分享:
分享到微信朋友圈
X
临床研究
ADCmean联合PSAD对PI-RADS≥3分临床显著性前列腺癌的预测价值
贝明洁 许竞方 祝新

Cite this article as: BEI M J, XU J F, ZHU X. Predictive value of ADCmean combined with PSAD in clinically significant prostate cancer with PI-RADS score ≥ 3[J]. Chin J Magn Reson Imaging, 2025, 16(4): 81-86, 107本文引用格式:贝明洁, 许竞方, 祝新. ADCmean联合PSAD对PI-RADS≥3分临床显著性前列腺癌的预测价值[J]. 磁共振成像, 2025, 16(4): 81-86, 107. DOI:10.12015/issn.1674-8034.2025.04.012.


[摘要] 目的 探讨表观扩散系数平均值(mean apparent diffusion coefficient, ADCmean)联合前列腺特异性抗原密度(prostate specific antigen density, PSAD)对前列腺影像报告和数据系统(prostate imaging reporting and data system, PI-RADS)≥3分临床显著性前列腺癌(clinical significant prostate cancer, csPCa)的预测价值。材料与方法 回顾性分析2022年2月至2024年8月期间我院行前列腺MRI检查PI-RADS评分≥3分且有病理组织学检查患者的临床资料和影像资料。选择最高PI-RADS评分且最大病灶的最大层面勾画感兴趣区(region of interest, ROI),测量病灶的ADCmean和表观扩散系数最小值(min apparent diffusion coefficient, ADCmin)。单因素和多因素logistic回归分析筛选出预测csPCa的最佳临床和影像指标,采用受试者工作特征(receiver operating characteristics, ROC)曲线比较最佳临床和影像预测模型及两者联合模型的诊断效能,计算曲线下面积(area under the curve, AUC)、敏感度和特异度,并行DeLong检验。结果 本研究共纳入csPCa患者75例(48.39%),非csPCa患者80例(51.61%)。csPCa组的年龄、总前列腺特异性抗原(total prostate specific antigen, tPSA)、游离前列腺特异性抗原(free prostate specific antigen, fPSA)、PSAD大于非csPCa组,csPCa组的前列腺体积(prostate volume, PV)、fPSA和tPSA比值(f/t)、ADCmin、ADCmean均小于非csPCa组,差异具有统计学意义(均P<0.05)。逐步logistic回归筛选和ROC曲线分析,获得预测csPCa的最佳临床指标为PSAD和影像指标ADCmean,AUC分别为0.846、0.898,PSAD诊断阈值为0.307 ng/mL2,敏感度为66.67%,特异度为91.25%,ADCmean诊断阈值为773.5 mm2/s,敏感度为86.67%,特异度为85.00%,两者联合模型的AUC高达0.925。DeLong检验比较联合模型与单一模型的AUC差异有统计学意义(P<0.05),联合模型预测csPCa的敏感性和特异度分别为86.67%和88.75%。结论 ADCmean对PI-RADS≥3分csPCa的预测效能优于ADCmin,与PSAD的联合模型能进一步提高对PI-RADS≥3分csPCa的预测价值,对临床诊疗具有指导意义。
[Abstract] Objective To investigate the predictive value of mean apparent diffusion coefficient (ADCmean) combined with prostate specific antigen density (PSAD) for clinically significant prostate cancer (csPCa) with a prostate imaging reporting and data system version (PI-RADS) score ≥ 3.Materials and Methods Clinical data and imaging data of patients with PI-RADS score ≥ 3 on prostate MRI performed at our hospital between February 2022 and August 2024 and with pathologic histology were retrospectively analyzed. The highest PI-RADS score and the largest dimension of the largest lesion were selected for ROI outlining, and the ADCmean and apparent diffusion coefficient min (ADCmin) of the lesion were measured. Univariate and multivariate logistic regression analyses were performed to identify the best clinical and imaging predictors of csPCa. Receiver operating characteristics (ROC) curves and the DeLong test were used to compare the diagnostic efficacy of the best clinical and imaging predictive models and their combined models by calculating the area under the curve (AUC), sensitivity and specificity.Results A total of 75 (48.39%) csPCa patients and 80 (51.61%) non-csPCa patients were included in this study. age, total prostate specific antigen (tPSA), free prostate specific antigen (fPSA), and PSAD were greater in the csPCa group than in the non-csPCa group, and prostate volume (PV), fPSA and tPSA ratio (f/t), ADCmin, and ADCmean were smaller in the csPCa group than in the non-csPCa group, and the differences were statistically significant (P < 0.05). Stepwise logistic regression analysis and comparison of ROC curves yielded the best clinical indicator PSAD and imaging indicator ADCmean for predicting csPCa, with an AUC of 0.846 for PSAD and 0.898 for ADCmean, and an optimal cutoff value of 0.307 ng/mL2 for PSAD, with a sensitivity of 66.67% and a specificity of 91.25%; ADCmean had an optimal cutoff value of 773.5 mm2/s, a sensitivity of 86.67%, and a specificity of 85.00%; the AUC of the two combined models was as high as 0.925, and the difference in diagnostic efficacy between the combined model and the single model was statistically significant using DeLong's test (P < 0.05). The sensitivity and specificity of the combined model for predicting csPCa were 86.67% and 88.75%.Conclusions The predictive efficacy of ADCmean for csPCa with PI-RADS ≥ 3 points was better than that of ADCmin, and the combined model with PSAD can further improve the predictive value of csPCa with PI-RADS ≥ 3 points, which is instructive for clinical diagnosis and treatment.
[关键词] 临床显著性前列腺癌;前列腺特异性抗原密度;磁共振成像;前列腺影像报告和数据系统;表观扩散系数
[Keywords] clinically significant prostate cancer;prostate-specific antigen density;magnetic resonance imaging;prostate imaging reporting and data system;apparent diffusion coefficient

