分享:
分享到微信朋友圈
X
综述
瘤周影像组学在肝细胞癌研究中的应用进展
王中乾 符天旭 王振平 罗是是

Cite this article as: WANG Z Q, FU T X, WANG Z P, et al. Progress in the application of peritumoral radiomics in hepatocellular carcinoma research[J]. Chin J Magn Reson Imaging, 2025, 16(3): 201-204, 210.本文引用格式:王中乾, 符天旭, 王振平, 等. 瘤周影像组学在肝细胞癌研究中的应用进展[J]. 磁共振成像, 2025, 16(3): 201-204, 210. DOI:10.12015/issn.1674-8034.2025.03.034.


[摘要] 肝细胞癌(hepatocellular carcinoma, HCC)是肝脏最常见的原发恶性肿瘤,其早期无创诊断、个体化治疗、分子标志物、病理分级、复发预防为近年研究热点,影像组学通过高通量提取和分析影像特征,为肿瘤异质性提供了信息,广泛应用于HCC研究领域。既往的研究大多集中于肿瘤本身,随着研究的不断深入,瘤周区域的研究价值逐渐被挖掘。本文综述了瘤周影像组学在HCC的病理分级、微血管侵犯(microvascular invasion, MVI)、分子标志物、早期复发及非手术疗效评估中的应用,阐述了目前的研究进展、存在的挑战及未来的研究方向,为HCC的精准治疗决策提供新的思路。
[Abstract] Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. In recent years, research has focused on early non-invasive diagnosis, personalized treatment, molecular markers, pathological grading, and prevention of recurrence. Radiomics, through high-throughput extraction and analysis of imaging features, provides information on tumor heterogeneity and has been widely applied in HCC research. Previous studies mostly concentrated on the tumor itself, but with the continuous deepening of research, the value of studying the peritumoral region has gradually been recognized. This article reviews the application of peritumoral radiomics in HCC, including its use in pathological grading, microvascular invasion (MVI), molecular markers, early recurrence, and non-surgical treatment efficacy evaluation. It outlines the current progress, existing challenges, and future research directions, offering new insights for the precise treatment decision-making in HCC.
[关键词] 肝细胞癌;瘤周;影像组学;磁共振成像;预后评估
[Keywords] hepatocellular carcinoma;peritumor;radiomics;magnetic resonance imaging;prognosis evaluation

王中乾 1   符天旭 1   王振平 2   罗是是 1*  

1 海南医科大学附属海南医院(海南省人民医院)放射科,海口 570311

2 广东省中医院海南医院放射科,海口 570203

通信作者:罗是是,E-mail: 273497988@qq.com

作者贡献声明:罗是是设计本研究的方案,对稿件重要内容进行了修改,获得了海南省自然科学基金高层次人才项目、海南省重大科技计划项目、海南省临床医学中心建设项目资助;王中乾起草和撰写稿件,获取、分析和解释本综述内容;符天旭、王振平解释本综述内容,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本综述的准确性和诚信。


基金项目: 海南省自然科学基金高层次人才项目 821RC677 海南省重大科技计划项目 ZDKJ2021042 海南省临床医学中心建设项目
收稿日期:2024-12-09
接受日期:2025-02-10
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.03.034
本文引用格式:王中乾, 符天旭, 王振平, 等. 瘤周影像组学在肝细胞癌研究中的应用进展[J]. 磁共振成像, 2025, 16(3): 201-204, 210. DOI:10.12015/issn.1674-8034.2025.03.034.

0 引言

       肝细胞癌(hepatocellular carcinoma, HCC)是最常见的肝脏原发恶性肿瘤,目前已成为全球第六常见恶性肿瘤,位列恶性肿瘤相关死亡原因的第三位[1]。HCC具有高度空间异质性[2],包括肿瘤本身与瘤周区域。瘤周区域即紧连肿瘤微环境(tumor microenvironment, TME)或肿瘤生存环境,表现为不同的基因组和转录组水平,并展现出不同的纤维化、坏死等形态学特征。TME由肿瘤细胞、细胞外基质、血管以及免疫细胞等[3]共同构成复杂的生态系统,促进HCC增殖[4]、细胞上皮间质转换[5]、血管新生[6]与免疫逃逸[7],影响肿瘤的发生发展[8],进而导致肿瘤患者不同的临床治疗及预后结局。影像组学通过高通量提取影像特征,能够评估肉眼无法识别的微环境及肿瘤的病理生理变化,为临床选择科学的治疗方案提供重要依据[9, 10, 11]。以往的研究[12, 13, 14, 15]主要基于HCC瘤内的影像组学特征,近年来研究者逐渐关注瘤周影像组学,并取得了不错的研究成果。本文对瘤周影像组学在HCC的病理分级、微血管侵犯(microvascular invasion, MVI)、分子标志物、早期复发及非手术疗效评估中的应用展开综述,为HCC精准化治疗决策提供新的思路。

