分享:
分享到微信朋友圈
X
综述
磁共振成像技术在肝纤维化分级诊断中的研究进展
包媛媛 潘燚琪 麦筱莉

Cite this article as: BAO Y Y, PAN Y Q, MAI X L. Progress on the role of magnetic resonance imaging techniques in the staged diagnosis of hepatic fibrosis[J]. Chin J Magn Reson Imaging, 2025, 16(3): 196-200.本文引用格式:包媛媛, 潘燚琪, 麦筱莉. 磁共振成像技术在肝纤维化分级诊断中的研究进展[J]. 磁共振成像, 2025, 16(3): 196-200. DOI:10.12015/issn.1674-8034.2025.03.033.


[摘要] 肝纤维化(hepatic fibrosis, HF)是肝细胞对组织慢性损伤的修复反应过程,是多种肝病发展成为肝硬化的重要阶段之一。早期HF是一种可逆的病理生理过程,HF早期精准诊断有利于其治疗,改善其预后。由于当前检测手段中肝穿刺活检存在局限性,且无法进行连续检查,而MRI技术为无创性技术,因此在HF诊断中发挥着越来越重要的作用。本文就磁共振弹性成像等常规诊断技术、基于自旋锁相的大分子质子分数映射等新技术,以及血氧水平依赖功能MRI等技术在HF诊断中的新应用进行综述,旨在为未来通过联合多种序列,发挥多种序列优势,提高HF早期诊断能力提供参考,为临床HF诊疗提供更精确的影像支持。
[Abstract] Hepatic fibrosis (HF) is a reparative response of hepatocytes to chronic tissue injury and represents a critical stage in the progression of various liver diseases toward cirrhosis. Early HF is a reversible pathophysiological process, and timely, accurate diagnosis is essential for effective treatment and improved prognosis. Due to the limitations of liver biopsy in current detection methods and the inability to perform continuous examination, magnetic resonance imaging technology, as a non-invasive technique, plays an increasingly important role in the diagnosis of HF. This paper reviews the new applications of conventional diagnostic techniques such as magnetic resonance elastography (MRE), novel magnetic resonance imaging (MRI) techniques based on spin-lock phase, and blood oxygen level dependent (BOLD) functional MRI in the diagnosis of HF. It aims to provide a reference for future efforts to improve the early diagnostic capabilities of HF by combining multiple sequences and leveraging their respective advantages, and to offer more precise imaging support for the clinical diagnosis and treatment of HF.
[关键词] 肝纤维化;肝硬化;肝铁沉积;磁共振成像;分期诊断
[Keywords] liver fibrosis;cirrhosis;hepatic iron deposition;magnetic resonance imaging;staged diagnosis

包媛媛 1   潘燚琪 2   麦筱莉 1, 2*  

1 南京中医药大学鼓楼临床医学院医学影像科,南京 210008

2 南京大学医学院附属鼓楼医院医学影像科,南京 210008

通信作者:麦筱莉,E-mail: maixl@nju.edu.cn

作者贡献声明:麦筱莉设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;包媛媛起草和撰写稿件,获取、分析和解释本研究的文件;潘燚琪获取、分析本研究中的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82472048
收稿日期:2024-12-12
接受日期:2025-03-07
中图分类号:R445.2  R657.31 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.033
本文引用格式:包媛媛, 潘燚琪, 麦筱莉. 磁共振成像技术在肝纤维化分级诊断中的研究进展[J]. 磁共振成像, 2025, 16(3): 196-200. DOI:10.12015/issn.1674-8034.2025.03.033.