贝明洁    许竞方    祝新 *  

南京中医药大学附属江苏省中医院放射科,南京 210029

通信作者:祝新,E-mail:66zhuxin@163.com

作者贡献声明:祝新设计本研究的方案,对稿件重要内容进行了修改,获得了江苏省中医院院内基金项目的资助;贝明洁起草和撰写稿件,获取、分析并解释本研究的数据,对稿件的重要内容进行了修改;许竞方获取、分析并解释本研究的数据,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 江苏省中医院院内基金项目 Y2021ZR30
收稿日期:2025-01-06
接受日期:2025-04-02
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.04.012
本文引用格式:贝明洁, 许竞方, 祝新. ADCmean联合PSAD对PI-RADS≥3分临床显著性前列腺癌的预测价值[J]. 磁共振成像, 2025, 16(4): 81-86, 107. DOI:10.12015/issn.1674-8034.2025.04.012.

0 引言

       前列腺癌(prostate cancer, PCa)是男性泌尿生殖系统中最常见的恶性肿瘤,发病率在男性恶性肿瘤中居全球第二位,居中国第六位,PCa已成为美国60岁以上男性癌症死亡的第二大原因[1]。临床上,将Gleason(GS)评分≥3+4分,肿瘤体积≥0.5 cm3或具有包膜外侵犯的PCa定义为临床显著性前列腺癌(clinical significant prostate cancer, csPCa)[2]。csPCa进展快,侵袭性高,应积极采取多方案综合治疗,以改善csPCa患者的生存率[3]。而相对惰性的临床不显著性前列腺癌(clinically insignificant prostate cancer, CIPC)生长缓慢,恶性程度低,指南中推荐主动监测,无需干预治疗[4]。早期精准诊断csPCa对于临床决策具有重要指导作用,直接影响患者预后。

       磁共振成像(magnetic resonance imaging, MRI)具有无创性且软组织分辨率高等优势,成为诊断PCa的最佳影像学方法[5, 6]。前列腺影像报告和数据系统(prostate imaging reporting and data system, PI-RADS)是前列腺MRI图像的标准化和解释系统[7],较高PI-RADS评分和csPCa高发生率相关[8],有文章[9]报道在PI-RADS 3分、4分和5分病灶中,csPCa的检出率分别为11.1%、29.1%和77.6%。因此,有必要建立一种非侵入性方法来尽早识别csPCa,防止过度诊断并减少不必要的活检。MRI中的扩散加权成像(diffusion weighted imaging, DWI)能无创地检测组织中水分子自由扩散运动,由DWI图像生成的表观扩散系数(apparent diffusion coefficient, ADC)图能提供反映组织中水分子扩散受限程度的定量信息[10],ADC值测量方法和获取简便易行,在临床中具有广泛的适用性[11, 12]。多项研究表明前列腺特异性抗原密度(prostate specific antigen density, PSAD)是PCa的独立危险因子,与PCa的侵袭性密切相关[13, 14, 15]。既往研究主要集中于DWI-ADC在PCa的诊断和鉴别诊断的应用[16, 17],对csPCa方面的研究较少,且未结合临床相关指标PSAD。基于此,本研究进一步验证ADCmean联合PSAD对PI-RADS≥3分csPCa的预测价值。

1 材料与方法

1.1 研究对象

       回顾性收集了2022年2月至2024年8月在江苏省中医院行前列腺3.0 T MRI检查且PI-RADS评分≥3分患者的临床资料和影像资料。纳入标准:(1)临床相关资料完整的患者;(2)前列腺病灶PI-RADS评分为3~5分的患者;(3)MRI检查后一月内行穿刺活检或根治性前列腺切除术的患者;(4)病理结果证实为PCa或良性前列腺病变的患者。排除标准:(1)MRI检查图像质量不能满足诊断需要的患者;(2)MRI图像无法明确病灶或病灶最大径<5 mm的患者;(3)MRI检查前接受穿刺、电切或放化疗等非初诊患者。本研究遵守《赫尔辛基宣言》,通过江苏省中医院医学伦理委员会批准,批准文号:YJZ202543,免除受试者知情同意。

