分享:
分享到微信朋友圈
X
综述
心脏磁共振在糖尿病心肌病亚临床阶段中的研究进展
吴永顺 包梦圆 张林鑫 邢艳

Cite this article as: WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(4): 168-173.本文引用格式:吴永顺, 包梦圆, 张林鑫, 等. 心脏磁共振在糖尿病心肌病亚临床阶段中的研究进展[J]. 磁共振成像, 2025, 16(4): 168-173. DOI:10.12015/issn.1674-8034.2025.04.027.


[摘要] 糖尿病心肌病(diabetic cardiomyopathy, DCM)作为糖尿病(diabetes mellitus, DM)常见并发症之一,其早期表现为无症状性心肌损伤和功能异常,而DCM早期诊断和干预对预后至关重要。由于传统影像学技术对亚临床心肌病变的敏感性不足,近年来多参数心脏磁共振(cardiac magnetic resonance, CMR)因其无创性、高分辨率及多功能成像能力,成为早期识别DCM亚临床阶段的重要工具,在近期的指南和专家共识中得到认可,相关研究不断推陈出新。本文将从心肌代谢异常、微循环功能障碍、心肌纤维化及心肌应变等方面,系统阐述CMR在DCM亚临床期病变诊断应用中的研究进展,分析CMR应用于DCM亚临床期诊断的优势和挑战,为未来的临床诊疗和研究方向提供参考。
[Abstract] Diabetic cardiomyopathy (DCM), as one of the common complications of diabetes mellitus (DM), manifests early as asymptomatic myocardial injury and functional abnormalities. The early diagnosis and intervention of DCM are crucial for prognosis. Due to the insufficient sensitivity of traditional imaging techniques in detecting subclinical myocardial lesions, multiparametric cardiac magnetic resonance (CMR) has emerged as a significant tool for early identification of the subclinical stage of DCM in recent years. This is attributed to its non-invasiveness, high resolution, and multifunctional imaging capabilities. Its importance has been recognized in recent guidelines and expert consensuses, and relevant research continues to evolve. This article systematically reviews the research progress of CMR in the diagnosis of subclinical lesions in DCM, focusing on myocardial metabolic abnormalities, microcirculation dysfunction, myocardial fibrosis, and myocardial strain. Furthermore, it analyzes the advantages and challenges of applying CMR in the subclinical diagnosis of DCM, providing a reference for future clinical diagnosis, treatment, and research directions
[关键词] 糖尿病心肌病;心脏磁共振;磁共振波谱;心肌纤维化;心肌应变
[Keywords] diabetic cardiomyopathy;cardiac magnetic resonance;magnetic resonance spectroscop;myocardial fibrosis;myocardial strain

吴永顺    包梦圆    张林鑫    邢艳 *  

新疆医科大学第一附属医院影像中心,乌鲁木齐 830011

通信作者:邢艳,E-mail:xingyanzwb@sina.com

作者贡献声明:邢艳拟定本综述的写作思路,撰写稿件,并对稿件重要内容进行了修改,获得了省部共建中亚高发病成因与防治国家重点实验室开放课题项目、“天山英才”医药卫生高层次人才培养计划项目的资金支持;吴永顺起草和撰写稿件,获取、解释本研究的参考文献;包梦圆、张林鑫获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本综述的准确性和诚信。


基金项目: 省部共建中亚高发病成因与防治国家重点实验室开放课题项目 SKL-HIDCA-2023-10 “天山英才”医药卫生高层次人才培养计划 TSYC202301B009
收稿日期:2025-02-24
接受日期:2025-04-10
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.04.027
本文引用格式:吴永顺, 包梦圆, 张林鑫, 等. 心脏磁共振在糖尿病心肌病亚临床阶段中的研究进展[J]. 磁共振成像, 2025, 16(4): 168-173. DOI:10.12015/issn.1674-8034.2025.04.027.

0 引言

       糖尿病(diabetes mellitus, DM)是世界范围内发病率最高的慢性代谢性疾病之一,根据国际DM联盟最新数据,全球DM病例总数已经突破5.37亿[1],DM患者的首要死因为心血管相关疾病[2]。我国DM病例呈逐年上升的趋势,且年龄结构趋于年轻[3]。糖尿病心肌病(diabetic cardiomyopathy, DCM)是DM患者的常见并发症,其心力衰竭(heart failure, HF)发生率显著升高[4, 5, 6],而个体同时存在DM和HF会导致心血管预后不良[7]。亚临床期DCM患者一般没有明显症状,确诊存在困难[8, 9],进而导致诊断延迟和干预滞后。早期发现DM患者心脏损害并采取合理的临床策略,可以延缓甚至逆转DM患者心脏损害,降低心脏并发症的发病率及死亡率[10]。早期诊断的临床价值在欧洲心脏病学会(European Society of Cardiology, ESC)2024年发布的DM心肌疾病临床共识中也得到了肯定[11]