1 瘤周影像组学预测HCC病理分级

       病理分级不仅是HCC患者个体化治疗、预测术后复发及疗效评估的基础,也是行肝移植的生物标志物[16]。活检作为目前获取肿瘤病理学信息的唯一方法,其存在侵入性和取样误差等问题,但基于瘤内和瘤周影像组学特征的无创预测方法已显示出较好的临床应用前景。LIU等[17]对265例HCC患者进行了MRI图像分析,将瘤内感兴趣区域(region of interest, ROI)扩大5 mm、10 mm、15 mm以包含瘤周区域,研究结果发现,10 mm瘤周区域影像组学特征建立的预测HCC病理分级模型具有较好的性能,训练集曲线下面积(area under the curve, AUC)为0.87,验证集AUC为0.80,其瘤周区域预测病理分级价值更高可能与该瘤周区域包含更多的病理分级信息有关,进一步研究发现,结合瘤内和最佳瘤周影像组学特征的联合模型预测效能优于仅包含瘤内或瘤周区域的影像组学模型,训练集AUC为0.95,验证集AUC为0.86。然而,基于多模态影像的瘤周影像组学模型用于预测病理分级的研究较少,尚需要大量研究明确哪些图像联合可获得最佳预测效能,期待未来更多研究加入以提高预测准确度,为HCC患者避免不必要的侵入性检查。

2 瘤周影像组学预测HCC MVI

       MVI是指肿瘤细胞进入内皮细胞构成的血管腔,反映了高度侵袭性生物学行为,是术后早期复发和肝内转移的独立危险因素,准确预测MVI可以优化治疗方案并改善患者预后[18, 19]。尽管病理仍是评估MVI的金标准,但其取样的局限性、随机性以及滞后性使得术前无创预测MVI成为亟待解决的问题[20, 21]。研究表明[22, 23]影像组学可用于术前预测HCC MVI,以往的研究大多从瘤内影像组学特征入手,但后续研究发现瘤周是MVI重要病变部位,其瘤周影像学表现蕴含了肿瘤高度侵袭性等特征[24, 25]。动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)能够获取瘤周组织信号特征,无创性评估肿瘤及瘤周MVI情况,提高对病灶定量及定性的准确性[26]。CHONG等[27]纳入356例HCC患者术前DCE-MRI图像联合弥散加权成像(diffusion weighted imaging, DWI)图像,基于瘤内和10 mm瘤周区域影像组学特征和临床特征构建随机森林图模型,该模型预测HCC MVI的AUC高达0.92,然后根据病理将MVI分为M0(MVI阴性)和M1、M2(MVI阳性),结果显示,MVI阳性患者与MVI阴性患者无复发生存(recurrence-free survival, RFS)差异有统计学意义(P<0.001),提示瘤周影像组学特征在术前预测HCC的MVI及预后等方面具有一定价值。FENG等[28]基于DCE-MRI图像上同时提取瘤内和瘤周影像组学特征,构建瘤内+瘤周联合模型预测HCC MVI,在训练集和验证集中有较好的AUC和较高的敏感度及特异度,该研究证明了联合模型用于预测HCC MVI的可行性。ZHANG等[29]利用HCC患者术前T1WI、T2WI、DWI及肝胆期MRI图像提取瘤内+10 mm瘤周区域影像组学特征构建多模态MRI影像组学模型,研究表明,多模态联合影像组学模型在预测HCC MVI中具有较好性能,训练集中AUC为0.82;在此基础上,将该影像组学模型与影像学征象(动脉期瘤周强化)、甲胎蛋白(alpha-fetoprotein, AFP)联合后,训练集预测性能可提升至0.86,证实了影像学征象和临床因素结合可以提高临床决策的准确性。以上研究均提取了瘤内和瘤周区域的影像组学特征,未单独对瘤周影像组学模型预测HCC MVI的性能进行评估,为此有学者对瘤周影像组学特征预测HCC MVI的价值存有质疑。DONG等[24]尝试采用HCC灰度超声(ultrasonography, US)图像预测HCC MVI,分别提取瘤内、瘤周和瘤内+瘤周区域的影像组学特征,然后构建影像组学预测模型,结果发现基于US图像的影像组学模型效能差异无统计学意义,AUC分别为0.708、0.710、0.726。NEBBIA等[30]基于多模态MRI构建瘤内、瘤周及联合瘤内+瘤周模型,发现其在预测HCC MVI中瘤内影像组学特征效能最佳(AUC=0.867、0.846、0.842),但该研究中纳入瘤周范围为10 mm,不排除纳入范围过小,可能遗漏含有HCC MVI部分的组织信息,或者瘤周范围过大纳入包含过多正常肝组织,从而影响结果判定。因此,目前瘤周范围的参差不齐可能造成瘤周影像组学模型性能不稳定,未来需完善相关研究以精准定位最佳瘤周区域范围并构建最优的瘤周影像组学模型。