0 引言

       肝纤维化(hepatic fibrosis, HF)是全球的健康挑战之一[1]。病毒性肝炎、酒精和药物等因素引起的慢性损伤会损害肝细胞,从而诱导炎性细胞浸润,导致胶原蛋白和细胞外基质(extracellular matrix, ECM)的过度积累,并破坏肝脏结构和功能,最终导致肝细胞的损失和不可逆的肝脏瘢痕形成[2]。纤维化是一个动态的过程,在结缔组织积累过程中,ECM在精细调节的过程中不断降解和重塑,最终可能导致肝硬化或恢复正常的肝脏组织和功能[3]。无论病因如何,纤维化是所有肝脏弥漫性实质性疾病的终点,在评估慢性肝病患者肝脏的特异性发病风险和死亡风险时,HF的发展是重要的预后因素之一[4, 5]。由于HF是一种可逆的病理生理过程[6],因此早期检测出HF对于后续治疗决策至关重要。肝活检是目前诊断HF的金标准,然而有创操作可能导致并发症,同时存在采样误差的风险,对HF病程进展的连续评估也存在局限性[7],因此近年来人们对HF的无创诊断和分期展开了诸多研究,如血清学检查、肝功能检查及影像学检查等[8, 9]。但血清学检测的特异性及准确性有限,单独使用时,难以精确判断HF的分期,易受其他因素影响,如炎症、代谢紊乱等导致结果出现偏差[10]。此外超声弹性成像技术虽对中晚期HF(F2~F4)和肝硬化(F4)有较高的诊断准确性,但由于肥胖、腹水、肋间隙狭窄等因素,会影响检测结果的准确性,且对于早期HF(F1期)的诊断效能相对较低[11]

       MRI技术具有操作简单、可重复性较高等优势,在HF诊断领域迅速崛起,成为研究的热点。通过多种成像序列和技术,如磁共振弹性成像(magnetic resonance elastography, MRE)、扩散加权成像(diffusion-weighted imaging, DWI)、定量磁化率成像(quantitative susceptibility mapping, QSM)等,从不同角度反映肝脏的病理生理变化,为HF的无创诊断和分期提供了新的思路。然而,尽管已有研究表明这些技术在诊断HF方面具有较高的准确性和敏感性,但目前仍存在不同MRI技术之间的联合应用尚未完全标准化、各技术在早期HF诊断中的敏感性和特异性仍需进一步优化等尚待解决的问题。因此本文全面综述MRI技术在HF诊断中的应用,通过梳理不同技术间的优势与不足,明确其在HF诊断中的价值和局限,旨在推动该领域进一步发展,助力寻找更有效的早期诊断方法,为临床诊疗提供更有力的影像支持,改善HF患者的预后。

1 MRE

       MRE是一种基于相位对比的MRI技术[12],其通过对腹部施加低频振动分析横波在肝脏中的传播,从而测量肝脏硬度[13],已有研究表明MRE可以作为HF活检诊断及分期的替代方法[14],不仅能够识别中晚期HF(F2~F4),还能够识别晚期HF(F3~F4)[15],被认为是HF检测和分期最准确的无创技术。MRE序列主要包括梯度回波(gradient echo, GRE)、自旋回波(spin echo, SE)以及自旋平面回波(spin-echo echo-planar imaging, SE-EPI),图像后处理方法包括二维(2D)和三维(3D)演算法[16]。一项荟萃分析[17]表明,GRE-MRE-2D和SE-EPI-MRE-2D对HF各阶段的检测均显示出较高的敏感性和特异性,效能差异并无统计学意义,当GRE-MRE效果不好时,应使用SE-EPI-MRE进行检测。SGIER等[18]研究显示,在3.0 T时使用SE-SEI序列能够较好识别轻度铁过载患者的HF,对于中晚期(F2~F4)及晚期(F3~F4)程度的HF患者亦具有较好诊断性能。此外有研究人员评估了SE-MRE-2D和SE-EPI MRE-2D技术的成功率及刚度测量的可靠性,研究结果表明在轻度和中度铁过载肝脏中,SE MRE和SE-EPI MRE均可提供可靠的肝脏硬度测量,在严重的铁过载肝脏中,SE MRE检测效果比SE-EPI MRE好[19]

       尽管MRE能精准测量肝脏硬度,且成像序列与处理方式多样,在诊断及分期方面较为敏感,但由于其需要添加额外仪器,后处理较为复杂,对操作人员的专业技能和设备要求较高,与其他高分辨率的成像技术相比,MRE的分辨率相对较低,可能会影响对一些细微病变的观察和诊断的准确性,且检测价格昂贵,增加了患者的经济负担,因此无法广泛推广使用。