       近年来,心脏磁共振(cardiac magnetic resonance, CMR)以其高分辨率、多参数定量分析及无创等优势逐渐成为心脏诊断的“金标准”[12]。随着磁共振代谢成像、参数定量成像、心肌灌注成像及应变分析等技术的发展,CMR不仅可量化心肌代谢产物水平、组织特征参数等早期代谢与纤维化异常标志物,还能动态评估微血管灌注异常和早期心肌功能障碍,为DM患者亚临床期心脏病变的机制探索与临床干预的策略优化提供了全新视角。本文旨在系统阐述CMR在DCM亚临床期病变诊断应用中的研究进展,分析CMR应用于DCM亚临床期评估的优势和挑战,为未来的临床诊疗和研究方向提供参考。

1 DCM亚临床阶段简述

       DCM被定义为一种独立于冠心病、高血压(hypertension, HTN)和肥胖等传统心血管危险因素的 DM 相关心肌病变,其核心表现为2型糖尿病(type 2 diabetes mellitus, T2DM)患者心肌结构与功能的异常改变[8]。基于临床症状的有无,DCM可分为亚临床期(无症状期)与临床期(显性期)。流行病学研究[6]显示,DM患者HF的发生率高达20%~40%,DCM作为HF前驱阶段的病理过程,其亚临床期也被等同于B阶段心衰(stage B heart failure, SBHF)[9]。尽管亚临床期DCM缺乏典型临床表现,但多项研究[13, 14]证实,无症状DM患者可通过超声心动图、心电图、CMR技术以及B型利钠肽或N端B型利钠肽前体等生物标志物检出隐匿性心脏结构和功能异常。ESC 2024年发布的DM心肌疾病临床共识[11]指出,DCM亚临床期的心脏异常主要表现为心脏结构和功能的改变,包括左心室肥大、舒张功能障碍、心肌应变异常、微血管功能障碍、间质纤维化和炎症标志物升高。HALABI等[15]的研究证明,早期药物干预可以有效延缓HF高危无症状患者左室功能的恶化。

       DCM的发病机制涉及多维发病机制的交互作用,其核心病理过程由代谢紊乱、氧化应激、炎症反应、心肌纤维化和神经内分泌激活共同驱动[16]。其核心机制包括:高血糖与胰岛素抵抗迫使心肌能量代谢从葡萄糖氧化转向脂肪酸利用,伴随线粒体电子传递链效率下降,导致三磷酸腺苷(adenosine triphosphate, ATP)合成不足,脂肪酸氧化与摄取的失衡引发心肌脂质沉积,即心肌脂毒性,诱导心肌细胞坏死与间质纤维化[17];高血糖激活晚期糖基化终产物及其受体信号通路,促进活性氧生成,直接损伤心肌细胞并激活纤维化相关信号通路,导致心肌胶原蛋白沉积和心肌顺应性减低[18];同时,肾素-血管紧张素-醛固酮系统和交感神经系统的过度激活加剧心肌重塑,同时放大氧化应激与炎症反应的协同破坏效应[11, 19]

       尽管DCM亚临床期是一个已确定的病理过程,但由于其通常无症状,且常合并其他心血管相关疾病,制约了其临床诊断方法的应用。SWIATKIEWICZ等[20]的流行病学研究表明,在DCM患者群体中,SBHF患者占比高达56.9%,这一群体HF的风险显著增加,亟待引起临床领域高度重视。CMR以其多模态成像的特点,在DCM早期诊断中展现出独特优势,联合心肌代谢成像、心肌灌注成像、参数定量成像和应变分析可多维度评估心肌代谢异常、冠状动脉微循环障碍、心肌纤维化和心肌功能,在DCM早期检测、表型分析和治疗指导中发挥重要作用[8]。未来需要聚焦于建立基于多组学特征的DCM诊断标准,并构建包含临床、生物标志物、心电图变量和影像资料的多维度风险预测体系,为临床疾病管理和预后评估提供价值。

2 CMR在DCM亚临床阶段中的应用

2.1 心肌代谢异常的评估

       T2DM患者会发生脂肪酸、葡萄糖、氨基酸和酮体代谢受损,ATP的生成效率减低,同时心肌脂肪酸摄取和氧化失衡,导致心肌脂毒性[21]。KASHIWAGI-TAKAYAMA等[22]的研究指出,T2DM患者心肌中脂质含量明显升高,并被证明与心脏功能不全显著相关。

       心脏磁共振波谱(magnetic resonance spectroscopy, MRS)是一种量化分析心肌中多种代谢物的检查方法,其核心原理是利用化学位移效应分离不同代谢物信号,通过谱线位置区别物质类型、谱线下面积反映其浓度,包括磷31(31P)和氢质子(1H)在内的多种不同原子核均可用于评估心脏代谢产物水平[23]。利用MRS技术定量检测心肌中甘油三酯(triglyceride, TG)的含量,能直观地反映心肌脂肪变性,同时也可作为DM患者用药后的监测指标。GAO等[24]基于无症状人群的研究显示,T2DM患者心肌脂肪变性与左心室变形和灌注功能障碍相关,且合并代谢综合征时,心肌脂肪变性更显著。SOGHOMONIAN等[25]的研究也证明,TG含量与T2DM相关。磷酸肌酸(phosphocreatine, PCr)作为ATP合成的中间产物,具有稳定ATP水平、调节心肌代谢的作用[26]。PCr与ATP的浓度比(PCr/ATP)是一种灵敏的检测手段,能较好地反映心脏的代谢状况[23]。一项基于31P-MRS的研究[27]显示,在DM状态下,PCr/ATP水平下降与心肌舒张功能不全相关,是HF发生发展的重要指标。CROTEAU等[28]研究表明,高脂高糖饮食的T2DM小鼠模型中,PCr和PCr/ATP均显著降低。