3 瘤周影像学组学预测HCC病理分子标志物的研究进展

       HCC的病理分子标志物与其生物学行为密切相关,目前医师尚无法通过肉眼分析图像准确预测HCC病理分子标志物,主要依赖于术后的病理分析,但这种方法存在滞后性和有创性,造成HCC患者治疗方案的选择出现偏差。影像组学的进步使得非侵入性预测病理分子标志物成为可能[31, 32, 33]

       Ki-67是一种细胞增殖核抗原,表达水平反映肿瘤细胞增殖活跃程度,与HCC的侵袭性和复发风险相对应,术前准确识别Ki-67水平对预后和治疗决策具有临床价值[34]。在预测HCC Ki-67方面,QIAN等[35]发现相对于HCC的US图像,结合瘤内和瘤周影像组学特征的Ki-67预测模型明显优于单独瘤内或瘤周影像组学模型,最佳性能AUC为0.870,以最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)算法构建的模型为佳,研究表明瘤周影像特征在预测HCC的Ki-67表达水平有一定价值。同时该项研究也存在一些不足点,如纳入的患者均为手术病例,不适合手术治疗的中晚期HCC患者并未纳入,造成选择性偏倚,使得未来研究无法对该结果进行复现,但也为今后瘤周影像组学在肿瘤Ki-67预测方面的深入研究提供了参考点。

       肿瘤包绕型血管(vessels that encapsulate tumor clusters pattern, VETC)是一种独立于上皮-间质转化机制促进HCC转移的新血管模式[36],HCC VETC(+)患者往往提示较差的病理分级及预后转归。研究表明[37]VETC为HCC提供了高效转移模型,是侵袭性HCC的强大预测指标。在预测HCC VETC方面,有学者[38]回顾221例HCC患者MRI图像,通过提取影像组学特征构建深度学习影像组学模型,基于门静脉期瘤周模型的AUC为0.844,优于其他临床-影像模型和深度学习模型。在另一项研究中[39]提取128例HCC患者肝胆期MRI特征,构建瘤内和瘤周影像组学模型,研究结果显示,瘤周影像组学模型在区分VETC(+)和VETC(-)效能显著高于瘤内模型,AUC分别为(0.972、0.919,P=0.004),证实了瘤周影像组学模型可有效预测VETC。

       综上所述,瘤周影像组学有助于预测HCC分子标志物的表达,为治疗方案提供有益的辅助工具,同时对瘤内和瘤周进行定量分析,为临床医生了解HCC生物学特征提供有价值的线索。目前瘤周影像组学预测HCC病理分子标志物的研究比较单一,未来有待加入更多与HCC治疗和预后相关的分子标志物,如细胞角蛋白19(cytokeratin 19, CK19)、异常凝血酶原(des-gamma-carboxy-prothrombin, DCP)、AFP、磷脂酰肌醇蛋白聚糖3(glypican-3, GPC3)等进一步证实,为临床诊治带来效益。

