分享:
分享到微信朋友圈
X
综述
多参数磁共振成像在预测前列腺癌包膜外侵犯中的应用及进展
陈心悦 刘再毅 胡磊

Cite this article as: CHEN X Y, LIU Z Y, HU L. Application and progress of multi-parametric magnetic resonance imaging in predicting extracapsular extension of prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 198-201, 227.本文引用格式:陈心悦, 刘再毅, 胡磊. 多参数磁共振成像在预测前列腺癌包膜外侵犯中的应用及进展[J]. 磁共振成像, 2025, 16(4): 198-201, 227. DOI:10.12015/issn.1674-8034.2025.04.032.


[摘要] 前列腺癌(prostate cancer, PCa)是全球男性最常见的癌症之一,准确评估包膜外侵犯(extracapsular extension, ECE)对优化治疗方案至关重要。传统临床诊断参数存在准确性低、异质性大等不足。多参数磁共振成像(multi-parametric magnetic resonance imaging, mpMRI)是评估PCa术前分期的首选方法。然而基于mpMRI的传统ECE风险评估分级系统预测ECE的诊断效能仍受限于放射科医师的经验。随着新兴技术发展,影像组学和深度学习(deep learning, DL)在评估ECE方面表现出潜力,但目前仍面临外部验证不足、模型泛化能力弱等挑战。本文就基于mpMRI的传统风险评估分级系统、影像组学和DL在PCa ECE中的研究现状、进展以及局限性进行综述,以期为临床决策提供更全面的参考,加速精准医疗的蓬勃进程。
[Abstract] Prostate cancer (PCa) is one of the most common cancers among men globally, and accurately assessing extracapsular extension (ECE) is crucial for optimizing treatment plans. Traditional clinical diagnostic parameters have limitations such as low accuracy and high heterogeneity. Multi-parametric magnetic resonance imaging (mpMRI) is the preferred method for preoperative staging of PCa. However, the diagnostic efficacy of predicting ECE based on the traditional ECE risk assessment grading system using mpMRI remains limited by the experience of radiologists. With the development of emerging technologies, radiomics and deep learning (DL) have demonstrated potential in assessing ECE, but still face challenges such as insufficient external validation and weak model generalization ability. This article reviews the current research status, progress, and limitations of traditional risk assessment grading systems, radiomics, and DL based on mpMRI in diagnosing PCa ECE. The aim is to provide more comprehensive references for clinical decision-making, and accelerate the vigorous progress of precision medicine.
[关键词] 前列腺癌;包膜外侵犯;磁共振成像;风险评估分级系统;影像组学;机器学习;深度学习
[Keywords] prostate cancer;extracapsular extension;magnetic resonance imaging;risk assessment grading system;radiomics;machine learning;deep learning

陈心悦 1, 2   刘再毅 1, 2   胡磊 1, 2*  

1 南方医科大学附属广东省人民医院(广东省医学科学院)放射科,广州 510080

2 广东省医学影像智能分析与应用重点实验室,广州 510080

通信作者:胡磊,E-mail:hulei@gdph.org.cn

作者贡献声明:胡磊进行本文的构思和设计,对稿件重要内容进行了修改,获得了国家自然科学基金项目资助;陈心悦起草和撰写稿件,获取、分析和解释本综述的参考文献;刘再毅获取、分析和解释本研究的文献,对稿件重要内容进行了修改;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本综述的准确性和诚信。


基金项目: 国家自然科学基金项目 82302130
收稿日期:2025-02-13
接受日期:2025-04-10
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.04.032
本文引用格式:陈心悦, 刘再毅, 胡磊. 多参数磁共振成像在预测前列腺癌包膜外侵犯中的应用及进展[J]. 磁共振成像, 2025, 16(4): 198-201, 227. DOI:10.12015/issn.1674-8034.2025.04.032.