1.2 一般资料

       患者的基本临床及病理资料均从医学影像归档和通信系统(picture archiving and communication systems, PACS)获取,临床资料包括年龄、血清总前列腺特异性抗原(total prostate specific antigen, tPSA)、游离前列腺特异性抗原(free prostate specific antigen, fPSA)、fPSA和tPSA比值(f/t)、前列腺体积(prostate volume, PV)和PSAD。根据穿刺活检或根治性前列腺术后的病理结果,将入组病例分为两组,csPCa组为GS评分≥3+4分的病例,非csPCa组为病例结果为CIPC和良性前列腺病变的病例。

1.3 MRI检查

       采用3.0 T MRI扫描仪(GE Architect,美国)扫描,选择腹部30通道相控阵魔毯线圈,扫描序列包括T2WI序列(轴位、矢状位、冠状位)及DWI序列,层厚4 mm,层间距1 mm。(1)T2WI序列扫描参数:轴位,TR 4400 ms,TE 100 ms,矩阵180×180;轴位脂肪抑制,TR 4800 ms,TE 100 ms,矩阵180×180;矢状位,TR 4500 ms,TE 100 ms,矩阵200×200;冠状位,TR 4000 ms,TE 100 ms,矩阵230×230。(2)DWI序列扫描参数:TR 4800 ms,TE minimum,矩阵200×200,b值50、800和1500 mm/s2,ADC图由自带软件自动生成。

1.4 ROI勾画

       两名分别具有5年及20年以上腹部MRI诊断经验的放射科医师在对病理结果不知情的情况下独立对前列腺病灶进行PI-RADS评分,意见不一致时商讨决定。由低年资医师对ADC图的ROI进行勾画,再由高年资医师随机选取30个病例重复以上操作,组内相关系数(intra-class correlation coefficient, ICC)大于0.75,表明一致性较好。病灶选择和勾画的注意事项如下:(1)在多发病灶中,选取PI-RADS评分最高且体积最大的病灶作为勾画目标[7, 18];(图1);(2)在病灶的最大层面进行勾画;(3)勾画时避开出血、囊变和坏死区域。每个病灶均勾画两次,分别记录病灶的ADCmean和ADCmin,计算两次测得数值的平均数用于统计学分析。

图1  男,76岁,主诉为排尿不畅1年,tPSA=4.1 ng/mL。T2WI显示移行带7点钟方向(箭)局灶性低信号结节(1A),病灶在高b值DWI图像上呈稍高信号(1B),在ADC图上呈低信号改变(1C)。tPSA:总前列腺特异性抗原;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 1  A male 76 years old complained of dysuria for 1 year, tPSA = 4.1 ng/mL. T2WI shows a focal low signal nodule (arrow) at 7 o'clock in the transitional zone of the prostate (1A), the lesion reveals a slightly high signal on the high b-value DWI image (1B) and a low signal change on the ADC map (1C). tPSA: total prostate-specific antigen; DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient.

1.5 统计学方法

       使用IBM SPSS 22.0及Med Calc(version 22.016,https://www.medcalc.org, 2023)软件进行分析,计量资料正态性分布用均数±标准差表示,非正态性分布用中位数及四分位间距表示,分别用独立样本t检验和Mann-Whitney U检验进行比较;采用单因素和多因素logistic回归分析向后剔除(Backward Elimination)策略筛选csPCa独立预测因子,先通过单因素logistic回归分析筛选与csPCa显著相关的变量(P<0.05),随后将其全部纳入多因素logistic回归模型并逐步剔除无统计学意义变量(剔除阈值P>0.10),保留预测cs PCa的最佳临床指标和影像指标,并构建两者的联合模型,采用受试者工作特征(receiver operating characteristics, ROC)曲线计算出曲线下面积(area under the curve, AUC)、95%置信区间(confidence interval, CI)、敏感度、特异度和最佳阈值等效能指标,DeLong检验比较不同模型的诊断效能。P<0.05认为差异具有统计学意义。

2 结果

2.1 临床资料和ADCmin和ADCmean比较

       本研究共纳入155例前列腺病变患者,其中csPCa患者为75例(48.39%),平均年龄71.81岁,非csPCa患者为80例(51.61%),平均年龄68.64岁。两组的年龄、PV、tPSA、fPSA、f/t、PSAD、ADCmin和ADCmean差异均有统计学意义(均P<0.05),详见表1

表1  两组临床资料和ADCmin和ADCmean的比较
Tab. 1  Comparison of clinical data and ADCmin and ADCmean between the two groups

2.2 临床资料和ADCmin、ADCmean的二元logistic回归分析

       单因素和多因素logistic回归分析结果显示,临床指标年龄[OR=1.14(95% CI:1.05~1.24),P=0.003]、PV [OR=0.96(95% CI:0.94~0.99),P=0.004]、PSAD [OR=11.08(95% CI:1.70~72.02),P=0.012]和影像指标ADCmean [OR=0.99(95% CI:0.98~0.99),P<0.001]是诊断csPCa的独立预测因素(表2)。