2 DWI及相关序列

       DWI是一种根据组织中水分子迁移率的差异来评估细胞外/血管外空间曲折性和细胞膜密度的技术,通过使用多个b值可以量化表观扩散系数(apparent diffusion coefficient, ADC)[20],是最广泛应用的功能MRI序列,目前已被开发用于HF的分期,但对于b值组合,目前没有广泛接受的值。WANG等[21]建议在临床上将b值的范围从200~800 s/mm2扩大到200~1000 s/mm2。但与MRE相比,基于ADC值的HF分期由于其敏感性和特异性不足,区分HF的能力有限[22],KROMREY等[23]提出了在b=200及1500 s/mm2时计算位移ADC(sADC),并将其转换为基于DWI的虚拟剪切模量(mDiff),研究结果表明由sADC产生的剪切模量可以较好地评估纤维化的分期,对于中晚期HF(F2~F4)具有较高的准确性,其分期效果与MRE高度一致,有能力替代MRE成为非侵入性HF分期的潜在评价方式。

       此外,当前能够诊断HF的DWI模型中,除了通过常规使用的单指数模型获得ADC值外,还可通过双指数模型,即体素内非相关运动DWI(intravoxel incoherent motion-DWI, IVIM-DWI)获得ADC值,其主要通过扩散系数对肝脏疾病进行诊断,能够改善传统DWI在诊断中的不足之处[24, 25]。LI等[26]研究表明通过密集采样较低b值能够提高IVIM的诊断性能,而灌注分数(Pf)在区分健康肝脏和纤维化肝脏方面具有最佳的诊断价值。尽管IVIM是一种无创检测和HF分期的有效工具,但仍需进行优化和标准化从而进一步提高其在临床实践中的诊断准确性[27]。JIANG等[28]在同一队列中比较了几种先进的DWI模型,其中连续时间随机游走模型(continuous time random walk, CTRW)对HF的诊断性能优于其他模型,能够较好检测出晚期HF。

       尽管DWI可在细胞及分子水平上提供组织信息,有助于发现HF早期的微观结构改变,且检查过程相对标准化,有利于对患者进行长期随访和病情监测,观察HF的进展或治疗效果。但HF是一个复杂的病理过程,目前尚无统一的最佳b值标准,不同研究和设备可能需要进行相应的调整和优化,诊断特异性不足,在HF早期,肝脏组织的微观结构改变可能相对轻微,DWI检测到的水分子扩散变化也不明显,导致其对轻度HF的诊断敏感度和准确性相对较低。

3 磁共振定量成像技术

       弛豫时间是组织的固有参数,通常由其物理、生物、化学特性决定,主要包括纵向弛豫时间(T1)及横向弛豫时间(T2),MELONI等[29]研究表明弛豫时间定量技术能够用于肝脏检查中。由于HF的特点是ECM内大分子物质累积,因此影响自由质子的移动可能改变弛豫时间,已有研究表明纵向弛豫时间定量(T1 mapping)和横向弛豫时间定量(T2 mapping)技术能够反映HF的程度[30]。LU等[31]比较了T1 mapping、T2 mapping以及T1ρ在HF模型中的分期效果,发现最敏感和准确的分期方法是T1 mapping,能够较好区分早期纤维化(F1~F2)和晚期纤维化(F3~F4)。WANG等[32]在注射肝胆特异性对比剂后的不同时间点对T1 mapping进行直方图分析,并比较其定量直方图的参数,结果显示在肝胆期20 min时,T1 mapping的熵有助于预测HF的分期。KUPCZYK等[33]根据T1弛豫时间量化ECV,其诊断性能与T1 mapping相似,可以较好评估慢性肝病的严重程度,为HF和肝硬化的无创评估提示了新的方向。BURGIO等[34]在轴向T2WI单次激发快速SE序列上,通过半自动化LSN(Liver Surface Noarity)软件对肝表面结节进行量化,研究结果表明MRI-LSN可用于诊断非酒精性脂肪型肝病(nonalcoholic fatty liver disease, NAFLD)患者晚期的HF,并且具有良好的诊断性能,但此方法无法代替MRE,仅可作为NAFLD患者MRI检查的补充。

