分享:
分享到微信朋友圈
X
综述
多模态影像学在乳腺导管原位癌诊疗中的研究进展
李远飞 赵思奇 武玥琪 张莫云 张丽娜 时畅

Cite this article as: LI Y F, ZHAO S Q, WU Y Q, et al. Advances in multimodal imaging for diagnosis and treatment of breast ductal carcinoma in situ[J]. Chin J Magn Reson Imaging, 2025, 16(3): 173-177.本文引用格式:李远飞, 赵思奇, 武玥琪, 等. 多模态影像学在乳腺导管原位癌诊疗中的研究进展[J]. 磁共振成像, 2025, 16(3): 173-177. DOI:10.12015/issn.1674-8034.2025.03.029.


[摘要] 乳腺导管原位癌(ductal carcinoma in situ, DCIS)又称零期乳腺癌,是局限于导管-小叶系统的非浸润性上皮细胞恶性增殖,存在进展为浸润性癌的风险。为实现精准临床诊疗,需要对DCIS进行术前风险评估,其中影像学特征表现在DCIS筛查和个体化诊疗中具有重要提示作用。本文就DCIS临床病理特征、多模态影像学特征以及人工智能(artificial intelligence, AI)在DCIS中的诊断、预后预测与评估应用现状予以总结,旨在提高影像医师对于DCIS的认识,为DCIS的早期诊断、治疗方案优化和个体化风险评估提供影像理论参考。
[Abstract] Ductal carcinoma in situ (DCIS), also referred to as stage zero breast cancer, is a malignant proliferation of non-invasive epithelial cells confined to the duct-lobular system, which may develop into invasive carcinoma. Risk stratification of DCIS is essential for the realization of precision medicine, and the imaging characteristics play a crucial role in screening and individualized treatment. This article systematically summarizes the applications and advancements in clinicopathological feature, multimodal imaging characteristics and artificial intelligence (AI) of DCIS in recent years. Its goal is to empower the understanding about DCIS and provide theoretical basis for early diagnosis, ultimately optimizing the project of personalized treatment and individualized risk assessment.
[关键词] 乳腺导管原位癌;影像组学;风险分层;磁共振成像;保乳手术
[Keywords] ductal carcinoma in situ;radiomics;risk stratification;magnetic resonance imaging;breast conserving surgery

李远飞 1   赵思奇 1   武玥琪 1   张莫云 1   张丽娜 1*   时畅 2  

1 大连医科大学附属第一医院放射科,大连116011

2 大连医科大学附属第一医院病理科,大连 116011

通信作者:张丽娜,E-mail: zln201045@163.com

作者贡献声明:张丽娜设计本研究的方案,对稿件重要的内容进行了修改;李远飞参与选题和设计,起草和撰写稿件,获取、分析、解释本研究的文献;赵思奇、武玥琪、张莫云、时畅获取、分析部分本研究的文献,对稿件重要内容进行了修改;时畅获得了辽宁省自然科学基金计划项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 辽宁省自然科学基金计划项目 2023-MS-14
收稿日期:2025-01-31
接受日期:2025-03-10
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.029
本文引用格式:李远飞, 赵思奇, 武玥琪, 等. 多模态影像学在乳腺导管原位癌诊疗中的研究进展[J]. 磁共振成像, 2025, 16(3): 173-177. DOI:10.12015/issn.1674-8034.2025.03.029.

0 引言

       全球癌症报告最新显示乳腺癌是发病率最高的女性恶性肿瘤,据估计,2024年乳腺癌约占据女性新诊断癌症的32%[1, 2]。乳腺导管原位癌(ductal carcinoma in situ, DCIS)是局限于导管-小叶系统的上皮细胞一种增殖性病变,占筛查发现乳腺癌的20%~25%[3]。DCIS未侵犯基底膜,是乳腺浸润性导管癌(invasive ductal carcinoma, IDC)的癌前病变[4]。DCIS伴微浸润(DCIS with microinvasion, DCISM)是指DCIS伴显微镜下浸润灶≤1 mm,约占所有DCIS病例的5%~10%[5]。DCISM的微浸润成分表明其具有浸润和转移的潜力[6]。因此,尽早识别容易进展的高级别DCIS及DCISM,并将其与低级别DCIS区分开来避免过度诊疗是至关重要。