       近年来,超极化MRS使用动态核极化技术,在低温和强磁场下,使用微波辐照将电子自旋的部分极化转移到目标原子核(如13C)制作成超极化探针,转移到生物体内使得磁共振信号强度提高,从而克服了传统MRI技术中非氢原子信号强度低的限制,使得实时监测活细胞内的代谢成为可能[29]。心脏代谢的灵活性对于维持心脏功能至关重要,丙酮酸作为探针,因其快速代谢转化和无背景信号干扰的特点,成为研究糖酵解和三羧酸循环代谢的核心分子[29]。RIDER等[30]使用该技术得到的无症状T2DM患者的心脏碳酸氢盐代谢通量较对照组显著降低,验证了该技术无创评估T2DM患者心肌代谢改变的能力。SHAUL等[31]基于该技术,首次提出并验证了乳酸脱氢酶与丙酮酸脱氢酶(pyruvate dehydrogenase, PDH)活性比作为心脏pH无创性评估指标的可行性。SAVIC等[32]使用超极化MRS评估美洛地平治疗前后的PDH通量,DM组和对照组小鼠分别提高了3.1倍和1.2倍,表明该技术在药物疗效评价中的价值。LARSON等[33]首次在人体中通过超极化13C丙酮酸MRS完成区域性心脏代谢量化,为未来的研究提供了初步的方法和动力学参数。

       MRI分子探针技术通过靶向结合特定生物分子,调控磁性纳米粒子的磁化率,使病变区域在MRI图像中信号增强或减弱,为CMR代谢成像提供了增量价值[34]。NIE等[35]基于氟化碳纳米片的多功能集成策略,开发了一种对活性氧响应的对比增强型MRI纳米探针,可在心肌结构与功能异常发生前精准识别DM小鼠模型氧化应激标志物的升高。化学交换饱和转移(chemical exchange saturation transfer, CEST)是一种近期出现的成像方法,通过溶质与水的化学位移可以间接实现低浓度代谢物的无创检测。较1H-MRS和31P-MRS,CEST测量肌酸(creatine, Cr)或PCr敏感度及空间分辨率更高,此外,CEST相比1H-MRS可以单独表征Cr和PCr[23]

       MRS、超极化MRS、MRI分子探针和CEST突破传统结构成像局限,可在心肌结构异常前检测微观心肌成分改变,这些技术为DCM亚临床期诊断、代谢干预疗效评估及疾病进展监测提供了精准的影像学生物标志物,推动DM心脏并发症防治向分子层面迈进。但MRS仍有固有信噪比低、代谢物浓度低时检测敏感性不足、高分辨率需要较长扫描时间等技术局限。未来需要通过技术优化和多模态成像技术的整合,推动DCM亚临床期代谢异常的早期诊断和治疗监测,分子机制的研究亟待向更深层次发展,为DCM的防治提供新的策略和工具。而MRI分子探针和CEST的心脏成像的临床应用还不成熟,需要更多循证研究的支持。

2.2 微循环障碍的评估

       DCM 微循环障碍的机制复杂,包括内皮功能障碍、炎症反应、氧化应激和代谢异常等多种机制共同作用,导致 DCM 亚临床阶段的微循环灌注异常,表现为微血管密度减少、血管内皮功能障碍和血管炎症等病理改变[36]。既往研究表明,T2DM患者早期即可出现微循环功能障碍,且严重程度与病程长短呈正相关[37, 38]。LI等[39]的研究表明,T2DM可能损害心肌灌注功能,而在T2DM患者中,合并冠状动脉微血管损伤与左室收缩功能障碍的恶化有关。

       MRI心肌灌注成像是一种低成本、高效率的无创性成像方法,可准确直观评估心肌缺血、心肌存活和心脏功能,根据是否施加心脏负荷(运动负荷或血管扩张剂)分为静息灌注和负荷灌注,通过动脉输入函数和组织灌注时间-强度曲线的去卷积,结合费米分布函数,可量化心肌血流量,主要参数包括静息心肌血流量(rest myocardial blood flow, rMBF)、负荷心肌血流量(stress myocardial blood flow, sMBF)和心肌灌注储备(myocardial perfusion reserve, MPR),即sMBF与rMBF之比,其中MPR是识别微循环损伤的存在、分布和程度的敏感指标[40]。YEO等[41]的研究表明,无症状T2DM患者较正常对照组具有更低的sMBF和MPR,而rMBF差异无统计学意义。

