网络功能变化等不同层面。因此,不同模态信息的有效整合,除了丰富影像诊断信息外,还可以避免因不同技术单独应用所带来的偏差,从而达到结果互补的效果,进一步提高影像诊断的准确性,更加促进了对影像结果的合理深入解释,将在乳腺癌CIPN诱发中枢异常相关领域的研究中发挥重要的作用。

2 多模态MRI在乳腺癌化疗周围神经病变中的应用

2.1 sMRI的应用

       sMRI即高分辨率3D结构像T1加权像技术,可以敏感检测脑微结构变化,对脑结构损伤的早期精准评估有重要价值[14]。作为研究脑结构的核心工具,该技术被临床广泛应用于神经精神类疾病,如抑郁症、焦虑症及阿尔茨海默病等[15]

       虽然传统的sMRI图像能提供颅内容积信息,但无法提供微观结构的变化进行全脑分析。而基于体素的形态学测量(voxel-based morphometry, VBM)通过标准化处理T1加权图像将脑解剖结构分割为灰质、白质和脑脊液,并对脑结构和脑组织的异常变化进行定量计算分析[16 -17]。近年来,VBM也逐渐应用于CIPN脑研究。LI等[18]运用VBM来评估乳腺癌CIPN与正常组的脑灰质密度差异,相应研究结果表明,CIPN患者左侧额下回、右侧额中回、右侧梭状回区域以及双侧小脑的灰质密度较对照组降低。此外,KHALSA等[19]基于VBM研究发现,乳腺癌患者化疗后双侧额叶、颞叶、小脑和右侧丘脑的灰质密度显著降低。尽管不同研究中涉及的脑区略有差异,但额叶和颞叶体积减小是一个重要的发现。此外,小脑和丘脑的体积损失也有报道[20, 21],这可能与样本选择偏差或不同化疗方案、化疗药物的血脑屏障渗透性差异有关[22, 23]

       基于VBM的sMRI技术可以更加清楚地了解乳腺癌患者化疗后的脑灰质密度和体积的减少,有助于临床医生认识化疗后脑结构变化以及恢复过程。然而,当前研究主要集中于灰质的变化,对脑白质受累情况的关注较少,使得对CIPN相关的整体脑结构损伤模式的研究尚不完整。此外,研究结果在具体受累脑区的报道上仍存在一定差异。尽管如此,sMRI对于CIPN患者而言无疑是直观、安全的检查手段之一,因此该技术对乳腺癌CIPN诱发中枢异常应用前景仍十分客观。

2.2 DTI的应用

       相对于sMRI在脑灰质和白质体积评估方面的优势,DTI是一种用于评估脑白质纤维组织结构的方法,它是DWI- MRI领域的一项重要突破。临床中常用的参数是各向异性分数(fractional anisotropy, FA)和平均扩散率(mean diffusivity, MD)、轴向弥散率(axial diffusivity, AD)和径向扩散率(radial diffusivity, RD)。尽管这些测量指标较为复杂,但FA值降低和MD值升高反映了神经纤维束微观结构受损,而轴突损伤会导致AD值降低,髓鞘损伤会使RD值升高[24, 25]。研究[26, 27]表明,化疗药物能够穿过血脑屏障损伤白质,白质纤维完整性的损伤意味着相应的功能可能受到影响,因此,DTI有助于了解化疗对乳腺癌CIPN患者脑功能区的损伤。

       有研究发现,乳腺癌患者在化疗后胼胝体的FA值显著降低[28],额叶和颞叶区域的FA值下降[29],进一步证实了CIPN与白质纤维完整性降低之间的关联。长期研究也发现,化疗可能导致持久性的轴突变性和脱髓鞘[30]。另一方面,也有研究报道了白质损伤的潜在恢复迹象。BILLIET等[31]对接受化疗的乳腺癌患者进行了3~4年的纵向研究,相应结果表明患者FA值逐渐恢复至基线水平,这提示白质损伤可能具有一定的可逆性。然而,这种恢复是否能够改善CIPN诱发中枢异常的症状仍需进一步研究。

       总之,现有的DTI研究表明,DTI参数异常与化疗脑白质微观结构的异常改变相关,一些白质区域可能更容易受到化疗引起的神经毒性影响,如胼胝体、上纵束、下纵束、额枕下束和放射冠。同时还揭示了化疗后白质损伤的可逆性,可以帮助临床医生监测乳腺癌CIPN诱发中枢异常患者疾病的进展与了解恢复情况。