       近年来,多模态影像学技术与人工智能(artificial intelligence, AI)的融合为DCIS的精准诊疗开辟了新路径。目前临床实践中,乳腺X线摄影(mammography, MG)、超声及磁共振成像(magnetic resonance imaging, MRI)构成的影像学评估体系,已通过多维度解剖信息与功能成像为DCIS早期诊断提供关键依据[7, 8, 9]。以影像组学与深度学习(deep earning, DL)为代表的AI技术,通过高通量特征提取与卷积神经网络驱动的影像深层语义分析在预测DCIS风险分层、优化保乳手术切缘评估的精准度方面有很大潜力[10, 11, 12]。值得关注的是,当前研究仍存在算法泛化性不足、边缘分割体素误差等问题。因此,本文通过介绍临床病理特征、多模态影像学特征及AI技术在DCIS诊疗方面的研究新进展,旨在加深乳腺肿瘤学者对不同危险分层DCIS采用的多模态影像学手段、临床病理特征与预后预测相关性的理解,有助于完善并实施早期乳腺癌精准诊疗和个性化治疗策略。

1 DCIS的临床病理特征

       DCIS好发于青春期后、绝经期前女性,40~49岁多见,年龄是DCIS进展的风险因素之一,但绝经后女性发病率有所降低,这可能与乳腺退化、导管上皮组织减少有关[13]。此外,DCIS进展还与激素不平衡、家族史、致密型乳腺及肥胖等因素有关[14]。DCIS病变多位于外上象限,约85%患者由MG筛查检出,表现为钙化,而大多患者无临床症状,部分因触及肿块或发现乳头溢液就诊[15]。目前根据美国国家综合癌症网络(national comprehensive cancer network, NCCN)指南,DCIS的治疗方式主要分以下两种:(1)保乳手术(breast conserving surgery, BCS)+全乳放疗;(2)全乳切除术+前哨淋巴结活检。针对DCIS采取第二种手术方式局部复发率更低,但年轻患者常有保乳意愿,虽然两种手术方式的患者生存率相似,但多灶性疾病、肿瘤较大和DCIS成分的存在是BCS切缘阳性的术前重要风险因素[16, 17]。行BCS时因单纯DCIS腋窝受累的发生率较低(1%~2%)而不建议对DCIS进行前哨淋巴结活检,然而DCIS一旦进展为IDC,腋窝淋巴结清扫术是必不可少的[17, 18]。因此精准预测诊断DCIS中的隐匿性侵袭性成分具有重要意义。

       DCIS虽然与IDC病理基础不同,但亦是一组具有异质性的病变。在组织病理学上,根据恶性肿瘤细胞核异性程度、坏死及核分裂像等特点,将DCIS分为低级别(胞核大小一致、坏死及核分裂像罕见)、中级别(可见核分裂像与粉刺样坏死)和高级别(细胞核异型性明显,大量粉刺样坏死、碎屑)[4]。低、中级别DCIS在腔内分泌物中可见微钙化,坏死少见,属于临床低风险组,生物学行为惰性常见;而高级别DCIS生物学行为与DCISM相似,可能与临床病理分期上调及不良预后关系密切[19, 20],因此需要早期诊断和个体化治疗以避免复发及进展为IDC[21]

2 多模态影像学在DCIS诊疗中的应用

2.1 乳腺MG

       MG作为乳腺癌筛查首选影像学方法,操作简便、用时短,在DCIS突出显示微钙化方面有优势,特定的微钙化形态、分布被认为是DCIS的典型表现[22, 23]。随着数字MG(full-field digital mammography, FFDM)持续发展,新技术例如乳腺断层扫描(digital breast tomosynthesis, DBT)、对比增强MG(contrast enhancement digital mammography, CEDM)的逐步出现,多种MG技术为DCIS异质性生物学行为的术前预测提供了新技术模式。DBT可应用于致密型乳腺,能够减少重叠组织的干扰效应,提高病变的检出率。DM和DBT检测DCIS的肿瘤生物学行为可能存在差异,后者DCIS升级风险病例更高(36.7% vs. 9.5%,P=0.03)[24]。CEDM能够提供病灶的增强信息,具有较高敏感度(88.9%),可弥补常规DM在非钙化诊断的不足,为DCIS检查提供参考[25]

       DCIS在MG的影像表现主要分为钙化和非钙化,因病理核分级不同而呈现出多样性,有时与乳腺良性及其他恶性病变难以区分。美国放射学协会(American College of Radiology, ACR)通过总结乳腺影像发展与临床实践,根据第5版乳腺影像学报告和数据系统(Breast Imaging Reporting and Data System, BI-RADS)规范影像报告的术语[26],对可疑DCIS的钙化进行评估,与良性病变相比,DCIS钙化形态为细线分支钙化(P=0.003),钙化分布为节段样分布(P=0.024)[27]。SHAABAN等[28]学者发现与单纯型DCIS相比,DCISM与病理较高级别、病灶直径较大有关(P<0.001),而且经110个月中位随访后微浸润的患者远处转移发生率更高(P=0.01),提示其生物学行为更具侵袭性。MG关于微钙化形态分布特定语义特征的标准化可作为评估DCIS侵袭性的指标,其中细线分支钙化多见于高级别 DCIS,粉刺坏死、微侵袭与ER阳性状态呈负相关[23]。已有学者研究认为细小多形性/细线、细小分支状钙化多见于粉刺型DCIS,而对于非粉刺性DCIS团簇状分布钙化或圆形钙化更常见,前者与预后不良因素有关[29, 30, 31]