       心肌灌注储备指数(myocardial perfusion reserve index, MPRI)是MRI心肌灌注成像中最常用的半定量参数,定义为负荷和静息状态下心肌时间-信号强度曲线斜率的比值,正常心肌的MPRI大于2.0,若MPRI小于1.5则提示心肌缺血[42]。一项关于T2DM患者的研究[43]表明,无症状T2DM患者整体MPRI低于健康志愿者,其中超过50%的患者存在微循环障碍。LI等[44]的研究显示,无阻塞性冠状动脉疾病的T2DM患者MPRI显著降低,且与糖化血红蛋白(glycated hemoglobin, HbA1c)水平呈负相关。WANG等[45]基于首过灌注成像技术证实,T2DM患者心肌信号强度上升速率降低、达到最大信号强度的时间延长,表明心肌微血管功能显著受损,T2DM合并阻塞性冠状动脉疾病的患者心肌微血管功能障碍则更为严重。

       尽管MRI心肌灌注成像为DCM亚临床期微循环障碍的无创定量评估提供了敏感工具,但目前关于DM患者心脏微循环障碍的动态演变规律及其与血糖控制间的关联机制仍存在知识空白。未来需通过多模态MRI技术纵向追踪DM患者心肌微血管功能演变轨迹,结合动态血糖参数,阐明血糖控制与微循环障碍的剂量-效应关系。同时,构建MRI灌注参数驱动的风险预测模型,优化以微循环保护为重点的个体化血糖管理策略,推动DCM早期防治从宏观血流重建向微循环精准调控的范式转变。

2.3 心肌纤维化的评估

       DCM患者早期病理性心肌纤维化主要表现为间质纤维化,由于长期高血糖、代谢紊乱、氧化应激和炎症反应,促进心肌纤维母细胞向肌成纤维细胞转分化,增加胶原蛋白合成,导致心肌顺应性减低[18, 46]。LIU等[47]的实验证明DM小鼠12周龄时纤维化标志物表达显著升高并伴随微观胶原沉积,早于16周肉眼可见的纤维化。

       纵向弛豫时间定量成像(T1 mapping)是一种用于量化心肌组织的纵向弛豫时间(T1值)的CMR成像方法,通过测量注射造影剂前后的T1值(包括心肌和血池),可获得初始T1值和增强后T1值。这些参数结合患者血细胞比容可计算细胞外体积分数(extracellular volume fraction, ECV)[48]。相关研究[49]表明,T1 mapping和ECV可作为DM患者早期心肌纤维化的有效检测手段。

       既往研究[50]表明,ECV值的增加程度与HbA1c及病程均具有相关性。ZHANG等[51]基于1型DM小鼠模型的研究提出,ECV值可以早期评估小鼠心肌间质纤维化。SHAO等[52]的动物实验也证明实验猪的心肌初始T1及ECV与病程长短呈正相关,这说明初始T1及ECV可以作为动态追踪疾病进展的生物标志物。KHAN等[53]的关于DM和DM前期患者的研究表明,DM患者ECV较对照组显著升高,同时随访结果证明ECV升高是不良心血管结局的独立预测因子。LAOHABUT等[54]的一项长期随访研究指出,患有T2DM和高ECV值均被发现是不良心血管结局的独立危险因素。T1ρ mapping作为一种新兴的磁共振成像技术,凭借其独特的自旋锁定脉冲机制,能够有效地锁定横向磁化,从而精准测量组织中的低频运动。该技术对诸如心肌中胶原蛋白等大分子的缓慢运动过程展现出高度敏感性,这使其在评估心肌纤维化方面具有显著优势,且无需使用对比剂,为不耐受钆剂患者的心肌损伤评估提供了一种安全、可靠的评估手段[55]。SHU等[56]首次在无症状T2DM患者中验证了T1ρ mapping技术的诊断性能,T2DM患者的初始T1、ECV和T1ρ均显著高于对照组,同时T1ρ的诊断性能超过初始T1。

       虽然CMR参数定量成像表现出检测DCM早期心肌纤维化、辅助风险分层及疗效评估的优秀性能,但其仍存在不同设备参数缺乏可比性、DCM诊断阈值未标准化等问题,未来研究应聚焦于通过多中心队列研究验证CMR定量参数的诊断阈值及预后价值。而基于T1ρ mapping的DCM研究尚处于初步阶段,未来研究应进一步探索T1ρ mapping的信噪比优化及临床适用性以加速其临床转化。

2.4 心肌应变的评估

       胰岛素抵抗导致的心肌钙稳态失衡,是DCM中心功能进行性恶化的核心机制[57]。传统心脏功能参数(如左室射血分数)的降低迟于心肌应变受损,基于心脏磁共振特征追踪技术(cardiac magnetic resonance feature tracking, CMR-FT)的心肌应变分析可通过量化纵向、径向及周向三个维度的形变指数,敏感识别亚临床期心肌力学异常[58]。该技术通过追踪心肌边界的解剖体素位移,实现心房心室容量与功能的精准评估,其优越的可重复性使其成为早期诊断的重要工具[59]

       已有研究表明,DM患者的整体纵向应变(global longitudinal strain, GLS)低于正常人群[60]。CHADALAVADA等[59]的大规模群体研究揭示,运用CMR-FT技术所检测出的左室径向、纵向及周向应变指标,皆能强有力且独立地预测包括HF、心肌梗死以及卒中等在内的不良心血管结局。ZHOU等[61]的研究证明,HbA1c与所有方向的心肌应变参数存在独立相关性,而LI等[62]进一步证实,HbA1c是左室GLS的独立预测因子。以上研究提示血糖管理对延缓心肌损伤的关键作用。