表2  临床资料和ADCmin、ADCmean的二元logistic回归分析
Tab. 2  Binary logistic regression analysis of clinical data and ADCmin and ADCmean

2.3 临床指标的ROC曲线分析

       ROC曲线分析结果显示,PSAD为预测csPCa的最佳临床指标,PSAD的AUC为0.846,诊断阈值为0.307 ng/mL2时,敏感度为66.67%,特异度为91.25%,详见表3图2

表3  临床指标的效能比较
Tab. 3  Comparison of efficacy of clinical indicators

2.4 ADCmean和ADCmin的ROC曲线分析

       ADCmean和ADCmin在预测csPCa方面均显示出较高的应用价值,ADCmean对csPCa的诊断效能略高于ADCmin,两者差异无统计学意义(P=0.054),详见表4图3

表4  ADCmean与ADCmin的效能比较
Tab. 4  The efficiency comparison of ADCmean and ADCmin

2.5 PSAD模型、ADCmean和联合模型的ROC曲线分析

       采用ROC曲线比较PSAD、ADCmean及两者联合模型的诊断效能,联合模型的AUC为0.925,敏感度为86.67%,特异度为88.75%,优于单一PSAD和ADCmean模型。DeLong检验结果显示联合模型与PSAD模型(Z=2.858,P=0.004)、ADCmean模型(Z=2.003,P=0.045)之间差异具有统计学意义,PSAD和ADCmean的AUC差异无统计学意义(Z=1.45,P=0.147),详见表5图4

图2  临床指标预测csPCa的ROC的曲线。
图3  ADCmean和ADCmin预测csPCa的ROC曲线。
图4  PSAD模型、ADCmean和组合模型预测csPCa的ROC曲线。csPCa:临床显著性前列腺癌;ROC:受试者工作特征;AUC:曲线下面积;PV:前列腺体积;PSAD:前列腺特异性抗原密度;ADCmin:表观扩散系数最小值;ADCmean:表观扩散系数平均值。
Fig. 2  The ROC curve of predicting csPCa with clinical indicators.
Fig. 3  The ROC curve of predicting ADCmean and ADCmin.
Fig. 4  The ROC curve of predicting csPCa with PSAD, ADCmean and combined models. csPCa: clinically significant prostate cancer; ROC: receiver operating characteristic; AUC: area under the curve; PV: prostate volume; PSAD: prostate-specific antigen density; ADCmin: apparent diffusion coefficient minimum; ADCmean: apparent diffusion coefficient mean.
表5  PSAD、ADCmean和联合模型的ROC曲线分析
Tab. 5  ROC curve analysis for PSAD, ADCmean and combined models

3 讨论

       前列腺癌是全球男性第二常见的癌症,相较于CIPC,csPCa更具侵袭性,会导致更高的死亡率[19]。早期诊断csPCa有助于临床医师制订个体化治疗方案,对改善患者预后至关重要。病灶ADC值的测量是一种简便且易操作的方法,ADC能反映组织真实扩散信息,提高影像科医师的诊断信心,减少因主观性原因而造成的漏诊和误诊[20]。本研究构建了ADCmean和PSAD的联合模型,结果显示两者联合模型的诊断效能优于ADCmean和PSAD单一模型,敏感度和特异度分别为86.67%、87.75%,该模型在预测csPCa方面表现出较高应用价值。

3.1 不同PI-RADS v2.1类别和不同部位病灶中csPCa的检出率

       PI-RADS≥3分病灶是临床医生关注的重点,也是穿刺活检的靶向目标[21, 22]。本研究结果显示,在PI-RADS 4分和5分的病灶中csPCa检出率较高,分别为64.86%(24/37)、84.44%(38/45),相比之下,在PI-RADS 3分病灶中csPCa检出率仅有17.81%(13/73),PI-RADS 3分病灶中csPCa的发生率明显低于PI-RADS 4分和5分病灶,与THAI等[9]研究结果一致。LEI等[23]研究以PI-RADS v2.1评分4分作为预测csPCa的截断值,阴性预测值高达98.2%,AUC为0.95,同样证实了PI-RADS v2.1评分对csPCa的诊断效能。近期一项Meta分析报道了PI-RADS v2.1评分系统在预测csPCa风险分层的价值,结果表明随着PI-RADS评估类别的提高,csPCa的检出率将随之增加[24]。PI-RADS 3分病灶中csPCa发病率较低,意味着PI-RADS 3分病灶可能存在较多的非必要活检。YANG等[25]报道虽然外周带PI-RADS 3分病灶出现的频率低于移行带(44.6%<55.4%),但外周带csPCa的检出率明显高于移行带(18.5% vs. 6.0%)。本研究显示,移行带病灶有89例,外周带病灶有52例,移行带csPCa的检出率为35.96%(32/89),外周带的csPCa的检出率为55.77%(29/52),研究结果进一步证实了YANG等观点。这可能是由于PCa患者的发病年龄普遍较大,常合并移行带前列腺增生,增生结节与PCa的MRI特征存在一定重叠,导致高PI-RADS类别病灶在移行带出现的概率增高,csPCa检出率较低的情况。总之,病灶部位与csPCa发生有一定相关性,但诊断价值有限。较高PI-RADS评分在csPCa的诊断方面表现出显著的优势。PI-RADS 4和5分病灶与csPCa的高检出率密切相关,但对于被评定为PI-RADS 3分、性质尚不明确的病灶,应结合临床指标进行全面评估,以减少不必要的侵入性穿刺活检。