       MG在评估DCIS病灶钙化形态和分布上具有优势,FFDM更易发现DCIS微钙化病变,DBT减轻腺体重叠,CEDM可以提供丰富的血供信息。此外,对非钙化DCIS,MG难以准确评估病灶范围且易漏诊,CEDM可能受背景实质强化(background parenchymal enhancement, BPE)影响。评估DCIS病变需要进一步探索多种MG技术(FFDM、DBT、CEDM)与其他影像手段联合,为评估病变生物学差异而进行个性化诊疗提供支持。

2.2 乳腺超声

       超声具有经济、无创性优势,在乳腺DCIS诊断应用越来越广泛。尤其是针对致密型乳腺,与MG相比,超声病灶检出率更高[32]。SU等[33]研究表明超声对非钙化DCIS的检出率(94.9%)较DBT、DM更敏感,致密型乳腺患者的检出率(95.0%)较两者更高。剪切波弹性成像(shear wave elastography, SWE)与自动乳腺超声成像系统(automated breast ultrasound system, ABUS)能够获取病灶额外的定量信息和冠状位图像信息,更易于显示病灶特点。SWE具有评估病变异质性的潜能,通过测量最大弹性、平均弹性等评估病变的可触及性与硬度,来预测更具侵袭性DCIS。结合3D ABUS和MG有助于提高评估DCIS病变范围的性能[34]

       DCIS在超声上分为肿块和非肿块样表现(导管改变和结构扭曲),LI等[9]通过对219个DCIS病灶分析指出超声识别DCIS肿块样病变准确率较高,低回声实性肿块是DCIS最常见的超声特征。KOMARLA等[35]研究提出超声诊断的非钙化DCIS可能是升级的独立危险因素,与MG相比,超声检测的非钙化 DCIS具有更高的升级率(27%)。LEE等[30]研究提出超声肿块型、MG无微钙化、无粉刺坏死与低级别DCIS显著相关,是低级别DCIS预测因子,血管生成和导管周围血管密度增加是DCIS 升级的重要因素。

       超声可提供病灶的内部结构与弹性功能信息,降低非钙化DCIS漏诊率,但对表现为非肿块的DCIS准确评估尚存在挑战。相信未来将SWE弹性参数、MRI多参数特征及影像组学联合,建立DCIS侵袭性预测模型,同时探索超声特征与肿瘤微环境(如淋巴血管浸润)的相关性,有望为实现DCIS精准风险分层提供影像生物学依据。

2.3 乳腺MRI

       MRI具有高分辨率、三维成像优势,在评估DCIS病灶范围、多中心病灶方面敏感度更高,可提供肿瘤血流代谢信息,如弥散加权成像(diffusion weighted imaging, DWI)、定量动态增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)联合超快MRI等提供功能信息。DWI通过观察细胞外水分子的流动性,提供有关乳腺病变微观结构信息。通过DWI计算获得的表观扩散系数(apparent diffusion coefficient, ADC)值在DCIS上相较于正常腺体低,但稍高于浸润性癌,推断DWI在预测DCIS升级上有诊断优势[6, 14, 36];DCE-MRI通过静脉注射对比剂后观察其流入、分布、流出情况,反映病变血管分布、细胞密度或代谢活动的异质性,获得的MRI定量参数(如容积转移常数)、时间-信号曲线(time intensity curve, TIC)类型及半定量参数(如最大增强斜率)等对DCIS诊断与治疗复发风险评估提供潜在价值[12, 37]

       在MRI上,DCIS强化类型有肿块或非肿块强化(non-mass contrast enhancement, NME),NME多表现节段分布,内部强化多为不均匀或簇环状强化,可能由于是血管和基底膜的渗透性使得对比剂聚集在导管内。已有学者将BI-RADS规范报告中4类病变进一步细分为4A(2%<恶性风险≤10%)、4B(10%<恶性风险≤50%)和4C(50%<恶性风险<95%)[38],近期研究表明,DCIS多被评估为BI-RADS 4类或4B~4C亚类,且以TIC Ⅱ型(平台型)为主,表现为Ⅲ型(廓清型)时提示高级别DCIS或DCISM可能性大[36]。MRI特征与DCIS异质性及其预后相关,且MRI显示DCIS级别可能会更高。