0 引言

       前列腺癌(prostate cancer, PCa)是全球男性的第二大死因和最常见癌症[1]。根治性前列腺切除术(radical prostatectomy, RP)是目前局限性PCa的首选治疗方法,手术过程中是否保留前列腺周围神经血管束(neurovascular bundles, NVBs)对患者的预后影响重大[2]。包膜外侵犯(extracapsular extension, ECE)是指肿瘤细胞超出前列腺包膜边界的病变(病理性分期为T3a),是评估PCa侵袭性的重要指标[3, 4]。若怀疑病灶存在ECE,则需考虑切除NVBs,以减少手术切缘阳性、生化复发、疾病进展等不良预后情况发生的概率[5, 6, 7]。因此,术前精确评估ECE对优化PCa患者的治疗方案,改善患者的预后具有重大临床意义。

       传统临床诊断方法,诸如前列腺特异性抗原(prostate-specific antigen, PSA)水平、直肠指诊(digital rectal examination, DRE)和经直肠超声(transrectal ultrasound, TRUS)引导下的前列腺活检等并不能准确地预测ECE[8, 9, 10]。多参数磁共振成像(multi-parametric magnetic resonance imaging, mpMRI)的引入显著增强了临床参数术前预测ECE的能力[11, 12]。mpMRI是目前原发性PCa分期最常用的成像方法,其结合了多种MRI序列,包括T1WI、T2WI、扩散加权成像(diffusion-weighted imaging, DWI)及其衍生的表观扩散系数(apparent diffusion coefficient, ADC)图、动态对比增强(dynamic contrast-enhanced, DCE)成像。每个序列均为诊断ECE提供了独特的信息。T1WI序列用于确定前列腺出血部位和描绘腺体轮廓,且有助于检测区域淋巴结和骨骼转移。T2WI序列提供了前列腺区带解剖结构的详细信息,主要用于评估PCa的ECE、精囊浸润和淋巴结受累情况。DWI序列通过测量水分子的扩散运动来反映组织的微观结构,PCa与正常组织相比在DWI上表现为信号增高。在DCE序列上,癌症可疑区域往往表现出早期增强,DCE成像上的包膜增强征高度预测了ECE的存在,并且与肿瘤侵袭性增强有关[13, 14]。《前列腺影像报告和数据系统(prostate imaging reporting and data system, PI-RADS)2.1版本指南》[15]建议将前列腺轮廓突出或边缘不规则、神经血管束不对称或受侵、直肠前列腺角消失、肿瘤-包膜界面>1.0 cm,以及包膜破裂并有直接肿瘤扩散或膀胱壁侵犯等标准用于检测mpMRI上的ECE。然而,传统的基于mpMRI的ECE风险评估分级系统的准确性与放射科医师自身专业知识储备密切相关,存在较大受试者间差异[16]。此外,虽然mpMRI具有很强的排除ECE的能力,但是其敏感度仍然较低[17]。这些局限性凸显了开发“下一代技术”作为ECE诊断新工具的必要性。近年来,随着计算机辅助诊断的发展,影像组学、机器学习(machine learning, ML)和深度学习(deep learning, DL)被相继探索并应用于ECE的分级诊断中,这些新兴技术有望为ECE评估提供更为详尽的诊断信息,为临床决策提供进一步支持。

       因此,本文旨在介绍基于mpMRI的传统风险评估分级系统、影像组学和DL在PCa ECE中的最新研究和应用进展,以期为我国相关领域未来的发展方向提供指引,推动精准医疗的快速发展。

1 基于mpMRI的传统风险评估分级系统预测ECE的研究现状

       早期多使用列线图模型预测ECE,如帕延(Partin)表、纪念斯隆-凯特琳(Memorial Sloan-Kettering, MSK)列线图等。这些模型结合了PSA水平、格里森评分、阳性核心百分比和临床分期等多个临床变量。然而由于疾病的复杂性,仅采用临床变量的列线图模型对ECE的预测能力有限[18, 19]