       T1ρ是一种定量成像技术,可用于评估和检测软骨完整性、HF、肿瘤及心肌梗死等多种疾病[35]。TAKAYAMA等[36]比较了T1ρ和T2在评估慢性肝病患者HF程度中的作用,发现T1ρ区分晚期HF(F3~F4)和早期HF(F1~F2)的能力最高。LI等[37]进一步比较了T1ρ和二维实时剪切波弹性成像(2D real-time share-wave elastography, 2D SWE),结果表明T1ρ对于F1期的HF诊断性能较好。GUO等[38]联合使用T1ρ及扩散峰度成像(diffusion kurtosis imaging, DKI)中的平均扩散系数(mean diffusion, MD),发现这种联合使用的多参数MRI模型对于早期HF(F1~F2)的诊断效能远高于单独使用某一参数的效果。但由于T1ρ的变化是由HF与炎症活动共同引起的,且炎症活动对T1ρ的影响较大[39],因此在使用T1ρ进行诊断时,应考虑到炎症对其的影响。

4 基于自旋锁相的大分子质子分数映射

       大分子质子分数(macromolecular proton fraction, MPF)在MRI中是描述磁化转移效应的关键参数,表示与水分子进行磁化交换所涉及的固定质子的相对量[40],HF产生的机制在于活化的肝星形细胞受到损伤后分泌ECM蛋白等大分子物质[41],这些大分子物质的变化与MPF的参数密切相关。在此基础之上,HOU等[42]提出了一种基于自旋锁相的MRI大分子质子分数成像方法,称为基于自旋锁相的大分子质子分数映射(macromolecular proton fraction based on spin lock, MPF-SL),其脉冲序列能够使肝脏的MPF在短暂屏气和抑制混杂因素的条件下被量化。一项临床试验中对一位F3期的NAFLD患者进行了肝活检、瞬时弹性成像及MPF-SL的检查,其肝活检结果与MPF-SL结果一致,证实该技术能够通过检测肝脏中大分子的空间分布从而诊断HF[43]。HOU等[44]进一步检测了MPF-SL诊断早期HF的能力,研究结果表明MPF-SL可不受肝铁沉积或脂肪的影响较好地诊断早期HF(F1~F2)。

       由于MPF-SL是一种MRI新技术,尚未进行标准化,且当前研究[44]存在样本量较小等问题,未来仍需进一步优化采集参数和图像分析,并进行更大规模的验证研究,从而评估MPF-SL检测晚期纤维化(F3~F4)的性能。

5 血氧水平依赖性功能MRI

       血氧水平依赖性功能MRI(blood oxygenation level dependent functional MRI, BOLD-fMRI)是以脱氧性血红蛋白为内源性对比剂成像的序列[45],通过改变血液中顺磁性脱氧血红蛋白和逆磁性脱氧血红蛋白的比例,无创地调节横向弛豫率(R2*),从而反映组织氧的生物利用度[46],当前研究中BOLD-fMRI大多用于诊断神经系统相关疾病[47],但已有研究表明该序列可被用来评估肝脏的氧合水平[48]。LIU等[49]在CCL4诱导的兔纤维化模型中对BOLD-fMRI进行全肝直方图分析,结果显示该直方图中的各参数与各期HF均呈显著正相关,其中第75百分位数对HF分期的诊断效能高于其他参数,区分F0与≥F1(F1~F4)、F0~F1与≥F2(F2~F4),F0~F2与≥F3(F3~F4)和F0~F3与≥F4的AUC分别为0.86、0.87、0.87和0.86。ZOU等[50]比较了T1 mapping和BOLD-fMRI对于兔HF的诊断效能,研究结果表明在预测和诊断HF分期进展方面,BOLD成像效果优于T1 mapping。

       尽管BOLD-fMRI通过检测组织内血氧含量变化引起的磁敏感性差异,能够直观反映肝脏组织的氧合状态和微循环情况。但由于呼吸不规律可能使肝脏在成像过程中出现位移,产生伪影,影响对肝脏组织氧代谢信息的准确获取,且肝铁沉积对BODL-fMRI及T1 mapping的准确性有所影响,及存在诊断特异性不足等问题,未来仍需进一步的研究证实该技术在HF成像中的稳定性。