       DWI和ADC在DCIS风险分层上也提供丰富的功能信息。LEE等[19]指出最大ADC值在DCIS风险分层升级中起到重要作用,ADCmax值不超过1.19×10-3 mm2/s是DCIS风险升高的独立预测因子。DCISM与肿瘤大小、簇环状强化、节段分布、ADCmean<1.3×10-3 mm2/s显著相关[39]。既往研究多将ADCmean值视为最常用的定量参数,但有学者认为ADCmin值在预测DCISM有重要参考价值,周晓平等[6]首次提出SHAP分析表达联合模型可解释性,发现病灶最长径、Ki-67指数和ADCmin在对预测DCISM有显著意义。ADCmin是指水分子扩散最明显受限的区域,也是肿瘤细胞增殖最活跃的区域,与肿瘤的恶性程度相关,研究表明ADCmin值≤0.86×10-3 mm2/s时,DCIS发生微浸润的概率增高,阳性预测值达66.3%。

       MRI可检测多中心/多灶性病变,已成为DCIS精准诊疗宝贵补充工具,通过ADC来量化分析细胞外基质密度、TIC提供血流动力学信息,可为预测DCISM病变提供重要影像参考。MRI与MG、超声等多模态影像技术联合有助于显示DCIS与浸润性癌的相对特征性表现,但通过主观语义评估来量化特征尚缺乏客观性和准确性,在DCIS精准风险分层、优化治疗方案和个体化评估方面仍面临挑战。通过影像学与AI模型联合的深层语义分析具有重要临床应用潜力。

3 AI在DCIS诊疗中的应用

       随着AI技术的不断发展,影像组学及DL为实现精准医疗提供了新思路,从影像图像中高通量的自动提取特征,有助于挖掘疾病潜在的信息进行预后预测评估。影像组学的统计分析方法包括:(1)图像采集与获取;(2)分割感兴趣区;(3)组学特征提取;(4)有价值的特征筛选、建立模型与模型评估[40]。目前,国内外许多学者针对乳腺DCIS升级、比较评估浸润成分的预测性能,采用多模态影像组学的方法进行大量图像分析和特征量化研究[10, 14, 41]。DL神经网络的原生特征空间能全自动识别原始数据中重要特征与预测任务的相关性,通过特征转换、降维、激活函数等步骤使预测任务更高效准确,能够自主预测高级别DCIS病变[42]

3.1 影像组学及DL在DCIS升级预测及风险分层研究

       一项700例较大样本研究[41]发现,采用组学特征联合MG钙化的机器学习模型有助于预测DCIS的升级,联合模型预测性能优于单独使用临床标准。基于多参数超声的组学特征分析病变形态、硬度、新生血管结构和灌注信息,发现病灶直径大于2 cm、向心性强化、SWE的最大弹性值(≥65.2 kPa)是DCIS浸润的独立预测因素[43]。姜原等[44]通过分析乳腺癌瘤内及瘤周DCE-MRI早期的组学特征而提取包括一阶特征、纹理特征等4个参数,发现瘤周模型对DCIS与浸润癌鉴别诊断评估具有参考价值。基于349个病灶特征训练的支持向量机模型,通过乳腺MRI结合影像组学、DL方法可为术前预测DCIS侵袭性成分提供无创手段,有助于评估患者的DCIS风险分层[45]

       WU等[14]选取DCE早期和延迟序列提取的8个特征针对NME病灶进行分析,在区分DCISM与纯DCIS方面取得了比临床模型更好的性能。KIM等[12]采用超快MRI联合CE-T1WI、T2WI组学发现浸润性DCIS组具有更大的肿瘤体积,影像组学预测效能与超快MRI相当。HONG等[11]提出基于DCE、DWI、ADCs序列的组学评分模型能有效对不同核级别DCIS进行风险分层,尽可能避免低级别DCIS的过度诊疗,训练集、内部及外部验证集曲线下面积(area under the curve, AUC)均较高(分别为0.945、0.844、0.839),DWI和ADC特征更具优势。此外,ZHU等[46]对349例DCIS超声数据采用ResNet50的XGBoost分类器方法建立的DL模型在肿瘤轮廓自动识别方面具有优势,联合临床影像特征后的DL模型有助于预测DCIS低级别病灶(AUC为0.72)。MAYFIELD等[42]使用术前 DCE-MRI卷积神经网络及递归神经网络算法发现病变独特的动态特征空间和像素梯度信息,提高了对升级为侵袭性的DCIS病变的预测AUC(0.73)。