3.2 临床指标与csPCa的相关性分析

       PSA是临床上筛查PCa的最常用指标,降低了PCa的特异性死亡率。PSA检测虽有益于提高CIPC的检出率,但这些癌症通常进展缓慢,不需要任何临床干预。有研究[26]报道约70%血清tPSA水平为4∼10 ng/mL的患者可能会接受不必要的活检。PSA的衍生指标PSAD作为预测csPCa的独立危险因子[27],在csPCa和非csPCa鉴别诊断方面表现出较高的敏感度和特异度,具有良好的应用价值。本研究中csPCa组的PSAD显著高于非csPCa组(P<0.05),与以往研究一致。GÖRTZ等[28]研究将PSAD<0.1 ng/mL2纳入PI-RADS为3分患者是否需要活检策略中,结果发现PSAD能减少43%非必要前列腺活检,漏诊率仅有2%,临床效益较高。LEI等[23]学者基于PSAD和PI-RADS v2.1构建了一种新型csPCa的预测模型,联合模型对csPCa的预测价值明显高于每个单一变量,同时减少了PI-RADS V2.1评分3分且PSAD<0.15 ng/mL2或PI-RADS v2.1评分≤2分病灶中csPCa的漏诊率,避免不必要的前列腺穿刺活检。也有人认为PSAD在预测csPCa方面价值有限,HAN等[29]分析了123例tPSA血清水平为4∼10 ng/mL的csPCa与非csPCa患者的PSAD及PI-RADS评分差异,PI-RADS评分对csPCa的诊断效能显著优于PSAD,与PI-RADS评分相比,PSAD和PI-RADS组合并未在csPCa诊断中展现出更高的临床价值(P=0.224)。出现这一结果可能是因为HAN等将tPSA水平限制在4∼10 ng/mL,总体的PSAD水平均较低,在csPCa和非csPCa两组间差异不显著。YANG等[25]研究发现年龄也是预测csPCa的独立危险因素之一,使用PSAD和年龄的联合模型预测发生于外周带csPCa的AUC高达0.816,选择PSAD的阈值≥0.15 ng/mL2和年龄阈值>68岁时,预测价值最高。ULLRICH等[30]报道称只有PV是诊断PCa的预测因子,PCa患者的PSAD虽然略高于非PCa患者,但差异没有统计学意义(P=0.31)。与以往研究结果一致,我们的研究发现年龄、PV和PSAD均与csPCa显著相关,其中PSAD预测csPCa的诊断效能最高,AUC为0.846,而年龄和PV的AUC分别为0.614和0.726并不能满足临床诊断需求,研究还发现PSAD和PV的组合并未给csPCa的诊断带来额外价值,这也进一步说明PSAD在PCa的风险分层中具有较高的诊断价值。

3.3 ADCmean和ADCmin与csPCa的相关性

       DWI是一种功能MRI技术,能非侵入性地检测水分子自由扩散状态及组织微观结构的变化,其局限性在于DWI会受到T2透射效应的影响[31],且不同观察者评价病灶在DWI图上信号高低时具有主观性。ADC的测量方法简便且易行,ADC值较客观地反映组织的真实扩散特性,能消除T2透射效应和主观因素的影响,已广泛运用于多个系统疾病的诊断、分期和预后疗效评价的研究[32, 33, 34]。ADCmean反映扩散受限的平均水平,ADCmin对应组织中水分子扩散受限最明显区域。本研究显示csPCa组的ADCmean和ADCmin均显著低于非csPCa组(P<0.05),ADCmean和ADCmin在预测csPCa方面均表现出较高的临床价值,与以往研究结果一致[35, 36, 37]。董奇飞等[38]研究表明,ADCmin越低,发生PCa的风险就越大,PCa的侵袭性越高。MEYER等[39]对1633个不同风险等级PCa灶的ADCmean进行分析,结果显示csPCa组的ADCmean低于CIPC组,ADCmean能非侵入性表征肿瘤的恶性程度。KESCH等[40]报道称ADCmean与PCa的恶性程度呈负相关。方磊等[41]研究比较了ADCmin与ADCmean在鉴别外周带早期PCa与慢性前列腺炎的诊断效能差异,结果显示ADCmin的诊断效能优于ADCmean(AUC:0.935 vs. 0.888),ADCmin能够更敏感地捕捉到肿瘤细胞扩散受限最严重的区域。一诺等[42]研究表明ADC值与Gleason评分显著相关,ADCmin在PCa诊断和中高危PCa鉴别诊断中的效能优于ADCmean。YAN等[43]认为在低度至中度恶性PCa的诊断方面,ADCmean比ADCmin更有价值。本研究结果和YAN等一致,ADCmean与ADCmin对csPCa均具有较高的诊断价值,ADCmean的诊断效能优于ADCmin,以773.5 mm²/s为诊断界值,ADCmean诊断csPCa的敏感度为86.67%、特异度为85.00%。ADCmean反映了病灶的整体组成和病理特征,而ADCmin对应病灶内扩散最受限区域的特征。因此,ADC值的定量分析能为预后评估提供更可靠的影像学依据,可作为csPCa的可靠诊断指标。在不同研究中,ADCmean和ADCmin诊断效能差异可能是由病灶勾画方式不同和样本量的差异导致。