6 QSM

       QSM是用于评估磁化率的MRI新技术,主要依赖于被检测组织中磁场的分布[51],目前广泛用于评估大脑中磁性物质如铁、含铁血黄素和脱氧血红蛋白(顺磁性)以及钙化(抗磁性)的分布情况[52],此外QSM还可用于研究肝脏中肝铁沉积[53]。有研究表明在肝铁浓度测量过程中,对相同梯度回波的MRI数据进行QSM处理可以有效减少脂肪、纤维化等其他病变产生的干扰[54]。QU等[55]对比了不同纤维化阶段患者肝脏磁化率的改变情况,以及使用QSM对HF进行分期的可行性,结果显示基于肝脏的无创QSM有希望准确评估慢性肝病患者的晚期(F3~F4)纤维化,且其诊断准确性与MRE相当。QSM对铁非常敏感,能通过测量组织的磁敏感性来定量评估肝脏铁含量,为HF的诊断和病情评估提供重要信息,有助于了解HF的进展及相关病理生理过程。但QSM需屏气,且屏气持续时间较长,容易出现呼吸伪影而影响对肝脏磁敏感性的准确测量。此外,QSM需要高场强MRI设备和先进的成像技术来保证图像质量和测量准确性,未来仍需进一步的研究提升肝脏QSM的成像效果。

7 总结与展望

       HF是一个动态发展过程,是多种慢性肝病向肝硬化发展的关键阶段,因此早期诊断对于改善预后至关重要。当前诊断HF的方法主要包括血清学检查,肝穿刺活检、超声、CT、MRI等,其中血清学指标易受多种因素干扰,准确性欠佳,肝穿刺活检为有创检查且其存在采样误差和发生并发症的风险,并不适用于连续监测;在HF早期,肝脏形态和功能改变不明显,因此磁共振定量检测技术如MRE、DWI、T1 Mapping、BOLD-fMRI、QSM等凭借其高敏感性,从肝脏硬度、微观结构、组织氧合和磁化率等多方面为早期HF诊断提供依据,帮助医生全面了解病情进展从而有助于选择合适的治疗方案,实时监测HF的变化情况。尽管MRI各序列有一定优势但仍面临技术标准化不足、早期诊断敏感性待提高、易受伪影和肝铁沉积干扰等诸多困难,未来的研究应推动技术标准化、优化成像参数和后处理方法,提高诊断结果的可重复性,并开发先进成像技术和图像处理算法,减少伪影和肝铁沉积的干扰,同时探索多技术联合应用,充分发挥各技术优势,以提高早期HF诊断能力,为临床诊疗提供更为精确的影像支持。