3.2 影像组学在DCIS保乳术中的研究

       目前,早期乳腺癌一般采取手术治疗,是减少局部复发的标准方法,已有一些学者利用多序列MRI特征及相关纹理分析、组学分析预测DCIS的治疗及预后[12, 16, 47]。BAE等[16]进一步发现除病灶较大、非肿块强化外,显著的BPE、多灶性病变是独立预测因素(P=0.023和0.001),明确这些MRI特征有助于降低BCS的再手术率。通过多序列MRI主成分分析和影像组学特征量化肿瘤间和肿瘤内异质能够有效预测DCIS的浸润性成分和乳腺癌复发风险,在指导个性化诊疗方面有较大潜力[48, 49]。其中,IDC内成分的术前预测对于保乳手术计划至关重要,术前MRI检查通过描述额外的恶性肿瘤语义特征有助于改善DCIS患者的手术计划和结局[50, 51, 52],并且与符合BCS条件患者的手术切缘阳性风险较低相关。XU等[47]发现浸润性乳腺癌的瘤周影像组学特征包含预测导管内成分的有用信息,可能是为BCS前个性化治疗提供一个有前景的非侵入性方法。

       基于影像组学和DL,联合MG微钙化、超声弹性参数提取特征及采用MRI多序列构建模型,可以有效预测DCISM风险;此外,通过MRI对病灶瘤内、瘤周的主成分分析有助于指导保乳手术切缘规划。然而,图像采集、特征提取的稳定性(如DWI不同b值)及提取瘤周特征尚未统一,限制了模型泛化性。未来研究将聚焦以下几点,具体包括:(1)动态组学模型标准化过程;准确的空间描述病变,使用DL模型消除分割偏倚;(2)可解释性升级,采用SHAP分析量化多模态特征贡献度;(3)精准防治分层,低级别DCIS主动监测,DCISM基于瘤周特征预测分子分型。未来前瞻性联合多模态影像任务将促进DCIS诊疗从形态评估深入到肿瘤生物学行为的预测。

4 小结与展望

       综上所述,目前在DCIS临床中的多模态影像学主要是MG、超声和MRI,三者各具优势,联合诊断能够提高准确率,但在个性化临床治疗决策及规划制定方面尚显不足。AI技术中的影像组学和DL具有高效性和精准性优势,影像组学在DCIS风险分层及预后预测方面发挥重要作用,能够为临床诊疗决策提供参考。针对DCIS异质性分析和肿瘤微环境分析选择最佳的解释算法和最合适的影像技术仍具有争议,且对于DCIS多表现为NME的MRI特征描述研究不如肿块强化病灶深入。今后,根据临床个性化精准诊疗需求,基于AI的多模态、多任务和新算法的研究方面潜力巨大,在乳腺DCIS术前预测升级及保乳手术方面的应用价值和前景值得关注。