3.4 PSAD模型、ADCmean和联合模型的诊断效能

       本研究结果显示PSAD和ADCmean联合模型诊断价值优于单一PSAD和ADCmean模型,该模型在预测csPCa时展现出较高的诊断效能。ADCmean的获取方式较为简单,更易于临床应用,结合PSAD构建的风险预测模型,能提高PI-RADS≥3分的病灶中csPCa的检出率,避免不必要的活检。

3.5 局限性

       本研究尚存在一定不足:(1)本研究的部分病理结果来自经超声引导下系统穿刺,可能导致结果存在一定误差;(2)本研究中病灶勾画选取的是最大层面,不可避免造成部分组织信息缺失;(3)本研究为单一中心的回顾性研究,未来需在多中心大样本的研究中进一步证实;(4)本研究中将PI-RADS≥3分的病灶作为整体进行分析,后期将继续深入研究比较不同亚组的病灶的临床及影像指标差异。

4 总结

       ADCmean和ADCmin在PI-RADS≥3分csPCa的诊断中表现出良好的应用价值,ADCmean的预测效能优于ADCmin,联合PSAD能进一步提高csPCa的检出率,可为临床诊疗提供依据。

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[2]
MATOSO A, EPSTEIN J I. Defining clinically significant prostate cancer on the basis of pathological findings[J]. Histopathology, 2019, 74(1): 135-145. DOI: 10.1111/his.13712.
[3]
ADAMAKI M, ZOUMPOURLIS V. Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics[J/OL]. Pharmacol Ther, 2021, 228: 107932 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/34174272/. DOI: 10.1016/j.pharmthera.2021.107932.
[4]
WILLIAMS I S, MCVEY A, PERERA S, et al. Modern paradigms for prostate cancer detection and management[J]. Med J Aust, 2022, 217(8): 424-433. DOI: 10.5694/mja2.51722.
[5]
FAZEKAS T, SHIM S R, BASILE G, et al. Magnetic resonance imaging in prostate cancer screening: a systematic review and meta-analysis[J]. JAMA Oncol, 2024, 10(6): 745-754. DOI: 10.1001/jamaoncol.2024.0734.
[6]
PADHANI A R, GODTMAN R A, SCHOOTS I G. Key learning on the promise and limitations of MRI in prostate cancer screening[J]. Eur Radiol, 2024, 34(9): 6168-6174. DOI: 10.1007/s00330-024-10626-6.
[7]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[8]
CASH H, MAXEINER A, STEPHAN C, et al. The detection of significant prostate cancer is correlated with the Prostate Imaging Reporting and Data System (PI-RADS) in MRI/transrectal ultrasound fusion biopsy[J]. World J Urol, 2016, 34(4): 525-532. DOI: 10.1007/s00345-015-1671-8.
[9]
THAI J N, NARAYANAN H A, GEORGE A K, et al. Validation of PI-RADS version 2 in transition zone lesions for the detection of prostate cancer[J]. Radiology, 2018, 288(2): 485-491. DOI: 10.1148/radiol.2018170425.
[10]
TAMADA T, UEDA Y, UENO Y, et al. Diffusion-weighted imaging in prostate cancer[J]. MAGMA, 2022, 35(4): 533-547. DOI: 10.1007/s10334-021-00957-6.
[11]
VAN DER HOOGT K J J, SCHIPPER R J, WESSELS R, et al. Breast DWI analyzed before and after gadolinium contrast administration-an intrapatient analysis on 1.5 T and 3.0 T[J]. Invest Radiol, 2023, 58(12): 832-841. DOI: 10.1097/RLI.0000000000000999.
[12]
LAWRENCE E M, ZHANG Y X, STAREKOVA J, et al. Reduced field-of-view and multi-shot DWI acquisition techniques: Prospective evaluation of image quality and distortion reduction in prostate cancer imaging[J]. Magn Reson Imaging, 2022, 93: 108-114. DOI: 10.1016/j.mri.2022.08.008.
[13]
WANG F M, FU M, TANG Y Z, et al. The value of adjusted PSAD in prostate cancer detection in the Chinese population[J/OL]. Front Oncol, 2024, 14: 1462997 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/39416462/. DOI: 10.3389/fonc.2024.1462997.
[14]
WANG C M, YUAN L, SHEN D Y, et al. Combination of PI-RADS score and PSAD can improve the diagnostic accuracy of prostate cancer and reduce unnecessary prostate biopsies[J/OL]. Front Oncol, 2022, 12: 1024204 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36465344/. DOI: 10.3389/fonc.2022.1024204.
[15]
ZOU B Z, WEN H, LUO H J, et al. Value of serum free prostate-specific antigen density in the diagnosis of prostate cancer[J]. Ir J Med Sci, 2023, 192(6): 2681-2687. DOI: 10.1007/s11845-023-03448-w.
[16]
林俊坤, 钟治平, 陈志远, 等. PI-RADS v2.1联合ADC值对前列腺移行带癌的诊断效能评估[J]. 中国医学计算机成像杂志, 2022, 28(5): 510-516. DOI: 10.19627/j.cnki.cn31-1700/th.2022.05.016.