       基于mpMRI的传统风险评估分级系统,为ECE的诊断提供了更多的形态学和功能学信息。FENG等[20]的研究以RP病理结果为金标准,开发了基于Partin表和MSK列线图的多变量逻辑回归(logistics regression, LR)模型,并在添加mpMRI结果之前和之后分别评估它们预测ECE的准确性。研究结果显示,mpMRI与临床列线图的联合使用提高了ECE诊断的准确性。然而,放射报告中大量主观术语的使用可能使研究结果缺乏可靠性。研究者们继而提出了欧洲泌尿生殖放射学会(European Society of Urogenital Radiology, ESUR)评分和李克特(Likert)量表等主观定性评估方法,它们与临床模型的结合可进一步提高ECE的诊断效率[21, 22]。尽管如此,由于缺乏客观标准,ESUR评分和Likert评分还是主要取决于放射科医生的诊断经验。为了解决这个问题,MEHRALIVAND等[23]引入了一种新的分级系统,称为ECE分级。该分级系统使用特定的PI-RADS术语评估病理性ECE,通过6种明确界定的多参数MRI特征(曲线接触长度、包膜不规则和隆起、直肠前列腺角消失、神经血管束不对称、前列腺周围脂肪浸润和精囊浸润)预测病理性ECE,以减少诊断中包含的主观参数。研究显示,临床变量加上ECE分级表现出了较ESUR评分和Likert量表更为出色的诊断性能和读者一致性[23, 24, 25]。然而,上述方法的读片者一致性也仅达到中等,仍有一定的主观性和不可重复性[24, 26]。为此,2020年引入了前列腺成像质量(prostate imaging quality, PI-QUAL)评分系统。但由于图像质量还是存在无可避免的异质性,文献中关于mpMRI质量如何影响ECE预测准确性的研究结果仍存在分歧[27, 28, 29]

       综上所述,传统风险评估分级系统在预测ECE方面虽有一定进展,但受主观因素和图像质量等问题的制约。因此,需要一种更标准化的图像质量评估方法来提升ECE的诊断性能。在这种情况下,影像组学、DL等相关技术在客观评估前列腺MRI图像方面应用前景广泛,有望克服人类评估的可变性。

2 基于mpMRI的影像组学预测ECE的研究现状

       影像组学是通过高通量从医学图像(如CT、MRI或PET图像等)中提取肉眼难以识别的定量特征(如大小、血管分布或纹理等),将医学图像转化为高维、可挖掘的数据,然后进行数据分析以支持临床决策的过程[30]。ML是影像组学进行数据分析和模型建立的核心技术,影像组学之所以广受欢迎,是因为ML算法能够极大地丰富从成像中提取的信息。根据学习模型的层次结构对ML的发展阶段进行分类,大致可以分为两个阶段:传统ML和DL[31]

       研究表明,影像组学和传统ML相结合有助于更准确地预测ECE[32, 33, 34]。XU等[35]从95例病理证实的PCa患者的T2WI、DWI、ADC和DCE图像中提取影像组学特征,应用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)回归算法构建ML模型用于ECE的术前预测。结果显示,训练组和验证组ML模型的受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)分别为0.919和0.865,在诊断ECE方面表现出优于临床模型(AUC=0.658)的性能。FAN等[36]从252名PCa患者的mpMRI图像中提取影像组学特征,构建了6个ML分类器,包括支持向量机(support vector machine, SVM)、K最近邻算法(K-nearest neighbor, KNN)、随机森林(random forest, RF)、决策树(decision tree, DT)、LR、极限梯度提升算法(eXtreme gradient boosting, XGBOOST)。结果表明,RF诊断ECE的性能在6个分类器中表现最佳(AUC=0.85)。VAN DEN BERG等[37]验证了运用RF、LR和额外树(extra trees, ET)分类器的3种ML模型对ECE的诊断效能。研究表明,模型的AUC范围为0.86~0.91,且在外部测试队列中,RF模型是校准度最佳的模型(准确性为83%)。