2.3 fMRI的应用

       fMRI技术具有高精确度、高分辨率、非侵袭性的特点,通过对MRI数据处理、分析,可获取全脑血氧信号的响应、脑网络运动模式等信息,该技术已普遍应用于神经精神性疾病的诊断、治疗、随访和评估[32]。目前,fMRI技术已被广泛应用于乳腺癌化疗患者相关脑活动研究[33]。SERETNY等[34]借助fMRI,在化疗前对患者进行脑部扫描,并在刺激下观察大脑的活动反应,相应研究结果表明,与化疗后未出现CIPN症状的对照组相比,CIPN患者的感觉、运动、注意力和情感大脑区域在刺激下显示出更强烈的活动,尤其是在中脑导水管周围灰质这一下行疼痛调节系统(descending pain modulatory system, DPMS)的关键区域。在没有疼痛刺激的情况下,MANUWEERA等[35]对11例CIPN患者开展fMRI分析研究,并证实与内感受注意力相关的大脑区域(如主触觉皮层、岛叶)和感觉整合区(如顶枕叶、背外侧前额叶皮层(dorsolateral prefrontal cortex, DLPFC)的激活增加。WANG等[36]基于fMRI发现,化疗后乳腺癌患者的执行功能下降,这种下降与大脑执行网络的功能变化有关,尤其是患者右侧DLPFC与多个脑区(如右侧额下回、右侧额叶内侧回和左侧颞上回)之间的功能连接性明显低于健康对照组。此外,另有研究表明,CIPN诱发中枢异常患者会经历的睡眠障碍、焦虑抑郁和低能量易疲劳等神经心理症状也都涉及DLPFC的功能异常[37, 38]

       由于乳腺癌患者在化疗过程中伴随着大脑活动和功能连通性的改变,基于fMRI技术的脑功能网络变化仍是当前探索CIPN诱发中枢异常的研究热点。CIPN患者出现与疼痛感知和情绪调节相关的脑功能异常,可能与DPMS这一关键脑区有关,而DLPFC也被认为是非侵入性脑刺激治疗CIPN的潜在靶点[39]。充分运用好fMRI的优点,可以从中枢发病机制角度出发深入认识乳腺癌CIPN,为寻找新的治疗方法或治疗靶点提供了潜在的途径,有助于疾病的精准治疗。然而,尽管fMRI可有效揭示乳腺癌CIPN诱发中枢异常患者大脑功能网络的异常激活和连接模式,但目前的研究结果难以区分因果关系,例如CIPN诱发中枢异常相关的脑功能改变是化疗直接导致,还是由于慢性疼痛和情绪变化的继发效应,这仍需结合纵向研究进一步探讨。

2.4 PWI及ASL的应用

       肿瘤乏氧是影响乳腺癌化疗疗效与预后的关键因素。PWI技术可定量分析组织毛细血管水平的血流灌注,反映病理状态下脑组织血流动力学情况,有利于观察脑部微循环对缺血缺氧损伤的反应。目前,乳腺癌CIPN诱发中枢异常与脑血流灌注的关系研究尚不深入。但在脑胶质瘤研究中[40, 41],有学者运用PWI区分肿瘤复发和放疗损伤的思路,为乳腺癌CIPN诱发中枢异常研究提供了方法借鉴。

       ASL是一种无需注射对比剂的磁共振灌注成像方法,具有无创、定量测量脑血流灌注参数、可重复性高等优点[42]。研究发现,乳腺癌患者化疗后在静息状态下脑血管密度和脑血流量发生了改变[43],ASL可用于评估这种脑损伤相关的脑血流量变化。NUDELMAN及其团队[5]基于ASL技术,发现乳腺癌患者的CIPN症状与脑灌注、灰质的改变有关,表现为化疗1个月后乳腺癌患者症状与右侧额上回、扣带回、疼痛处理脑区的脑灌注显著相关,且从基线到化疗1个月间疾病症状及相关灌注参数与灰质密度变化呈正相关关系。CHEN等[44]基于ASL技术研究同样发现乳腺癌患者化疗后出现左后扣带回、左枕中回、双侧前中央回和颞回等脑区的脑血流量显著增加。