LIN J K, ZHONG Z P, CHEN Z Y, et al. Evaluation of the diagnostic performance of PI-RADS v2.1 combined with ADC value in prostate transitional zone cancer[J]. Chin Comput Med Imag, 2022, 28(5): 510-516. DOI: 10.19627/j.cnki.cn31-1700/th.2022.05.016.
[17]
AGROTIS G, POOCH E, ABDELATTY M, et al. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysis[J]. Eur Radiol, 2025, 35(1): 404-416. DOI: 10.1007/s00330-024-10890-6.
[18]
AHMED H U, BOSAILY A E, BROWN L C, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study[J]. Lancet, 2017, 389(10071): 815-822. DOI: 10.1016/S0140-6736(16)32401-1.
[19]
BOEHM B E, YORK M E, PETROVICS G, et al. Biomarkers of aggressive prostate cancer at diagnosis[J/OL]. Int J Mol Sci, 2023, 24(3): 2185 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36768533/. DOI: 10.3390/ijms24032185.
[20]
WANG X F, HIELSCHER T, RADTKE J P, et al. Comparison of single-scanner single-protocol quantitative ADC measurements to ADC ratios to detect clinically significant prostate cancer[J/OL]. Eur J Radiol, 2021, 136: 109538 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/33482592/. DOI: 10.1016/j.ejrad.2021.109538.
[21]
KASIVISVANATHAN V, RANNIKKO A S, BORGHI M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis[J]. N Engl J Med, 2018, 378(19): 1767-1777. DOI: 10.1056/NEJMoa1801993.
[22]
TAMADA T, KIDO A, YAMAMOTO A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1[J]. J Magn Reson Imaging, 2021, 53(1): 283-291. DOI: 10.1002/jmri.27283.
[23]
LEI Y, LI T J, GU P, et al. Combining prostate-specific antigen density with prostate imaging reporting and data system score version 2.1 to improve detection of clinically significant prostate cancer: A retrospective study[J/OL]. Front Oncol, 2022, 12: 992032 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36212411/. DOI: 10.3389/fonc.2022.992032.
[24]
OERTHER B, ENGEL H, BAMBERG F, et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level[J]. Prostate Cancer Prostatic Dis, 2022, 25(2): 256-263. DOI: 10.1038/s41391-021-00417-1.
[25]
YANG S, ZHAO W L, TAN S X, et al. Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy[J]. Transl Androl Urol, 2020, 9(3): 1252-1261. DOI: 10.21037/tau-19-755.
[26]
SCHRÖDER F H, HUGOSSON J, ROOBOL M J, et al. Screening and prostate cancer mortality: results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up[J]. Lancet, 2014, 384(9959): 2027-2035. DOI: 10.1016/S0140-6736(14)60525-0.
[27]
TAN T W, PNG K S, LEE C H, et al. MRI fusion-targeted transrectal prostate biopsy and the role of prostate-specific antigen density and prostate health index for the detection of clinically significant prostate cancer in Southeast Asian men[J]. J Endourol, 2017, 31(11): 1111-1116. DOI: 10.1089/end.2017.0485.
[28]
GÖRTZ M, RADTKE J P, HATIBOGLU G, et al. The value of prostate-specific antigen density for prostate imaging-reporting and data system 3 lesions on multiparametric magnetic resonance imaging: a strategy to avoid unnecessary prostate biopsies[J]. Eur Urol Focus, 2021, 7(2): 325-331. DOI: 10.1016/j.euf.2019.11.012.
[29]
HAN C, LIU S, QIN X B, et al. MRI combined with PSA density in detecting clinically significant prostate cancer in patients with PSA serum levels of 4∼10ng/mL: Biparametric versus multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(4): 235-244. DOI: 10.1016/j.diii.2020.01.014.
[30]
ULLRICH T, QUENTIN M, ARSOV C, et al. Risk stratification of equivocal lesions on multiparametric magnetic resonance imaging of the prostate[J]. J Urol, 2018, 199(3): 691-698. DOI: 10.1016/j.juro.2017.09.074.
[31]
赵莹莹, 张丹, 宋娜, 等. 超高b值DWI对外周带前列腺癌的诊断价值[J]. 磁共振成像, 2021, 12(12): 24-28. DOI: 10.12015/issn.1674-8034.2021.12.005.