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
CHEN S M, CAO Z, PRETTNER K, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050[J]. JAMA Oncol, 2023, 9(4): 465-472. DOI: 10.1001/jamaoncol.2022.7826.
[3]
BUCHHEIT J T, SCHACHT D, KULKARNI S A. Update on management of ductal carcinoma in situ[J]. Clin Breast Cancer, 2024, 24(4): 292-300. DOI: 10.1016/j.clbc.2023.12.010.
[4]
KATAYAMA A, TOSS M S, PARKIN M, et al. Atypia in breast pathology: what pathologists need to know[J]. Pathology, 2022, 54(1): 20-31. DOI: 10.1016/j.pathol.2021.09.008.
[5]
WANG W N, ZHU W J, DU F, et al. The demographic features, clinicopathological characteristics and cancer-specific outcomes for patients with microinvasive breast cancer: a SEER database analysis[J]. Sci Rep, 2017, 7: 42045. DOI: 10.1038/srep42045.
[6]
周晓平, 杨蔚, 尹清云, 等. 乳腺X线及MRI特征联合临床病理预测乳腺导管原位癌伴微浸润[J]. 磁共振成像, 2024, 15(5): 102-110, 118. DOI: 10.12015/issn.1674-8034.2024.05.017.
ZHOU X P, YANG W, YIN Q Y, et al. Combining the X-ray and MRI characteristics with the clinical pathology to predict ductal carcinoma in situ with microinvasion of breast[J]. Chin J Magn Reson Imag, 2024, 15(5): 102-110, 118. DOI: 10.12015/issn.1674-8034.2024.05.017.
[7]
HUA B, YANG G, AN Y, et al. Clinical and imaging characteristics of contrast-enhanced mammography and MRI to distinguish microinvasive carcinoma from ductal carcinoma in situ[J]. Acad Radiol, 2024, 31(11): 4299-4308. DOI: 10.1016/j.acra.2024.04.041.
[8]
SHIN H J, CHOI W J, PARK S Y, et al. Prediction of underestimation using contrast-enhanced spectral mammography in patients diagnosed as ductal carcinoma in situ on preoperative core biopsy[J/OL]. Clin Breast Cancer, 2022, 22(3): e374-e386 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/34776365/. DOI: 10.1016/j.clbc.2021.10.004.
[9]
LI J K, WANG H F, HE Y, et al. Ultrasonographic features of ductal carcinoma in situ: analysis of 219 lesions[J]. Gland Surg, 2020, 9(6): 1945-1954. DOI: 10.21037/gs-20-428.
[10]
ZHANG H, ZHAO T, DING J Y, et al. Differentiation between invasive ductal carcinoma and ductal carcinoma in situ by combining intratumoral and peritumoral ultrasound radiomics[J/OL]. Biomed Eng Online, 2024, 23(1): 117 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39574126/. DOI: 10.1186/s12938-024-01315-y.
[11]
HONG M P, FAN S J, YU Z X, et al. Evaluating upstaging in ductal carcinoma in situ using preoperative MRI-based radiomics[J]. J Magn Reson Imaging, 2023, 58(2): 454-463. DOI: 10.1002/jmri.28539.
[12]
KIM M Y, YOEN H, JI H, et al. Ultrafast MRI and T1 and T2 radiomics for predicting invasive components in ductal carcinoma in situ diagnosed with percutaneous needle biopsy[J]. Korean J Radiol, 2023, 24(12): 1190-1199. DOI: 10.3348/kjr.2023.0208.
[13]
MAGNONI F, BIANCHI B, CORSO G, et al. Ductal carcinoma in situ (DCIS) and microinvasive DCIS: role of surgery in early diagnosis of breast cancer[J/OL]. Healthcare, 2023, 11(9): 1324 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/37174866/. DOI: 10.3390/healthcare11091324.
[14]
WU Z J, LIN Q, WANG H B, et al. An MRI-based radiomics nomogram to distinguish ductal carcinoma in situ with microinvasion from ductal carcinoma in situ of breast cancer[J/OL]. Acad Radiol, 2023, 30(Suppl 2): S71-S81 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/37211478/. DOI: 10.1016/j.acra.2023.03.038.
[15]
BALAC N, TUNGATE R M, JEONG Y J, et al. Is palpable DCIS more aggressive than screen-detected DCIS?[J/OL]. Surg Open Sci, 2022, 11: 83-87 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36589700/. DOI: 10.1016/j.sopen.2022.12.002.
[16]
BAE M S, BERNARD-DAVILA B, SUNG J S, et al. Preoperative breast MRI features associated with positive or close margins in breast-conserving surgery[J/OL]. Eur J Radiol, 2019, 117: 171-177 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/31307644/. DOI: 10.1016/j.ejrad.2019.06.011.
[17]
DHAK S, BALISKI C, BAKOS B. Factors influencing suboptimal pathologic margins and re-excision following breast conserving surgery for ductal carcinoma in situ[J]. Am J Surg, 2023, 225(5): 866-870. DOI: 10.1016/j.amjsurg.2023.02.025.
[18]
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
The Society of Breast Cancer China AntiCancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association(2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[19]
LEE S A, LEE Y, RYU H S, et al. Diffusion-weighted breast MRI in prediction of upstaging in women with biopsy-proven ductal carcinoma in situ[J/OL]. Radiology, 2022, 305(1): E60 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36154288/. DOI: 10.1148/radiol.229018.