       以上研究都表明,PWI和ASL可以通过检测乳腺癌患者脑血流灌注的改变来早期发现CIPN的中枢异常。然而,这些技术仍存在一定局限性(如空间分辨率、信噪比、标准化不足)需要进一步优化和完善。其次,乳腺癌CIPN诱发的中枢异常可能涉及神经炎症、血脑屏障破坏、神经元代谢紊乱等多种机制[8, 9],单纯依赖灌注参数难以全面反映病理过程,在未来的研究中,仍需结合fMRI、代谢成像(如MRS)等进行多模态分析,提升其在乳腺癌CIPN诱发中枢异常早期诊断和精准评估中的临床价值。

2.5 MRS的应用

       MRS利用磁共振现象和化学位移原理,对特定原子核进行检测,不同的代谢物在磁场中有不同的共振频率,通过分析这些频率差异,可以识别和定量脑内的多种代谢物。在CIPN的研究中多用1H-MRS[45, 46],其共振峰主要包括:N-乙酰天门冬氨酸(N-acetylaspartate, NAA)峰、胆碱(choline peak, Cho)峰、肌酐(creatinine, Cr)峰等。NAA浓度降低反映了神经元或轴突破坏、缺失以及功能异常;Cho与细胞膜的磷脂代谢有关,在细胞增殖或膜代谢异常时会发生改变;Cr在能量代谢过程中起重要作用,常作为内参来衡量其他代谢物的相对变化[47]

       DE RUITER等[48]发现,CIPN患者的1H-MRS与健康人相比,大脑感觉皮层等相关区域的NAA峰会降低,这提示由于外周神经病变引起的异常感觉输入,导致神经元代谢紊乱[49]。同时,Cho/Cr 比值可能会升高,这可能反映了神经元为适应外周神经病变而导致细胞膜代谢的增强,比如神经胶质细胞的增生或细胞膜的重塑,这与CIPN的病理生理学研究相吻合[8]。并且,MRS 检测到的脑中枢代谢变化与全身化疗后患者的周围神经病变症状有一定的相关性[50],比如NAA/Cr 比值的降低程度可能与患者感觉异常的严重程度呈正相关[28]

       在探究乳腺癌CIPN诱发中枢异常时,大脑感觉皮层是关键研究区域,它负责接收、处理外周神经感觉信息,当外周神经病变发生时,感觉皮层可能会出现代谢物的改变。通过MRS技术可以对这些特定脑区进行“化学活检”[51],以了解中枢的代谢变化,为早期诊断与疗效监测助力。但MRS也存在些许不足,扫描耗时长,患者配合难,且仅能检测特定感兴趣区,限制了其在临床中的广泛应用。

3 总结与展望

       乳腺癌CIPN的病变机制错综复杂、多种多样,截至目前,其确切发病根源尚未完全明晰,现有研究提示可能与中枢神经系统异常存在关联。得益于诸如 sMRI、DTI、fMRI、PWI、ASL、MRS等多模态磁共振成像技术的广泛应用,使临床医师对乳腺癌CIPN诱发中枢异常的认识将得到了进一步提升。在未来的研究中,除了增加研究的样本量积累更丰富的影像数据外,还应探索更好的新序列、新方法应用到乳腺癌CIPN诱发中枢异常的早期诊断中。例如基于高分辨率PET分子探针的神经炎症、神经递质代谢及受体成像,可从分子层面实现CIPN诱发中枢病变的可视化;结合放射组学和人工智能技术的影像数据挖掘,可提高影像学诊断的精准性和灵敏度。此外,多组学研究手段的引入,如基因组学、蛋白质组学及代谢组学分析,可帮助识别与CIPN诱发中枢异常相关的遗传易感性、生物标志物及潜在治疗靶点。

       综合而言,未来乳腺癌CIPN诱发中枢异常的研究应以多学科协作为基础,结合多模态影像技术、分子影像学、组学分析及人工智能等前沿方法,系统探索其病变机制,并进一步推进其在早期诊断、精准治疗及疗效随访中的临床转化应用。这将为乳腺癌CIPN诱发中枢异常患者的整体管理提供新的理论依据和技术支持,从而改善其预后及生活质量。