ZHAO Y Y, ZHANG D, SONG N, et al. Diagnostic value of ultra-high b-value DWI in peripheral prostate cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 24-28. DOI: 10.12015/issn.1674-8034.2021.12.005.
[32]
FANG J Z, ZHANG Y Z, LI R F, et al. The utility of diffusion-weighted imaging for differentiation of Phyllodes tumor from fibroadenoma and breast cancer[J/OL]. Front Oncol, 2023, 13: 938189 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36937381/. DOI: 10.3389/fonc.2023.938189.
[33]
GAO J, XU S, JU H J, et al. The potential application of MR-derived ADCmin values from 68Ga-DOTATATE and 18F-FDG dual tracer PET/MR as replacements for FDG PET in assessment of grade and stage of pancreatic neuroendocrine tumors[J/OL]. EJNMMI Res, 2023, 13(1): 10 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36752942/. DOI: 10.1186/s13550-023-00960-z.
[34]
LEE S, KIM S H, HWANG J A, et al. Pre-operative ADC predicts early recurrence of HCC after curative resection[J]. Eur Radiol, 2019, 29(2): 1003-1012. DOI: 10.1007/s00330-018-5642-5.
[35]
KRAUSS W, FREY J, LAGERLÖF J H, et al. Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer[J]. Acta Radiol, 2024, 65(3): 307-317. DOI: 10.1177/02841851231216555.
[36]
ZHAO Y Y, XIONG M L, LIU Y F, et al. Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone[J/OL]. Front Oncol, 2023, 13: 1247682 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38074651/. DOI: 10.3389/fonc.2023.1247682.
[37]
ABREU-GOMEZ J, WALKER D, ALOTAIBI T, et al. Effect of observation size and apparent diffusion coefficient (ADC) value in PI-RADS v2.1 assessment category 4 and 5 observations compared to adverse pathological outcomes[J]. Eur Radiol, 2020, 30(8): 4251-4261. DOI: 10.1007/s00330-020-06725-9.
[38]
董奇飞, 陈宇涵, 王常明, 等. 表观弥散系数在PI-RADS 3分且PSA灰区患者中的应用价值[J]. 临床泌尿外科杂志, 2024, 39(10): 909-913, 917. DOI: 10.13201/j.issn.1001-1420.2024.10.013.
DONG Q F, CHEN Y H, WANG C M, et al. Application value of apparent diffusion coefficient in patients with PI-RADS score of 3 and PSA gray area[J]. J Clin Urol, 2024, 39(10): 909-913, 917. DOI: 10.13201/j.issn.1001-1420.2024.10.013.
[39]
MEYER H J, WIENKE A, SUROV A. Discrimination between clinical significant and insignificant prostate cancer with apparent diffusion coefficient-a systematic review and meta analysis[J/OL]. BMC Cancer, 2020, 20(1): 482 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/32460795/. DOI: 10.1186/s12885-020-06942-x.
[40]
KESCH C, RADTKE J P, WINTSCHE A, et al. Correlation between genomic index lesions and mpMRI and 68Ga-PSMA-PET/CT imaging features in primary prostate cancer[J/OL]. Sci Rep, 2018, 8(1): 16708 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/30420756/. DOI: 10.1038/s41598-018-35058-3.
[41]
方磊, 方慧, 金利, 等. ADC最小值对外周带早期前列腺癌与慢性前列腺炎的鉴别诊断价值[J]. 磁共振成像, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imag, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
[42]
一诺, 王雅菁, 王鹏, 等. 磁共振表观扩散系数鉴别前列腺癌预后相关风险分层的应用研究[J]. 磁共振成像, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
YI N, WANG Y J, WANG P, et al. Application of MRI apparent diffusion coefficient in identifying prognostic risk stratification of prostate cancer[J]. Chin J Magn Reson Imag, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
[43]
YAN X, MA K, ZHU L, et al. The value of apparent diffusion coefficient values in predicting Gleason grading of low to intermediate-risk prostate cancer[J/OL]. Insights Imaging, 2024, 15(1): 137 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38853212/. DOI: 10.1186/s13244-024-01684-x

上一篇 DCE-MRI药代动力学参数直方图预测前列腺癌内分泌治疗反应的研究
下一篇 基于ADC直方图特征的列线图模型在预测移行区临床显著性前列腺癌中的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2