[1]
ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J/OL]. Cells, 2020, 9(4): 875 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7226751/pdf/cells-09-00875.pdf. DOI: 10.3390/cells9040875.
[2]
YANG X, LI Q, LIU W T, et al. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment[J]. Cell Mol Immunol, 2023, 20(6): 583-599. DOI: 10.1038/s41423-023-00983-5.
[3]
DI-IACOVO N, PIERONI S, PIOBBICO D, et al. Liver regeneration and immunity: a tale to tell[J/OL]. Int J Mol Sci, 2023, 24(2): 1176 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9864482/pdf/ijms-24-01176.pdf. DOI: 10.3390/ijms24021176.
[4]
CIARDULLO S, CANNISTRACI R, MURACA E, et al. Liver fibrosis, NT-ProBNP and mortality in patients with MASLD: A population-based cohort study[J]. Nutr Metab Cardiovasc Dis, 2024, 34(4): 963-971. DOI: 10.1016/j.numecd.2023.11.011.
[5]
AJMERA V, CEPIN S, TESFAI K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes[J]. J Hepatol, 2023, 78(3): 471-478. DOI: 10.1016/j.jhep.2022.11.010.
[6]
FOGLIA B, NOVO E, PROTOPAPA F, et al. Hypoxia, hypoxia-inducible factors and liver fibrosis[J/OL]. Cells, 2021, 10(7): 1764 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8305108/pdf/cells-10-01764.pdf. DOI: 10.3390/cells10071764.
[7]
LAI M, AFDHAL N H. Liver fibrosis determination[J]. Gastroenterol Clin North Am, 2019, 48(2): 281-289. DOI: 10.1016/j.gtc.2019.02.002.
[8]
XU X Y, WANG W S, ZHANG Q M, et al. Performance of common imaging techniques vs serum biomarkers in assessing fibrosis in patients with chronic hepatitis B: A systematic review and meta-analysis[J]. World J Clin Cases, 2019, 7(15): 2022-2037. DOI: 10.12998/wjcc.v7.i15.2022.
[9]
BUCKHOLZ A P, BROWN R S. Noninvasive fibrosis testing in chronic liver disease including caveats[J]. Clin Liver Dis, 2023, 27(1): 117-131. DOI: 10.1016/j.cld.2022.08.008.
[10]
ZUO Z B, CUI H Z, WANG M C, et al. Diagnostic of FibroTouch and six serological models in assessing the degree of liver fibrosis among patients with chronic hepatic disease: A single-center retrospective study[J/OL]. PLoS One, 2022, 17(7): e0270512 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9249238/pdf/pone.0270512.pdf. DOI: 10.1371/journal.pone.0270512.
[11]
FANG C, LIM A, SIDHU P S. Ultrasound-based liver elastography in the assessment of fibrosis[J]. Clin Radiol, 2020, 75(11): 822-831. DOI: 10.1016/j.crad.2020.01.005.
[12]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[13]
CUNHA G M, FAN B Y, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2024-12-09]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[14]
PEPIN K M, WELLE C L, GUGLIELMO F F, et al. Magnetic resonance elastography of the liver: everything you need to know to get started[J]. Abdom Radiol, 2022, 47(1): 94-114. DOI: 10.1007/s00261-021-03324-0.
[15]
DUARTE-ROJO A, TAOULI B, LEUNG D H, et al. Imaging-based noninvasive liver disease assessment for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline[J]. Hepatology, 2025, 81(2): 725-748. DOI: 10.1097/HEP.0000000000000852.
[16]
LI J H, VENKATESH S K, YIN M. Advances in magnetic resonance elastography of liver[J]. Magn Reson Imaging Clin N Am, 2020, 28(3): 331-340. DOI: 10.1016/j.mric.2020.03.001.
[17]
KIM Y S, JANG Y N, SONG J S. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis: a meta-analysis[J]. Eur Radiol, 2018, 28(4): 1709-1718. DOI: 10.1007/s00330-017-5149-5.
[18]
SGIER D, STOCKER D, JÜNGST C, et al. Feasibility and performance of spin-echo EPI MR elastography at 3 Tesla for staging hepatic fibrosis in the presence of hepatic iron overload[J]. Abdom Radiol, 2024, 49(11): 3871-3882. DOI: 10.1007/s00261-023-04160-0.
[19]
LIU J J, HUANG M Y, ZHANG Y, et al. Technical success and reliability of magnetic resonance elastography in patients with hepatic iron overload[J]. Acad Radiol, 2024, 31(4): 1326-1335. DOI: 10.1016/j.acra.2023.08.016.