[1]
SHAH A, HOFFMAN E M, MAUERMANN M L, et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort[J]. J Neurol Neurosurg Psychiatry, 2018, 89(6): 636-641. DOI: 10.1136/jnnp-2017-317215.
[2]
BURGESS J, FERDOUSI M, GOSAL D, et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment[J]. Oncol Ther, 2021, 9(2): 385-450. DOI: 10.1007/s40487-021-00168-y.
[3]
中国中西医结合疼痛学会, 中国抗癌协会中西医整合专业委员会, 中国中医药研究促进会. 化疗所致周围神经病理性疼痛中西医诊治专家共识[J]. 中华肿瘤防治杂志, 2021, 28(23): 1761-1767, 1779. DOI: 10.16073/j.cnki.cjcpt.2021.23.01.
Chinese Association of Integrative Medicine, Chinese Holistic Integrative Oncology , China Research and Promotion of Traditional Chinese Medicine. Chemotherapy-in-Duced Peripheral Neuropathic Pain by Combining Traditional Chinese and Western Medicine in China[J]. Chin J Cancer Prev Treat, 2021, 28(23): 1761-1767, 1779. DOI: 10.16073/j.cnki.cjcpt.2021.23.01.
[4]
SHI H X, TAO H T, HE J J, et al. Targeting Dkk1 Enhances the Antitumor Activity of Paclitaxel and Alleviates Chemotherapy-Induced Peripheral Neuropathy in Breast Cancer[J/OL]. Mol Cancer, 2024, 23(1): 152 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39085861/. DOI: 10.1186/s12943-024-02067-y.
[5]
NUDELMAN K N, MCDONALD B C, WANG Y, et al. Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy[J]. J Clin Oncol, 2016, 34(7): 677-683. DOI: 10.1200/JCO.2015.62.1276.
[6]
JOKO-FRU W Y, JEDY-AGBA E, KORIR A, et al. The evolving epidemic of breast cancer in sub-Saharan Africa: Results from the African Cancer Registry Network[J]. Int J Cancer, 2020, 147(8): 2131-2141. DOI: 10.1002/ijc.33014.
[7]
赵娟, 刘璐, 李婷婷, 等. 乳腺癌患者化疗致周围神经病变的研究进展[J]. 中华现代护理杂志, 2024, 30(5): 695-700. DOI: 10.3760/cma.j.cn115682-20230812-00492.
ZHAO J, LIU L, LI T T, et al. Research Progress on Chemotherapy-Induced Peripheral Neuropathy in Breast Cancer Patients[J]. Chin J Mod Nurs, 2024, 30(5): 695-700. DOI: 10.3760/cma.j.cn115682-20230812-00492.
[8]
WANG M, PEI Z, MOLASSIOTIS A. Recent advances in managing chemotherapy-induced peripheral neuropathy: A systematic review[J/OL]. Eur J Oncol Nurs, 2022, 58: 102134 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/35421796/. DOI: 10.1016/j.ejon.2022.102134.
[9]
XU Y, JIANG Z, CHEN X. Mechanisms Underlying Paclitaxel-Induced Neuropathic Pain: Channels, Inflammation and Immune Regulations[J/OL]. Eur J Pharmacol, 2022, 933: 175288 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/36122757/. DOI: 10.1016/j.ejphar.2022.175288.
[10]
SUI J, ZHI D, CALHOUN V D. Data-driven multimodal fusion: approaches and applications in psychiatric research[J/OL]. Psychoradiology, 2023, 3: kkad026 [2025-01-19].https://pubmed.ncbi.nlm.nih.gov/38143530/. DOI: 10.1093/psyrad/kkad026.
[11]
LESKINEN S, ALSALEK S, GALVEZ R, et al. Chemotherapy-Related Cognitive Impairment and Changes in Neural Network Dynamics: A Systematic Review[J/OL]. Neurology, 2025, 104(2): e210130 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39804577/. DOI: 10.1212/wnl.0000000000210130.
[12]
叶慧慧, 何宏建, 方静宛, 等. 大脑多模态成像技术定量研究进展[J]. 中国图象图形学报, 2022, 27(6): 1944-1955. DOI: 10.11834/jig.220153.
YE H H, HE H J, FANG J W, et al. Research Progress of Quantitative Multimodal Brain Imaging Tech-Nology[J]. J Image Graphics, 2022, 27(6): 1944-1955. DOI: 10.11834/jig.220153.
[13]
TAKEGUCHI R, KURODA M, TANAKA R, et al. Structural and Functional Changes in the Brains of Patients with Rett Syndrome: A Multimodal Mri Study[J/OL]. J Neurol Sci, 2022, 441: 120381 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/36027642/. DOI: 10.1016/j.jns.2022.120381.