4 瘤周影像组学预测HCC术后早期复发及预后

       肝切除术是早期HCC患者获得长期生存的首要手段,但术后5年内HCC复发率高达70%,是患者术后死亡的重要原因[40]。HCC患者术后两年内发生肝内转移或远处肝外转移定义为“早期复发”[41],术前及时正确识别复发高危者有助于指导临床决策、术后监测及预防干预[42]。KANG等[43]发现基于增强计算机体层成像(dynamic contrast enhanced computed tomography, DCE-CT)构建瘤周组学特征模型,其预测HCC早期复发的性能优于瘤内影像组学模型(训练集AUC=0.867,验证集AUC=0.807),进一步研究发现联合最佳3 mm瘤周模型和临床特征模型可有效对高、低危患者进行分层,能够及时进行临床治疗和决策。有学者通过MRI图像提取瘤内和3 mm瘤周区域影像特征,运用随机森林法构建影像组学模型,其预测HCC早期复发、无病生存(diease-free survival, DFS)的价值与术后病理模型相当,提示瘤周区域对疾病的预后发展有重要性[44]。此外,王晶等[45]构建基于肝切除术后复发性肝癌(recurrent hepatocellular, rHCC)的瘤周区域表观扩散系数(apparent diffusion coefficient, ADC)列线图模型预测局部进展,该列线图模型预测rHCC患者3个月内和6个月内局部进展取得较好性能(AUC=0.834、0.841),显示较好的临床净收益。因此,术前准确预测HCC患者复发可尽早提示临床采取干预措施,调整治疗方案,最大程度地避免后期不必要的二次创伤。但目前对于瘤周影像组学特征预测HCC早期复发和预后评估的病理生理机制尚未明确阐述,需进一步地完善相关研究并解释其机制。

5 瘤周影像组学在HCC非手术治疗的疗效评估

       肝动脉化疗栓塞术(transcatheter arterial chemoembolization, TACE)作为中晚期非手术HCC患者首选治疗方案,术后生存情况预测至关重要[46]。研究表明[47]影像组学特征可用于预测TACE治疗后的疗效评估,为后续HCC患者精准治疗提供参考价值。SONG等[48]基于治疗前DCE-MRI的研究表明,3 mm瘤周影像特征在术前预测HCC患者TACE术后RFS方面具有一定价值,并且临床模型+联合(瘤内+瘤周)模型组成的融合临床影像组学模型比单独瘤内或瘤周和联合模型具有更高预测性能。SHI等[49]研究证实联合瘤内和瘤周影像组学特征在预测HCC患者首次经TACE治疗在延长生存期方面表现最好(训练集AUC=0.964,验证集AUC=0.949),同时还进一步探究了不同范围(5 mm、10 mm)瘤周影像组学特征对最终模型预测性能的影响,结果提示10 mm瘤周模型在训练集和验证集的实际校准曲线和理想校准曲线贴合紧密,表明该模型具有较好的校准能力。CHEN等[50]同样证实基于CT图像联合瘤内和瘤周影像组学在预测HCC患者经TACE治疗缓解的准确性最高,结合临床特征可进一步提高其准确性,后续经内部和外部验证该模型具有较好性能。目前关于TACE联合治疗的研究越来越多样化,联合治疗方案及优势不尽相同,未来需探索更多瘤周影像组学对短期和长期联合治疗的评估,以发挥瘤周影像组学的最大优势。