[20]
WU L, SHEN Y, LI F. Non-invasive diagnosis of liver fibrosis: a review of current imaging modalities[J]. Gastroenterol Hepatol, 2020, 43(4): 211-221. DOI: 10.1016/j.gastrohep.2019.11.009.
[21]
WANG J Y, ZHOU X, YAO M R, et al. Comparison and optimization of b value combinations for diffusion-weighted imaging in discriminating hepatic fibrosis[J]. Abdom Radiol, 2024, 49(4): 1113-1121. DOI: 10.1007/s00261-023-04159-7.
[22]
JANG W, JO S, SONG J S, et al. Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis[J]. Abdom Radiol, 2021, 46(8): 3889-3907. DOI: 10.1007/s00261-021-03055-2.
[23]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
[24]
TAO Y Y, ZHOU Y, WANG R, et al. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases[J]. World J Clin Cases, 2020, 8(15): 3164-3176. DOI: 10.12998/wjcc.v8.i15.3164.
[25]
WANG Q, YU G H, QIU J F, et al. Application of intravoxel incoherent motion in clinical liver imaging: a literature review[J]. J Magn Reson Imaging, 2024, 60(2): 417-440. DOI: 10.1002/jmri.29086.
[26]
LI T, CHE-NORDIN N, WÁNG Y X J, et al. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis[J]. Quant Imaging Med Surg, 2019, 9(3): 371-385. DOI: 10.21037/qims.2019.02.11.
[27]
YE Z, WEI Y, CHEN J, et al. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis[J]. World J Gastroenterol, 2020, 26(23): 3304-3317. DOI: 10.3748/wjg.v26.i23.3304.
[28]
JIANG Y L, LI J, ZHANG P F, et al. Staging liver fibrosis with various diffusion-weighted magnetic resonance imaging models[J]. World J Gastroenterol, 2024, 30(9): 1164-1176. DOI: 10.3748/wjg.v30.i9.1164.
[29]
MELONI A, CARNEVALE A, GAIO P, et al. Liver T1 and T2 mapping in a large cohort of healthy subjects: normal ranges and correlation with age and sex[J]. MAGMA, 2024, 37(1): 93-100. DOI: 10.1007/s10334-023-01135-6.
[30]
LUETKENS J A, KLEIN S, TRÄBER F, et al. Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: preclinical results[J]. Radiology, 2018, 288(3): 748-754. DOI: 10.1148/radiol.2018180051.
[31]
LU Y M, WANG Q F, ZHANG T T, et al. Staging liver fibrosis: comparison of native T1 mapping, T2 mapping, and T1ρ: an experimental study in rats with bile duct ligation and carbon tetrachloride at 11.7 T MRI[J]. J Magn Reson Imaging, 2022, 55(2): 507-517. DOI: 10.1002/jmri.27822.
[32]
WANG Q, LIU H F, ZHU Z H, et al. Feasibility of T1 mapping with histogram analysis for the diagnosis and staging of liver fibrosis: Preclinical results[J]. Magn Reson Imaging, 2021, 76: 79-86. DOI: 10.1016/j.mri.2020.11.006.
[33]
KUPCZYK P A, MESROPYAN N, ISAAK A, et al. Quantitative MRI of the liver: evaluation of extracellular volume fraction and other quantitative parameters in comparison to MR elastography for the assessment of hepatopathy[J]. Magn Reson Imaging, 2021, 77: 7-13. DOI: 10.1016/j.mri.2020.12.005.
[34]
BURGIO M D, SARTORIS R, BEAUFRERE A, et al. Liver surface nodularity on non-contrast MRI identifies advanced fibrosis in patients with NAFLD[J]. Eur Radiol, 2022, 32(3): 1781-1791. DOI: 10.1007/s00330-021-08261-6.
[35]
WYATT C R, BARBARA T M, GUIMARAES A R. T1ρ magnetic resonance fingerprinting[J/OL]. NMR Biomed, 2020, 33(5): e4284 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8818303/pdf/nihms-1570899.pdf. DOI: 10.1002/nbm.4284.
[36]
TAKAYAMA Y, NISHIE A, ISHIMATSU K, et al. Diagnostic potential of T1ρ and T2 relaxations in assessing the severity of liver fibrosis and necro-inflammation[J]. Magn Reson Imaging, 2022, 87: 104-112. DOI: 10.1016/j.mri.2022.01.002.
[37]
LI R K, REN X P, YAN F H, et al. Liver fibrosis detection and staging: a comparative study of T1ρ MR imaging and 2D real-time shear-wave elastography[J]. Abdom Radiol, 2018, 43(7): 1713-1722. DOI: 10.1007/s00261-017-1381-3.
[38]