[14]
SPINELLI E G, RIVA N, RANCOITA P M V, et al. Structural Mri Outcomes and Predictors of Disease Progression in Amyotrophic Lateral Sclerosis[J/OL]. Neuroimage Clin, 2020, 27: 102315 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/32593977/. DOI: 10.1016/j.nicl.2020.102315.
[15]
CHIARI-CORREIA R D, TUMAS V, SANTOS A C, et al. Structural and Functional Differences in the Brains of Patients with Mci with and without Depressive Symptoms and Their Relations with Alzheimer's Disease: An Mri Study[J/OL]. Psychoradiology, 2023, 3: kkad008 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38666129/. DOI: 10.1093/psyrad/kkad008.
[16]
ZHAI H, FAN W, XIAO Y, et al. Voxel-based morphometry of grey matter structures in Parkinson's Disease with wearing-off[J]. Brain Imaging Behav, 2023, 17(6): 725-737. DOI: 10.1007/s11682-023-00793-3.
[17]
QUATTRONE A, CALOMINO C, SARICA A, et al. Neuroimaging correlates of postural instability in Parkinson's disease[J]. J Neurol, 2024, 271(4): 1910-1920. DOI: 10.1007/s00415-023-12136-9.
[18]
LI X, CHEN H, LV Y, et al. Diminished Gray Matter Density Mediates Chemotherapy Dosage-Related Cognitive Impairment in Breast Cancer Patients[J/OL]. Sci Rep, 2018, 8(1): 13801 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/30218006/. DOI: 10.1038/s41598-018-32257-w.
[19]
KHALSA S S, ADOLPHS R, CAMERON O G, et al. Interoception and mental health: a roadmap[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(6): 501-513. DOI: 10.1016/j.bpsc.2017.12.004.
[20]
ZHANG H, LI P, LIU T, et al. Focal white matter microstructural alteration after anthracycline-based systemic treatment in long-term breast cancer survivors: a structural magnetic resonance imaging study[J]. Brain Imaging Behav, 2022, 16(2): 843-854. DOI: 10.1007/s11682-021-00551-3.
[21]
SI S, BI A, YU Z, et al. Mapping gray and white matter volume abnormalities in early-onset psychosis: an ENIGMA multicenter voxel-based morphometry study[J]. Mol Psychiatry, 2024, 29(2): 496-504. DOI: 10.1038/s41380-023-02343-1.
[22]
PIPER K, KUMAR J I, DOMINO J, et al. Consensus Review on Strategies to Improve Delivery Across the BBB Including Focused Ultrasound[J]. Neuro Oncol, 2024, 26(9): 1545-1556. DOI: 10.1093/neuonc/noae087.
[23]
ZHOU J, HOU Z, TIAN C, et al. Review of Tracer Kinetic Models in Evaluation of Gliomas Using Dynamic Contrast-Enhanced Imaging[J/OL]. Front Oncol, 2024, 14: 1380793 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38947892/. DOI: 10.3389/fonc.2024.1380793.
[24]
DING Q, LI L, TONG Q, et al. White Matter Microstructure Alterations of the Posterior Limb of Internal Capsule in First-Episode Drug Naive Schizophrenia Patients[J/OL]. Brain Res, 2024, 1841: 149114 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38977237/. DOI: 10.1016/j.brainres.2024.149114.
[25]
JIANG Y, LIU G, DENG B, et al. White Matter Lesions and Dti Metrics Related to Various Types of Dysfunction in Cerebral Palsy: A Meta-Analysis and Systematic Review[J/OL]. PLoS One, 2025, 20(1): e0312378 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39854387/. DOI: 10.1371/journal.pone.0312378.
[26]
AHIRE C, NYUL-TOTH A, DELFAVERO J, et al. Accelerated Cerebromicrovascular Senescence Contributes to Cognitive Decline in a Mouse Model of Paclitaxel (Taxol)-Induced Chemobrain[J/OL]. Aging Cell, 2023, 22(7): e13832 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/37243381/. DOI: 10.1111/acel.13832.