       既往DM患者心肌应变研究多集中在左室,而左房、右室和房室耦联机制逐渐得到重视。QIAN等[63]的研究发现射血分数保留的T2DM患者无论是否合并贫血,均存在左房储液和导管功能的协同损害,表明左房功能障碍在DCM进展过程中扮演重要角色。LI等[64]的研究表明,合并HTN且射血分数保留的T2DM患者左房应变参数较单纯HTN组显著降低,且与左室周向及纵向应变下降独立相关,提示房室耦联机制可能加剧心功能恶化。SHI[65]等的研究显示,DM合并HTN导致患者左房应变参数的降低及左房室耦合指数的升高,这可能说明合并HTN破坏了左房左室的功能协同,导致心脏功能的恶化。值得注意的是,这些研究中伴有其他并发症的DM患者较单纯DM患者普遍表现出更为严重的心功能障碍,阐明这些并发症的协同效应将有助于优化患者的预后风险分层。

       综上,CMR-FT技术通过多维度心肌应变分析可敏感识别DCM亚临床期心肌功能障碍,为DM患者临床风险分层及靶向干预提供了依据。目前,不同后处理软件间参数异质性显著,加之心肌应变分析尚未建立规范化评估体系,仍然是制约其临床推广的关键,未来亟需通过多中心临床研究建立统一操作规范与诊断阈值。值得注意的是,关于左房、右室应变受损、房室机械耦联失衡在DCM病程中的动态演变规律,以及多系统并发症协同作用机制的研究仍显不足,未来应联合多模态纵向研究明确多心腔应变参数对临床预后的预测效能,为临床干预提供理论依据。

3 小结与展望

       综上,对亚临床期DCM进行早期诊断,是延缓疾病发展的关键。CMR代谢成像、心肌灌注成像、参数定量成像及应变分析等技术能灵敏地反映心肌细胞的精细结构及功能变化,为临床早期干预提供了重要依据。但目前CMR仍存在设备昂贵、扫描时间长、后处理繁琐等问题,且亚临床期因无症状就诊率不高,制约了其在临床的推广。未来发展方向将聚焦于技术创新与多学科融合,通过多模态CMR实现多技术评估,全面提升诊断效率,另外,人工智能算法的应用可优化图像重建、自动量化参数,显著缩短操作时间并降低人为误差。随着技术迭代与成本控制,CMR有望突破现有瓶颈,在DCM的早期筛查和精准管理中发挥核心作用,为改善患者远期预后服务。