GUO Y W, GUO T T, HUANG C, et al. Combining T1rho and advanced diffusion MRI for noninvasively staging liver fibrosis: an experimental study in rats[J]. Abdom Radiol, 2024, 49(6): 1881-1891. DOI: 10.1007/s00261-024-04327-3.
[39]
XIE S S, QI H X, LI Q, et al. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication[J/OL]. BMC Gastroenterol, 2020, 20(1): 14 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6964054/pdf/12876_2020_Article_1161.pdf. DOI: 10.1186/s12876-020-1161-3.
[40]
SLED J G, PIKE G B. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI[J]. Magn Reson Med, 2001, 46(5): 923-931. DOI: 10.1002/mrm.1278.
[41]
KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
[42]
HOU J, WONG V W, JIANG B Y, et al. Macromolecular proton fraction mapping based on spin-lock magnetic resonance imaging[J]. Magn Reson Med, 2020, 84(6): 3157-3171. DOI: 10.1002/mrm.28362.
[43]
QIAN Y R, WONG V W, HOU J, et al. Inhomogeneous liver fibrosis distribution revealed by macromolecular proton fraction quantification based on spin-lock MRI[J]. Quant Imaging Med Surg, 2022, 12(8): 4341-4345. DOI: 10.21037/qims-22-302.
[44]
HOU J, WONG V W, QIAN Y R, et al. Detecting early-stage liver fibrosis using macromolecular proton fraction mapping based on spin-lock MRI: preliminary observations[J]. J Magn Reson Imaging, 2023, 57(2): 485-492. DOI: 10.1002/jmri.28308.
[45]
LEE D, LE T T, IM G H, et al. Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia[J]. J Cereb Blood Flow Metab, 2022, 42(12): 2270-2286. DOI: 10.1177/0271678X221117008.
[46]
BIONDETTI E, CHO J, LEE H. Cerebral oxygen metabolism from MRI susceptibility[J/OL]. Neuroimage, 2023, 276: 120189 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10335841/pdf/nihms-1912411.pdf. DOI: 10.1016/j.neuroimage.2023.120189.
[47]
HUANG Y L, WEI P H, XU L Z, et al. Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter[J/OL]. Nat Commun, 2023, 14(1): 3414 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10256794/pdf/41467_2023_Article_39067.pdf. DOI: 10.1038/s41467-023-39067-3.
[48]
ZHAN Y F, WU Y H, CHEN J Q. Carbogen gas-challenge BOLD fMRI in assessment of liver hypoxia after portal microcapsules implantation[J/OL]. PLoS One, 2019, 14(11): e0225665 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6881018/pdf/pone.0225665.pdf. DOI: 10.1371/journal.pone.0225665.
[49]
LIU H F, WANG Q, DU Y N, et al. Whole-liver histogram analysis of blood oxygen level-dependent functional magnetic resonance imaging in evaluating hepatic fibrosis[J]. Ann Palliat Med, 2021, 10(3): 2567-2576. DOI: 10.21037/apm-20-1753.
[50]
ZOU L Q, LIU H F, DU Y N, et al. Effect of iron deposition on native T1 mapping and blood oxygen level dependent for the assessment of liver fibrosis in rabbits with carbon tetrachloride intoxication[J]. Acad Radiol, 2023, 30(5): 873-880. DOI: 10.1016/j.acra.2022.06.006.
[51]
DIMOV A V, LI J, NGUYEN T D, et al. QSM throughout the body[J]. J Magn Reson Imaging, 2023, 57(6): 1621-1640. DOI: 10.1002/jmri.28624.
[52]
HARADA T, KUDO K, FUJIMA N, et al. Quantitative susceptibility mapping: basic methods and clinical applications[J]. Radiographics, 2022, 42(4): 1161-1176. DOI: 10.1148/rg.210054.
[53]
VELIKINA J V, ZHAO R Y, BUELO C J, et al. Data adaptive regularization with reference tissue constraints for liver quantitative susceptibility mapping[J]. Magn Reson Med, 2023, 90(2): 385-399. DOI: 10.1002/mrm.29644.
[54]
LI J Q, LIN H M, LIU T, et al. Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration[J]. J Magn Reson Imaging, 2018, 48(4): 1069-1079. DOI: 10.1002/jmri.26019.
[55]
QU Z, YANG S H, XING F, et al. Magnetic resonance quantitative susceptibility mapping in the evaluation of hepatic fibrosis in chronic liver disease: a feasibility study[J]. Quant Imaging Med Surg, 2021, 11(4): 1170-1183. DOI: 10.21037/qims-20-720.

上一篇 磁共振弹性成像在慢性肝脏疾病中的应用进展
下一篇 瘤周影像组学在肝细胞癌研究中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2