6 小结和展望

       综上所述,瘤周区域涵盖了对疾病生物学信息补充的有用价值。随着国内外学者对HCC瘤周影像组学的深入研究,其应用在肿瘤病理分级、MVI、病理分子标志物、早期复发以及疗效评估等多方面存在潜在优势,同时在免疫治疗的时代下,靶向治疗成为HCC晚期患者治疗的关键,影像组学和肿瘤免疫微环境结合将成为预测HCC患者靶点治疗和疗效预估的研究新热点。然而,当前研究还面临一些挑战,如ROI勾画方式不统一、特征选择和建模方法多样化等问题,导致模型性能差异较大。未来需进行大样本的前瞻性研究,并结合深度学习算法进一步优化瘤周影像组学模型以提高其临床应用的准确性和稳定性,为HCC患者提供更加个体化的精准治疗策略。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
PRIOR O, MACARRO C, NAVARRO V, et al. Identification of precise 3D CT radiomics for habitat computation by machine learning in cancer[J/OL]. Radiol Artif Intell, 2024, 6(2): e230118 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/38294307/. DOI: 10.1148/ryai.230118.
[3]
DE VISSER K E, JOYCE J A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.
[4]
PAVLOVIĆ N, CALITZ C, THANAPIROM K, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma[J/OL]. eLife, 2020, 9: e55865 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/33103995/. DOI: 10.7554/eLife.55865.
[5]
JEONG J H, JANG H J, KWAK S, et al. Novel TGF-β1 inhibitor antagonizes TGF-β1-induced epithelial-mesenchymal transition in human A549 lung cancer cells[J]. J Cell Biochem, 2019, 120(1): 977-987. DOI: 10.1002/jcb.27460.
[6]
权虎, 石磊, 陈杰, 等. 肿瘤微环境在肝细胞癌中的研究进展[J]. 肿瘤药学, 2023, 13(2): 150-154. DOI: 10.3969/j.issn.2095-1264.2023.02.03.
QUAN H, SHI L, CHEN J, et al. Research progress of tumor microenvironment in hepatocelluar carcinoma[J]. Anti Tumor Pharm, 2023, 13(2): 150-154. DOI: 10.3969/j.issn.2095-1264.2023.02.03.
[7]
INVERNIZZI F, IAVARONE M, ZAVAGLIA C, et al. Experience with early sorafenib treatment with mTOR inhibitors in hepatocellular carcinoma recurring after liver transplantation[J]. Transplantation, 2020, 104(3): 568-574. DOI: 10.1097/TP.0000000000002955.
[8]
WU X, DENG Z, ZHAO Q Q. Immunotherapy improves disease prognosis by affecting the tumor microenvironment: a bibliometric study[J/OL]. Front Immunol, 2022, 13: 967076 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/36275770/. DOI: 10.3389/fimmu.2022.967076.
[9]
段正新, 赵卫, 易根发. 影像组学及深度学习预测肝细胞癌预后研究进展[J]. 中国介入影像与治疗学, 2024, 21(5): 302-306. DOI: 10.13929/j.issn.1672-8475.2024.05.011.
DUAN Z X, ZHAO W, YI G F. Research progresses of radiomics and deep learning for predicting prognosis of hepatocellular carcinoma[J]. Chin J Interv Imag Ther, 2024, 21(5): 302-306. DOI: 10.13929/j.issn.1672-8475.2024.05.011.
[10]
WANG G Z, DING F E, CHEN K G, et al. CT-based radiomics nomogram to predict proliferative hepatocellular carcinoma and explore the tumor microenvironment[J/OL]. J Transl Med, 2024, 22(1): 683 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/39218938/. DOI: 10.1186/s12967-024-05393-3.
[11]
KANG W D, QIU X, LUO Y G, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis[J/OL]. J Transl Med, 2023, 21(1): 598 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37674169/. DOI: 10.1186/s12967-023-04437-4.
[12]
MAO Y F, WANG J C, ZHU Y, et al. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24. DOI: 10.21037/hbsn-19-870.
[13]
LV K, CAO X, DU P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(20): 2176-2183. DOI: 10.3748/wjg.v28.i20.2176.
[14]
FENG Z C, LI H L, LIU Q Y, et al. CT radiomics to predict macrotrabecular-massive subtype and immune status in hepatocellular carcinoma[J/OL]. Radiology, 2023, 307(1): e221291 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/36511807/. DOI: 10.1148/radiol.221291.
[15]
JI G W, ZHU F P, XU Q, et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study[J]. Radiology, 2020, 294(3): 568-579. DOI: 10.1148/radiol.2020191470.
[16]
COURT C M, HARLANDER-LOCKE M P, MARKOVIC D, et al. Determination of hepatocellular carcinoma grade by needle biopsy is unreliable for liver transplant candidate selection[J]. Liver Transpl, 2017, 23(9): 1123-1132. DOI: 10.1002/lt.24811.
[17]