[1]
ELSAYED N A, ALEPPO G, ARODA V R, et al. 2. classification and diagnosis of diabetes: standards of care in diabetes-2023[J/OL]. Diabetes Care, 2023, 46(Suppl 1): S19-S40 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36507649/. DOI: 10.2337/dc23-S002.
[2]
ZHAN J B, JIN K Y, XIE R, et al. AGO2 protects against diabetic cardiomyopathy by activating mitochondrial gene translation[J]. Circulation, 2024, 149(14): 1102-1120. DOI: 10.1161/CIRCULATIONAHA.123.065546.
[3]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)(上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695. DOI: 10.19538/j.nk2021080106.
Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)(Part 1)[J]. Chin J Pract Intern Med, 2021, 41(8): 668-695. DOI: 10.19538/j.nk2021080106.
[4]
POLOVINA M, LUND L H, ĐIKIĆ D, et al. Type 2 diabetes increases the long-term risk of heart failure and mortality in patients with atrial fibrillation[J]. Eur J Heart Fail, 2020, 22(1): 113-125. DOI: 10.1002/ejhf.1666.
[5]
JERKINS T, MCGILL J B, BELL D S H. Heart failure and diabetes: Clinical significance and epidemiology of this two-way association[J]. Diabetes Obes Metab, 2023, 25(Suppl 3): 3-14. DOI: 10.1111/dom.15062.
[6]
PALAZZUOLI A, IACOVIELLO M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence[J]. Heart Fail Rev, 2023, 28(3): 585-596. DOI: 10.1007/s10741-022-10238-6.
[7]
KARWI Q G, HO K L, PHERWANI S, et al. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches[J]. Cardiovasc Res, 2022, 118(3): 686-715. DOI: 10.1093/cvr/cvab120.
[8]
MARWICK T H, GIMELLI A, PLEIN S, et al. Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 23(2): e62-e84 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34739054/. DOI: 10.1093/ehjci/jeab220.
[9]
STANTON A M, VADUGANATHAN M, CHANG L S, et al. Asymptomatic diabetic cardiomyopathy: an underrecognized entity in type 2 diabetes[J/OL]. Curr Diab Rep, 2021, 21(10): 41 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34580767/. DOI: 10.1007/s11892-021-01407-2.
[10]
KHAN S, AHMAD S S, KAMAL M A. Diabetic cardiomyopathy: from mechanism to management in a nutshell[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(2): 268-281. DOI: 10.2174/1871530320666200731174724.
[11]
SEFEROVIĆ P M, PAULUS W J, ROSANO G, et al. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases[J]. Eur J Heart Fail, 2024, 26(9): 1893-1903. DOI: 10.1002/ejhf.3347.
[12]
SERAPHIM A, KNOTT K D, AUGUSTO J, et al. Quantitative cardiac MRI[J]. J Magn Reson Imaging, 2020, 51(3): 693-711. DOI: 10.1002/jmri.26789.
[13]
RIJAL P, KUMAR B, BARNWAL S, et al. Subclinical right ventricular dysfunction in patients with asymptomatic type 2 diabetes mellitus: a cross-sectional study[J]. Indian Heart J, 2023, 75(6): 451-456. DOI: 10.1016/j.ihj.2023.10.005.
[14]
BERTRAND A, LEWIS A, CAMPS J, et al. Multi-modal characterisation of early-stage, subclinical cardiac deterioration in patients with type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 371 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39427200/. DOI: 10.1186/s12933-024-02465-y.
[15]
HALABI A, YANG H, WRIGHT L, et al. Evolution of myocardial dysfunction in asymptomatic patients at risk of heart failure[J]. JACC Cardiovasc Imaging, 2021, 14(2): 350-361. DOI: 10.1016/j.jcmg.2020.09.032.
[16]
JOSEPH J J, DEEDWANIA P, ACHARYA T, et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American heart association[J/OL]. Circulation, 2022, 145(9): e722-e759 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35000404/. DOI: 10.1161/CIR.0000000000001040.
[17]
NAKAMURA K, MIYOSHI T, YOSHIDA M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus[J/OL]. Int J Mol Sci, 2022, 23(7): 3587 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35408946/. DOI: 10.3390/ijms23073587.
[18]
PAN K L, HSU Y C, CHANG S T, et al. The role of cardiac fibrosis in diabetic cardiomyopathy: from pathophysiology to clinical diagnostic tools[J/OL]. Int J Mol Sci, 2023, 24(10): 8604 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37239956/. DOI: 10.3390/ijms24108604.
[19]
GRACZYK P, DACH A, DYRKA K, et al. Pathophysiology and advances in the therapy of cardiomyopathy in patients with diabetes mellitus[J/OL]. Int J Mol Sci, 2024, 25(9): 5027 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38732253/. DOI: 10.3390/ijms25095027.
[20]
SWIATKIEWICZ I, PATEL N T, VILLARREAL-GONZALEZ M, et al. Prevalence of diabetic cardiomyopathy in patients with type 2 diabetes in a large academic medical center[J/OL]. BMC Med, 2024, 22(1): 195 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38745169/. DOI: 10.1186/s12916-024-03401-3.
[21]
HEATHER L C, GOPAL K, SRNIC N, et al. Redefining diabetic cardiomyopathy: perturbations in substrate metabolism at the heart of its pathology[J]. Diabetes, 2024, 73(5): 659-670. DOI: 10.2337/dbi23-0019.
[22]
KASHIWAGI-TAKAYAMA R, KOZAWA J, HOSOKAWA Y, et al. Myocardial fat accumulation is associated with cardiac dysfunction in patients with type 2 diabetes, especially in elderly or female patients: a retrospective observational study[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 48 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36882731/. DOI: 10.1186/s12933-023-01782-y.
[23]
YURISTA S R, EDER R A, KWON D H, et al. Magnetic resonance imaging of cardiac metabolism in heart failure: how far have we come?[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1277-1289. DOI: 10.1093/ehjci/jeac121.
[24]
GAO Y, REN Y, GUO Y K, et al. Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: a 1H-magnetic resonance spectroscopy study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 70 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32471503/. DOI: 10.1186/s12933-020-01044-1.
[25]