[20]
NICOSIA L, BOZZINI A C, PENCO S, et al. A model to predict upstaging to invasive carcinoma in patients preoperatively diagnosed with low-grade ductal carcinoma in situ of the breast[J/OL]. Cancers, 2022, 14(2): 370 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/35053533/. DOI: 10.3390/cancers14020370.
[21]
SCHMITZ R S J M, VAN DEN BELT-DUSEBOUT A W, CLEMENTS K, et al. Association of DCIS size and margin status with risk of developing breast cancer post-treatment: multinational, pooled cohort study[J/OL]. BMJ, 2023, 383: e076022 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/37903527/. DOI: 10.1136/bmj-2023-076022.
[22]
BARREAU B, DE MASCAREL I, FEUGA C, et al. Mammography of ductal carcinoma in situ of the breast: review of 909 cases with radiographic-pathologic correlations[J]. Eur J Radiol, 2005, 54(1): 55-61. DOI: 10.1016/j.ejrad.2004.11.019.
[23]
VAN LEEUWEN M M, DOYLE S, VAN DEN BELT-DUSEBOUT A W, et al. Clinicopathological and prognostic value of calcification morphology descriptors in ductal carcinoma in situ of the breast: a systematic review and meta-analysis[J/OL]. Insights Imaging, 2023, 14(1): 213 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38051355/. DOI: 10.1186/s13244-023-01529-z.
[24]
KIM G, MIKHAEL P G, OSENI T O, et al. Ductal carcinoma in situ on digital mammography versus digital breast tomosynthesis: rates and predictors of pathologic upgrade[J]. Eur Radiol, 2020, 30(11): 6089-6098. DOI: 10.1007/s00330-020-07021-2.
[25]
NISSAN N, COMSTOCK C E, SEVILIMEDU V, et al. Diagnostic accuracy of screening contrast-enhanced mammography for women with extremely dense breasts at increased risk of breast cancer[J/OL]. Radiology, 2024, 313(1): e232580 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39352285/. DOI: 10.1148/radiol.232580.
[26]
陈宇思, 张士德, 赵立峰, 等. 乳腺X线摄影BI-RADS 4级可疑恶性微钙化的风险分层评估[J]. 放射学实践, 2023, 38(7): 905-909. DOI: 10.13609/j.cnki.1000-0313.2023.07.016.
CHEN Y S, ZHANG S D, ZHAO L F, et al. Risk stratification evaluation of suspicious malignant microcalcifications in BI-RADS category 4 of mammography[J]. Radiol Pract, 2023, 38(7): 905-909. DOI: 10.13609/j.cnki.1000-0313.2023.07.016.
[27]
LOHITVISATE W, KAEORAT C, KWANKUA A. Mammography of suspicious calcifications among ductal carcinoma in situ and benign breast disease[J/OL]. SA J Radiol, 2024, 28(1): 2852 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38840823/. DOI: 10.4102/sajr.v28i1.2852.
[28]
SHAABAN A M, HILTON B, CLEMENTS K, et al. The presentation, management and outcome of patients with ductal carcinoma in situ (DCIS) with microinvasion (invasion ≤1 mm in size)-results from the UK Sloane Project[J]. Br J Cancer, 2022, 127(12): 2125-2132. DOI: 10.1038/s41416-022-01983-4.
[29]
AVDAN ASLAN A, GÜLTEKIN S, ESENDAĞLI YILMAZ G, et al. Is there any association between mammographic features of microcalcifications and breast cancer subtypes in ductal carcinoma in situ?[J]. Acad Radiol, 2021, 28(7): 963-968. DOI: 10.1016/j.acra.2020.05.032.
[30]
LEE S E, KIM G R, HAN K, et al. US, mammography, and histopathologic evaluation to identify low nuclear grade ductal carcinoma in situ[J/OL]. Radiology, 2022, 303(3): E42 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/35604844/. DOI: 10.1148/radiol.229011.
[31]
SIDERIS S N, FALKNER N, PORTER G. The imaging appearances of non-calcified ductal carcinoma in situ: a pictorial essay[J]. J Med Imaging Radiat Oncol, 2023, 67(6): 647-652. DOI: 10.1111/1754-9485.13558.
[32]
LEE W K, CHUNG J, CHA E S, et al. Digital breast tomosynthesis and breast ultrasound: Additional roles in dense breasts with category 0 at conventional digital mammography[J]. Eur J Radiol, 2016, 85(1): 291-296. DOI: 10.1016/j.ejrad.2015.09.026.
[33]
SU X H, LIN Q, CUI C X, et al. Non-calcified ductal carcinoma in situ of the breast: comparison of diagnostic accuracy of digital breast tomosynthesis, digital mammography, and ultrasonography[J]. Breast Cancer, 2017, 24(4): 562-570. DOI: 10.1007/s12282-016-0739-7.
[34]
CHEN Y L, GAO Y, CHANG C, et al. Ultrasound shear wave elastography of breast lesions: correlation of anisotropy with clinical and histopathological findings[J/OL]. Cancer Imaging, 2018, 18(1): 11 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/29622044/. DOI: 10.1186/s40644-018-0144-x.
[35]
KOMARLA R, GILLILAND L, PIRANER M, et al. Imaging and pathologic features of non-calcified ductal carcinoma in situ: can sonography predict upgrade?[J/OL]. Br J Radiol, 2022, 95(1130): 20211013 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/34870448/. DOI: 10.1259/bjr.20211013.
[36]