LIU H F, WANG M, WANG Q, et al. Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma[J/OL]. Insights Imaging, 2024, 15(1): 97 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/38536542/. DOI: 10.1186/s13244-024-01623-w.
[18]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[19]
LI J, SU X, XU X, et al. Preoperative prediction and risk assessment of microvascular invasion in hepatocellular carcinoma[J/OL]. Crit Rev Oncol Hematol, 2023, 190: 104107 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37633349/. DOI: 10.1016/j.critrevonc.2023.104107.
[20]
张瑾, 孙中琪, 吴琼, 等. 基于肿瘤及瘤周区域的影像组学在肝细胞癌微血管侵犯中的研究进展[J]. 中华放射学杂志, 2023, 57(10): 1120-1123. DOI: 10.3760/cma.j.cn112149-20221209-00991.
ZHANG J, SUN Z Q, WU Q, et al. The progress of radiomics based on the tumor and the peripheral tumor regions in the evaluation of microvascular invasion of hepatocellular carcinoma[J]. Chin J Radiol, 2023, 57(10): 1120-1123. DOI: 10.3760/cma.j.cn112149-20221209-00991.
[21]
罗紫薇, 于海洋, 刘华秀, 等. 基于钆塞酸二钠增强MRI肝胆期图像影像组学模型评估肝癌微血管侵犯分级的价值[J]. 磁共振成像, 2023, 14(4): 95-101, 114. DOI: 10.12015/issn.1674-8034.2023.04.016.
LUO Z W, YU H Y, LIU H X, et al. The value of radiomics models based on hepatobiliary phase images of Gd-EOB-DTPA enhanced MRI in prediction of microvascular invasion classification in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(4): 95-101, 114. DOI: 10.12015/issn.1674-8034.2023.04.016.
[22]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37097141/. DOI: 10.1148/radiol.222729.
[23]
ZHENG R Y, ZHANG X E, LIU B X, et al. Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm[J]. Eur Radiol, 2023, 33(9): 6462-6472. DOI: 10.1007/s00330-023-09789-5.
[24]
DONG Y, ZHOU L, XIA W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: initial application of a radiomic algorithm based on grayscale ultrasound images[J/OL]. Front Oncol, 2020, 10: 353 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/32266138/. DOI: 10.3389/fonc.2020.00353.
[25]
朱珠, 郁义星, 陆健, 等. 基于瘤内和瘤周影像组学模型预测肝细胞癌微血管侵犯的临床应用价值: 一项多中心研究[J]. 磁共振成像, 2024, 15(8): 132-138. DOI: 10.12015/issn.1674-8034.2024.08.020.
ZHU Z, YU Y X, LU J, et al. Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study[J]. Chin J Magn Reson Imag, 2024, 15(8): 132-138. DOI: 10.12015/issn.1674-8034.2024.08.020.
[26]
BENNANI-BAITI B, PINKER K, ZIMMERMANN M, et al. Non-invasive assessment of hypoxia and neovascularization with MRI for identification of aggressive breast cancer[J/OL]. Cancers, 2020, 12(8): 2024 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/32721996/. DOI: 10.3390/cancers12082024.
[27]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[28]
FENG S T, JIA Y M, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
[29]
ZHANG R, XU L, WEN X, et al. A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Quant Imaging Med Surg, 2019, 9(9): 1503-1515. DOI: 10.21037/qims.2019.09.07.
[30]
NEBBIA G, ZHANG Q, AREFAN D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x.
[31]
符天旭, 罗是是, 王振平. 影像学研究细胞角蛋白19(CK19)阳性肝细胞癌进展[J]. 中国医学影像技术, 2024, 40(10): 1603-1606. DOI: 10.13929/j.issn.1003-3289.2024.10.030.
FU T X, LUO S S, WANG Z P. Imaging research progresses of cytokeratin 19(CK19)-positive hepatocellular carcinoma[J]. Chin J Med Imag Technol, 2024, 40(10): 1603-1606. DOI: 10.13929/j.issn.1003-3289.2024.10.030.
[32]
YAN Y, LIN X S, MING W Z, et al. Radiomic analysis based on Gd-EOB-DTPA enhanced MRI for the preoperative prediction of ki-67 expression in hepatocellular carcinoma[J]. Acad Radiol, 2024, 31(3): 859-869. DOI: 10.1016/j.acra.2023.07.019.
[33]
YANG J W, DONG X, JIN S Z, et al. Radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(1): 146-156. DOI: 10.1016/j.acra.2024.07.007.
[34]
FAN Y F, YU Y X, WANG X M, et al. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma[J/OL]. BMC Med Imaging, 2021, 21(1): 100 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/34130644/. DOI: 10.1186/s12880-021-00633-0.