[27]
MI Z, YAO Q, QI Y, et al. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy[J]. Acta Pharm Sin B, 2023, 13(2): 819-833. DOI: 10.1016/j.apsb.2022.09.016.
[28]
TONG T, LU H, ZONG J, et al. Chemotherapy-related cognitive impairment in patients with breast cancer based on MRS and DTI analysis[J]. Breast Cancer, 2020, 27: 893-902. DOI: 10.1007/s12282-020-01094-z.
[29]
DEPREZ S, AMANT F, YIGIT R, et al. Chemotherapy‐induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients[J]. Hum Brain Mapp, 2011, 32(3): 480-493. DOI: 10.1002/hbm.21033.
[30]
MCDONALD B C, CONROY S K, AHLES T A, et al. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study[J]. J Clin Oncol, 2012, 30(20): 2500-2508. DOI: 10.1200/JCO.2011.38.5674.
[31]
BILLIET T, EMSELL L, VANDENBULCKE M, et al. Recovery from chemotherapy-induced white matter changes in young breast cancer survivors?[J]. Brain Imaging Behav, 2018, 12: 64-77. DOI: 10.1007/s11682-016-9665-8.
[32]
田媛, 李凯, 苏闻. 基于静息态功能磁共振成像的脑功能动态分析及其在神经系统变性疾病中的应用进展[J]. 中国现代神经疾病杂志, 2022, 22(3): 137-141. DOI: 10.3969/j.issn.1672-6731.2022.03.003.
TIAN Y, LI K, SU W. Dynamic Brain Function Analysis Based on Resting-State Fmri and Its Application in Neurodegenerative Diseases[J]. Chin J Contemp Neurol Neurosurg, 2022, 22(3): 137-141. DOI: 10.3969/j.issn.1672-6731.2022.03.003.
[33]
宋雅琪, 李一凡, 夏建国, 等. 乳腺癌化疗患者脑结构及功能磁共振成像研究[J]. 磁共振成像, 2024, 15(4): 20-24, 31. DOI: 10.12015/issn.1674-8034.2024.04.004.
SONG Y Q, LI Y F, XIA J G, et al. Brain structure and functional magnetic resonance imaging in patients with breast cancer undergoing chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 20-24, 31. DOI: 10.12015/issn.1674-8034.2024.04.004.
[34]
SERETNY M, ROMANIUK L, WHALLEY H, et al. Neuroimaging reveals a potential brain-based pre-existing mechanism that confers vulnerability to development of chronic painful chemotherapy-induced peripheral neuropathy[J]. Br J Anaesth, 2023130(1): 83-93. DOI: 10.1016/j.bja.2022.09.026.
[35]
MANUWEERA T, WAGENKNECHT A, KLECKNER A S, et al. Preliminary Evaluation of Novel Bodily Attention Task to Assess the Role of the Brain in Chemotherapy-Induced Peripheral Neurotoxicity (Cipn)[J/OL]. Behav Brain Res, 2024, 460: 114803 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38070689/. DOI: 10.1016/j.bbr.2023.114803.
[36]
WANG L, YAN Y, WANG X, et al. Executive function alternations of breast cancer patients after chemotherapy: evidence from resting-state functional MRI[J]. Acad Radiol, 2016, 23(10): 1264-1270. DOI: 10.1016/j.acra.2016.05.014.
[37]
KNOERL R, CHORNOBY Z, SMITH E M. Estimating the frequency, severity, and clustering of SPADE symptoms in chronic painful chemotherapy-induced peripheral neuropathy[J]. Pain Manag Nurs, 2018, 19(4): 354-365. DOI: 10.1016/j.pmn.2018.01.001.
[38]
WANG M, MOLASSIOTIS A. Mapping chemotherapy-induced peripheral neuropathy phenotype and health-related quality of life in patients with cancer through exploratory analysis of multimodal assessment data[J]. Support Care Cancer, 2022, 30(5): 4007-4017. DOI: 10.1007/s00520-022-06821-0.
[39]
WU Q, LI X, ZHANG Y, et al. Analgesia of Noninvasive Electrical Stimulation of the Dorsolateral Prefrontal Cortex: A Systematic Review and Meta-Analysis[J/OL]. J Psychosom Res, 2024, 185: 111868 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39142194/. DOI: 10.1016/j.jpsychores.2024.111868.