COZZI A, DI LEO G, HOUSSAMI N, et al. Preoperative breast MRI positively impacts surgical outcomes of needle biopsy-diagnosed pure DCIS: a patient-matched analysis from the MIPA study[J]. Eur Radiol, 2024, 34(6): 3970-3980. DOI: 10.1007/s00330-023-10409-5.
[37]
JAVID S H, KAZEROUNI A S, HIPPE D S, et al. Preoperative MRI to predict upstaging of DCIS to invasive cancer at surgery[J/OL]. Ann Surg Oncol, 2025 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39873851/. DOI: 10.1245/s10434-024-16837-x.
[38]
STRIGEL R M, BURNSIDE E S, ELEZABY M, et al. Utility of BI-RADS assessment category 4 subdivisions for screening breast MRI[J]. AJR Am J Roentgenol, 2017, 208(6): 1392-1399. DOI: 10.2214/AJR.16.16730.
[39]
CHOU S S, ROMANOFF J, LEHMAN C D, et al. Preoperative breast MRI for newly diagnosed ductal carcinoma in situ: imaging features and performance in a multicenter setting (ECOG-ACRIN E4112 trial)[J/OL]. Radiology, 2021, 301(1): E381 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/34543146/. DOI: 10.1148/radiol.2021219016.
[40]
RIZZO V, CICCIARELLI F, GALATI F, et al. Could breast multiparametric MRI discriminate between pure ductal carcinoma in situ and microinvasive carcinoma?[J]. Acta Radiol, 2024, 65(6): 565-574. DOI: 10.1177/02841851231225807.
[41]
HOU R, GRIMM L J, MAZUROWSKI M A, et al. Prediction of upstaging in ductal carcinoma in situ based on mammographic radiomic features[J]. Radiology, 2022, 303(1): 54-62. DOI: 10.1148/radiol.210407.
[42]
MAYFIELD J D, ATAYA D, ABDALAH M, et al. Presurgical upgrade prediction of DCIS to invasive ductal carcinoma using time-dependent deep learning models with DCE MRI[J/OL]. Radiol Artif Intell, 2024, 6(5): e230348 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38900042/. DOI: 10.1148/ryai.230348.
[43]
NIU Q H, LI H, DU L F, et al. Development of a Multi-Parametric ultrasonography nomogram for prediction of invasiveness in ductal carcinoma in situ[J/OL]. Eur J Radiol, 2024, 175: 111415 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38471320/. DOI: 10.1016/j.ejrad.2024.111415.
[44]
姜原, 程元甲, 郭丽, 等. 瘤内及瘤周动态增强MRI影像组学特征鉴别乳腺原位癌与浸润性癌的可行性研究[J]. 中华放射学杂志, 2022, 56(9): 976-981. DOI: 10.3760/cma.j.cn112149-20211222-01130.
JIANG Y, CHENG Y J, GUO L, et al. A feasibility study of classification between breast carcinoma in situ and invasive carcinoma using intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI[J]. Chin J Radiol, 2022, 56(9): 976-981. DOI: 10.3760/cma.j.cn112149-20211222-01130.
[45]
LEE H J, PARK J H, NGUYEN A T, et al. Prediction of the histologic upgrade of ductal carcinoma in situ using a combined radiomics and machine learning approach based on breast dynamic contrast-enhanced magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 1032809 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36408141/. DOI: 10.3389/fonc.2022.1032809.
[46]
ZHU M, KUANG Y L, JIANG Z K, et al. Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma in situ[J]. Gland Surg, 2024, 13(4): 512-527. DOI: 10.21037/gs-23-417.
[47]
XU H, LIU J K, CHEN Z, et al. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer[J]. Eur Radiol, 2022, 32(7): 4845-4856. DOI: 10.1007/s00330-022-08539-3.
[48]
LUO H B, ZHAO S X, YANG W L, et al. Preoperative prediction of extensive intraductal component in invasive breast cancer based on intra- and peri-tumoral heterogeneity in high-resolution ultrafast DCE-MRI[J/OL]. Sci Rep, 2024, 14(1): 17396 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39075278/. DOI: 10.1038/s41598-024-68601-6.
[49]
YOON G Y, CHOI W J, KIM H H, et al. Surgical outcomes for ductal carcinoma in situ: impact of preoperative MRI[J]. Radiology, 2020, 295(2): 296-303. DOI: 10.1148/radiol.2020191535.
[50]
ZHAO M R, MA W J, SONG X C, et al. Feasibility analysis of magnetic resonance imaging-based radiomics features for preoperative prediction of nuclear grading of ductal carcinoma in situ[J]. Gland Surg, 2023, 12(9): 1209-1223. DOI: 10.21037/gs-23-132.
[51]
SATAKE H, KINOSHITA F, ISHIGAKI S, et al. Predictive performance of radiomic features extracted from breast MR imaging in postoperative upgrading of ductal carcinoma in situ to invasive carcinoma[J/OL]. Magn Reson Med Sci, 2024 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38749758/. DOI: 10.2463/mrms.mp.2023-0168.
[52]
ALAEIKHANEHSHIR S, VOETS M M, VAN DUIJNHOVEN F H, et al. Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials[J/OL]. Cancer Imaging, 2024, 24(1): 48 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38576031/. DOI: 10.1186/s40644-024-00691-x.

上一篇 磁共振成像在结缔组织病相关间质性肺病中的应用现状
下一篇 酰胺质子转移成像在乳腺癌诊疗中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2