SOGHOMONIAN A, DUTOUR A, KACHENOURA N, et al. Is increased myocardial triglyceride content associated with early changes in left ventricular function? A 1H-MRS and MRI strain study[J/OL]. Front Endocrinol, 2023, 14: 1181452 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37424866/. DOI: 10.3389/fendo.2023.1181452.
[26]
NASCIMBEN L, INGWALL J S, PAULETTO P, et al. Creatine kinase system in failing and nonfailing human myocardium[J]. Circulation, 1996, 94(8): 1894-1901. DOI: 10.1161/01.cir.94.8.1894.
[27]
LEVELT E, PAVLIDES M, BANERJEE R, et al. Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes[J]. J Am Coll Cardiol, 2016, 68(1): 53-63. DOI: 10.1016/j.jacc.2016.03.597.
[28]
CROTEAU D, BAKA T, YOUNG S, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy[J/OL]. Biomed Pharmacother, 2023, 160: 114310 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36731341/. DOI: 10.1016/j.biopha.2023.114310.
[29]
FRIJIA F, FLORI A, GIOVANNETTI G, et al. MRI application and challenges of hyperpolarized carbon-13 pyruvate in translational and clinical cardiovascular studies: a literature review[J/OL]. Diagnostics, 2024, 14(10): 1035 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38786333/. DOI: 10.3390/diagnostics14101035.
[30]
RIDER O J, APPS A, MILLER J J J J, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI[J]. Circ Res, 2020, 126(6): 725-736. DOI: 10.1161/CIRCRESAHA.119.316260.
[31]
SHAUL D, AZAR A, SAPIR G, et al. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: a potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance[J/OL]. NMR Biomed, 2021, 34(2): e4444 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/33258527/. DOI: 10.1002/nbm.4444.
[32]
SAVIC D, BALL V, HOLZNER L, et al. Hyperpolarized magnetic resonance shows that the anti-ischemic drug meldonium leads to increased flux through pyruvate dehydrogenase in vivo resulting in improved post-ischemic function in the diabetic heart[J/OL]. NMR Biomed, 2021, 34(4): e4471 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/33458907/. DOI: 10.1002/nbm.4471.
[33]
LARSON P E Z, TANG S Y, LIU X X, et al. Regional quantification of cardiac metabolism with hyperpolarized [1-13C]-pyruvate CMR evaluated in an oral glucose challenge[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 77 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38093285/. DOI: 10.1186/s12968-023-00972-7.
[34]
NING Y Y, ZHOU I Y, CARAVAN P. Quantitative in vivo molecular MRI[J/OL]. Adv Mater, 2024, 36(44): e2407262 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39279542/. DOI: 10.1002/adma.202407262.
[35]
NIE Z, ZHANG K, CHEN X Y, et al. A multifunctional integrated metal-free MRI agent for early diagnosis of oxidative stress in a mouse model of diabetic cardiomyopathy[J/OL]. Adv Sci, 2023, 10(7): e2206171 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36596646/. DOI: 10.1002/advs.202206171.
[36]
HUANG K M, LUO X L, LIAO B, et al. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 86 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37055837/. DOI: 10.1186/s12933-023-01816-5.
[37]
BALCıOĞLU A S, MÜDERRISOĞLU H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment[J]. World J Diabetes, 2015, 6(1): 80-91. DOI: 10.4239/wjd.v6.i1.80.
[38]
JIANG L, YAN W F, ZHANG L, et al. Early left ventricular microvascular dysfunction in diabetic pigs: a longitudinal quantitative myocardial perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 9 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38184602/. DOI: 10.1186/s12933-023-02106-w.
[39]
LI X M, JIANG L, GUO Y K, et al. The additive effects of type 2 diabetes mellitus on left ventricular deformation and myocardial perfusion in essential hypertension: a 3.0 T cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 161 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32998742/. DOI: 10.1186/s12933-020-01138-w.
[40]
WANG S, KIM P, WANG H N, et al. Myocardial blood flow quantification using stress cardiac magnetic resonance improves detection of coronary artery disease[J]. JACC Cardiovasc Imaging, 2024, 17(12): 1428-1441. DOI: 10.1016/j.jcmg.2024.07.023.
[41]
YEO J L, GULSIN G S, BRADY E M, et al. Association of ambulatory blood pressure with coronary microvascular and cardiac dysfunction in asymptomatic type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 85 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35643571/. DOI: 10.1186/s12933-022-01528-2.
[42]
LI X M, JIANG L, MIN C Y, et al. Myocardial perfusion imaging by cardiovascular magnetic resonance: research progress and current implementation[J/OL]. Curr Probl Cardiol, 2023, 48(6): 101665 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36828047/. DOI: 10.1016/j.cpcardiol.2023.101665.
[43]
NG M Y, ZHOU W L, VARDHANABHUTI V, et al. Cardiac magnetic resonance for asymptomatic patients with type 2 diabetes and cardiovascular high risk (CATCH): a pilot study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 42 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32234045/. DOI: 10.1186/s12933-020-01019-2.
[44]
LI X N, KANG S, LU Z G, et al. Assessment of myocardial microvascular dysfunction in patients with different stages of diabetes mellitus: an adenosine stress perfusion cardiac magnetic resonance study[J/OL]. Eur J Radiol, 2024, 178: 111600 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39029239/. DOI: 10.1016/j.ejrad.2024.111600.
[45]
WANG J, YANG Z G, GUO Y K, et al. Incremental effect of coronary obstruction on myocardial microvascular dysfunction in type 2 diabetes mellitus patients evaluated by first-pass perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 154 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37381007/. DOI: 10.1186/s12933-023-01873-w.
[46]