[35]
QIAN H W, SHEN Z H, ZHOU D F, et al. Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer[J/OL]. Front Oncol, 2023, 13: 1209111 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37711208/. DOI: 10.3389/fonc.2023.1209111.
[36]
LIU K, DENNIS C, PRINCE D S, et al. Vessels that encapsulate tumour clusters vascular pattern in hepatocellular carcinoma[J/OL]. JHEP Rep, 2023, 5(8): 100792 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37456680/. DOI: 10.1016/j.jhepr.2023.100792.
[37]
RENNE S L, WOO H Y, ALLEGRA S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 183-195. DOI: 10.1002/hep.30814.
[38]
DONG X, YANG J W, ZHANG B H, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 59(1): 108-119. DOI: 10.1002/jmri.28745.
[39]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.
[40]
YAMAMOTO M, KOBAYASHI T, HONMYO N, et al. Liver resection is associated with good outcomes for hepatocellular carcinoma patients beyond the Barcelona Clinic Liver Cancer criteria: A multicenter study with the Hiroshima Surgical study group of Clinical Oncology[J]. Surgery, 2022, 171(5): 1303-1310. DOI: 10.1016/j.surg.2021.09.009.
[41]
NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29(8): 1243-1260. DOI: 10.3748/wjg.v29.i8.1243.
[42]
CHEN Y Y, LIU Z L, MO Y X, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics using Gd-EOB-DTPA-enhanced MRI: the liver failure model[J/OL]. Front Oncol, 2021, 11: 605296 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/33777748/. DOI: 10.3389/fonc.2021.605296.
[43]
KANG W D, CAO X M, LUO J W. Effect of multiple peritumoral regions of interest ranges based on computed tomography radiomics for the prediction of early recurrence of hepatocellular carcinoma after resection[J]. Quant Imaging Med Surg, 2023, 13(10): 6668-6682. DOI: 10.21037/qims-23-226.
[44]
KIM S, SHIN J, KIM D Y, et al. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(13): 3847-3855. DOI: 10.1158/1078-0432.CCR-18-2861.
[45]
王晶, 曾朝强, 汤梦月, 等. 基于瘤周肝组织DWI列线图模型预测肝切除术后复发性肝细胞癌局部进展研究[J]. 磁共振成像, 2024, 15(2): 63-70. DOI: 10.12015/issn.1674-8034.2024.02.009.
WANG J, ZENG C Q, TANG M Y, et al. Development of a nomogram based on diffusion weighted imaging of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma after hepatectomy[J]. Chin J Magn Reson Imag, 2024, 15(2): 63-70. DOI: 10.12015/issn.1674-8034.2024.02.009.
[46]
HAN G H, BERHANE S, TOYODA H, et al. Prediction of survival among patients receiving transarterial chemoembolization for hepatocellular carcinoma: A response-based approach[J]. Hepatology, 2020, 72(1): 198-212. DOI: 10.1002/hep.31022.
[47]
王丹丹, 王海波, 孙中琪, 等. 术前CT图像影像组学联合深度学习预测肝细胞癌经动脉化疗栓塞术后疗效的价值[J]. 中华放射学杂志, 2024, 58(2): 209-215. DOI: 10.3760/cma.j.cn112149-20230612-00401.
WANG D D, WANG H B, SUN Z Q, et al. The value of radiomics combined with deep learning based on preoperative CT images in predicting the curative effect of transarterial chemoembolization for hepatocellular carcinoma[J]. Chin J Radiol, 2024, 58(2): 209-215. DOI: 10.3760/cma.j.cn112149-20230612-00401.
[48]
SONG W L, YU X L, GUO D J, et al. MRI-based radiomics: associations with the recurrence-free survival of patients with hepatocellular carcinoma treated with conventional transcatheter arterial chemoembolization[J]. J Magn Reson Imaging, 2020, 52(2): 461-473. DOI: 10.1002/jmri.26977.
[49]
SHI Z X, LI C F, ZHAO L F, et al. Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2024, 23(4): 361-369. DOI: 10.1016/j.hbpd.2023.06.011.
[50]
CHEN M Y, CAO J S, HU J H, et al. Clinical-radiomic analysis for pretreatment prediction of objective response to first transarterial chemoembolization in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 38-51. DOI: 10.1159/000512028.

上一篇 磁共振成像技术在肝纤维化分级诊断中的研究进展
下一篇 影像组学与人工智能术前预测肝细胞癌微血管侵犯的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2