[40]
MOHAMMADI S, GHADERI S, JOUZDANI A F, et al. Differentiation between high‐grade glioma and brain metastasis using cerebral perfusion‐related parameters (cerebral blood volume and cerebral blood flow): A systematic review and meta‐analysis of perfusion‐weighted MRI techniques[J]. J Magn Reson Imaging, 2025, 61(2): 758-768. DOI: 10.1002/jmri.29473.
[41]
ZHANG J, WANG Y, WANG Y, et al. Perfusion Magnetic Resonance Imaging in the Differentiation between Glioma Recurrence and Pseudoprogression: A Systematic Review, Meta-Analysis and Meta-Regression[J/OL]. Quant Imaging Med Surg, 2022, 12(10): 4805-4822. https://pubmed.ncbi.nlm.nih.gov/36185045/. DOI: 10.21037/qims-22-32.
[42]
WOODS J G, ACHTEN E, ASLLANI I, et al. Recommendations for quantitative cerebral perfusion MRI using multi‐timepoint arterial spin labeling: Acquisition, quantification, and clinical applications[J]. Magn Reson Med, 2024, 92(2): 469-495. DOI: 10.1002/mrm.30091.
[43]
DOWNS T L, WHITESIDE E J, FOOT G, et al. Differences in total cognition and cerebrovascular function in female breast cancer survivors and cancer-free women[J]. Breast, 2023, 69: 358-365. DOI: 10.1016/j.breast.2023.03.018.
[44]
CHEN X, HE X, TAO L, et al. The Attention Network Changes in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy: Evidence from an Arterial Spin Labeling Perfusion Study[J/OL]. Sci Rep, 2017, 7: 42684 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/28209975/. DOI: 10.1038/srep42684.
[45]
SEKIGUCHI F, KAWABATA A. Role of Hmgb1 in Chemotherapy-Induced Peripheral Neuropathy[J/OL]. Int J Mol Sci, 2020, 22(1) [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/33396481/. DOI: 10.3390/ijms22010367.
[46]
NASRALLAH H A, SKINNER T E, SCHMALBROCK P, et al. Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study[J]. Br J Psychiatry, 1994, 165(4): 481-485. DOI: 10.1192/bjp.165.4.481.
[47]
DAIMIEL NARANJO I, BHOWMIK A, BASUKALA D, et al. Assessment of Hypoxia in Breast Cancer: Emerging Functional MR Imaging and Spectroscopy Techniques and Clinical Applications[J]. J Magn Reson Imaging, 2024, 61(1): 83-96. DOI: 10.1002/jmri.29424.
[48]
DE RUITER M B, RENEMAN L, BOOGERD W, et al. Late effects of high‐dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging[J]. Hum Brain Mapp, 2012, 33(12): 2971-2983. DOI: 10.1002/hbm.21422.
[49]
KIM H, PARK H, CHUN Y, et al. Prognostic Significance of Total Choline on in-Vivo Proton Mr Spectroscopy for Prediction of Late Recurrence in Patients with Hormone Receptor-Positive, Her2-Negative Early Breast Cancer[J/OL]. PLoS One, 2025, 20(1): e0311012 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39746051/. DOI: 10.1371/journal.pone.0311012.
[50]
BEYER J, COUCH R, RUDDY K J, et al. Longitudinal Cognitive Function and Brain Metabolites in Women Receiving Chemotherapy for Stage 1 to 3 Breast Cancer: Observational Study[J/OL]. Medicine (Baltimore), 2023, 102(42): e35524 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/37861526/. DOI: 10.1097/md.0000000000035524.
[51]
GRIGORYANTS N F, SASS S, ALEXANDER J. Novel Technologies in Breast Imaging: A Scoping Review[J/OL]. Cureus, 2023, 15(8): e44061 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/37746370/. DOI: 10.7759/cureus.44061.

上一篇 多发性硬化胶质淋巴系统的研究进展
下一篇 深度残差网络在脑肿瘤MRI分类上的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2