RIDWAN M, DIMIATI H, SYUKRI M, et al. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: a narrative review[J/OL]. Egypt Heart J, 2023, 75(1): 46 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37306727/. DOI: 10.1186/s43044-023-00376-z.
[47]
LIU H R, YAN W F, MA C Y, et al. Early detection of cardiac fibrosis in diabetic mice by targeting myocardiopathy and matrix metalloproteinase 2[J/OL]. Acta Biomater, 2024, 176: 367-378 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38244659/. DOI: 10.1016/j.actbio.2024.01.017.
[48]
阿巴斯江·阿地力, 李杉, 齐海成, 等. 磁共振参数定量技术在心肌受累疾患中的应用及研究进展[J]. 磁共振成像, 2023, 14(2): 179-185. DOI: 10.12015/issn.1674-8034.2023.02.032.
ABASIJIANG A D L, LI S, QI H C, et al. Application and research progress of magnetic resonance parameter quantitative technique in myocardial involvement diseases[J]. Chin J Magn Reson Imag, 2023, 14(2): 179-185. DOI: 10.12015/issn.1674-8034.2023.02.032.
[49]
MAREY A, ALABDULLAH A, GHORAB H, et al. Extracellular volume fraction and native T1 mapping in diabetic cardiomyopathy: a comprehensive meta-analysis[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 70 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39893360/. DOI: 10.1186/s12872-025-04496-z.
[50]
TADIC M, CUSPIDI C, CALICCHIO F, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
[51]
ZHANG H K, SHI C Y, YANG L, et al. Quantification of early diffuse myocardial fibrosis through 7.0 T cardiac magnetic resonance T1 mapping in a type 1 diabetic mellitus mouse model[J]. J Magn Reson Imaging, 2023, 57(1): 167-177. DOI: 10.1002/jmri.28207.
[52]
SHAO G Z, CAO Y K, CUI Y, et al. Multiparametric CMR imaging of myocardial structure and function changes in diabetic mini-pigs with preserved LV function: a preliminary study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 143 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35366800/. DOI: 10.1186/s12872-022-02597-7.
[53]
KHAN M A, YANG E Y, NGUYEN D T, et al. Examining the relationship and prognostic implication of diabetic status and extracellular matrix expansion by cardiac magnetic resonance[J/OL]. Circ Cardiovasc Imaging, 2020, 13(7): e011000 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32673493/. DOI: 10.1161/CIRCIMAGING.120.011000.
[54]
LAOHABUT I, SONGSANGJINDA T, KAOLAWANICH Y, et al. Myocardial extracellular volume fraction and T1 mapping by cardiac magnetic resonance compared between patients with and without type 2 diabetes, and the effect of ECV and T2D on cardiovascular outcomes[J/OL]. Front Cardiovasc Med, 2021, 8: 771363 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34950715/. DOI: 10.3389/fcvm.2021.771363.
[55]
MIAO Q F, HUA S, GONG Y W, et al. Free-breathing non-contrast T1ρ dispersion magnetic resonance imaging of myocardial interstitial fibrosis in comparison with extracellular volume fraction[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101093 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39245148/. DOI: 10.1016/j.jocmr.2024.101093.
[56]
SHU H M, XU H M, PAN Z X, et al. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus[J/OL]. Front Endocrinol, 2024, 15: 1335899 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38510696/. DOI: 10.3389/fendo.2024.1335899.
[57]
QUAN C, DU Q, LI M, et al. A PKB-SPEG signaling nexus links insulin resistance with diabetic cardiomyopathy by regulating calcium homeostasis[J/OL]. Nat Commun, 2020, 11(1): 2186 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32367034/. DOI: 10.1038/s41467-020-16116-9.
[58]
连心桥, 张华莹, 赵世华, 等. 从医学影像到临床诊疗: 2023年心血管磁共振进展[J]. 磁共振成像, 2024, 15(7): 184-190, 215. DOI: 10.12015/issn.1674-8034.2024.07.031.
LIAN X Q, ZHANG H Y, ZHAO S H, et al. From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023[J]. Chin J Magn Reson Imag, 2024, 15(7): 184-190, 215. DOI: 10.12015/issn.1674-8034.2024.07.031.
[59]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[60]
NESTI L, PUGLIESE N R, SCIUTO P, et al. Effect of empagliflozin on left ventricular contractility and peak oxygen uptake in subjects with type 2 diabetes without heart disease: results of the EMPA-HEART trial[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 181 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36096863/. DOI: 10.1186/s12933-022-01618-1.
[61]
ZHOU F L, DENG M Y, DENG L L, et al. Evaluation of the effects of glycated hemoglobin on cardiac function in patients with short-duration type 2 diabetes mellitus: a cardiovascular magnetic resonance study[J/OL]. Diabetes Res Clin Pract, 2021, 178: 108952 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34273454/. DOI: 10.1016/j.diabres.2021.108952.
[62]
LI Z M, HAN D, QI T F, et al. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 49 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36698087/. DOI: 10.1186/s12872-023-03082-5.
[63]
QIAN W L, YANG Z G, SHI R, et al. Left atrioventricular interaction and impaired left atrial phasic function in type 2 diabetes mellitus patients with or without Anemia: a cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 178 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37443014/. DOI: 10.1186/s12933-023-01910-8.
[64]
LI X M, SHI R, SHEN M T, et al. Impact of type 2 diabetes mellitus on left atrioventricular coupling and left atrial deformation in patients with essential hypertension: an MRI feature tracking study[J]. J Magn Reson Imaging, 2025, 61(1): 321-334. DOI: 10.1002/jmri.29427.
[65]
SHI R, JIANG Y N, QIAN W L, et al. Assessment of left atrioventricular coupling and left atrial function impairment in diabetes with and without hypertension using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 295 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37904206/. DOI: 10.1186/s12933-023-01997-z.

上一篇 功能磁共振成像技术在颈动脉狭窄相关认知障碍的研究进展
下一篇 体素内不相干运动在心肌微循环中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2