       虽然与传统风险评估分级系统相比,影像组学结合传统ML能够提取更多定量特征,在一定程度上减少了主观因素的影响,进一步提高对ECE的诊断性能,但它也存在一定的局限性,如病灶感兴趣区(region of interest, ROI)大多是手动勾画,非常烦琐和耗时,且其结果很大程度上依赖于放射科医生的经验[38, 39],在操作便利性和结果稳定性方面仍有改进空间。这些提示着未来应进一步开发和采用自动分割ROI的技术。因此,有研究者提出了DL模型的应用。

3 基于mpMRI的DL预测ECE的研究现状

       随着技术的进一步发展,DL凭借其自动特征提取的优势,成为ECE预测领域的新兴方向。相较于传统ML依赖于专家手工设计进行特征提取,DL采用先进的多层神经网络自动提取特征以减少工作量[40, 41]。DL已被广泛用于辅助PCa的诊断和治疗决策,其中最具代表性的算法网络是卷积神经网络(convolutional neural network, CNN)[42, 43, 44]

       HOU等[45]开展了首项将自动DL模型应用于PCa患者ECE分期的研究,该模型建立在残差网络(residual network, ResNet)上,并嵌入了来自596例训练患者的专家先验知识的空间注意力图(prior attention guided network, PAGNet)。研究分别比较了DL模型、专家模型、专家与DL交互模型诊断ECE的性能。结果显示,使用单切面图的PAGNet模型在训练集、内部验证集和外部验证集中的AUC值最高,分别为0.857、0.807和0.728。但是,研究仍存在验证队列规模有限、外部验证性能下降等局限性。MOROIANU等[46]研究比较了U型网络(UNet)及用于惰性和侵袭性PCa检测的相关特征网络(correlated signature network for indolent and aggressive prostate cancer detection, CorrSigNIA),基于CorrSigNIA模型建立了用于ECE检测的最佳端到端模型,称之为PCa包膜外扩展检测网络(extraprostatic extension network, EPENet)。结果表明,EPENet模型在检测ECE方面表现良好,在患者水平的AUC达到了0.72;且在测试集中,EPENet模型在患者水平的敏感度和特异度与放射科医生相比分别为80.0% vs. 50.0%、28.2% vs. 76.9%。该模型相较于PAGNet模型不需要放射科医生手动在所有切片上分割目标病变,进一步提高了效率。不过该研究尚存在数据集相对较小、通过组织病理学映射定义的数据集标签存在局限性、外部验证缺乏等不足。SIMON等[47]研究通过级联两个先前开发的前列腺器官和病灶分割DL模型,提取面积和距离特征,构建RF分类模型。当以EPE≥1作为阳性阈值时,该模型达到了比EPENet模型更高的准确率(67.0% vs. 38.8%),且特异度和敏感度均与放射科医师相当。但是,研究存在数据均来自单一机构、大多数真实标签由单个阅片者生成等局限性。

       与传统ML相比,DL模型在特征提取的自动化和效率方面具有优势。但除了上述三个专注于检测ECE的研究所提供的DL模型,目前暂时缺乏其他检测ECE的DL模型。此外,DL模型在临床实际应用中仍存在局限,原因可能如下:(1)研究纳入的数据集规模有限,限制了DL模型的泛化能力。此外,DL模型的外部验证和前瞻性研究相对缺乏。因此,这些模型的临床实际价值仍需要进一步验证。(2)PCa患者mpMRI的数据质量和可获取性是影响DL模型性能的关键因素,但实际应用中不同医疗机构之间的MRI设备、扫描参数和图像质量存在差异。(3)在使用MRI检测PCa时,肿瘤的大小、形状和对比度可能差异很大,这使得图像的准确分割存在挑战性。(4)在大型医学成像数据集上训练DL模型需要大量的计算资源、充足的存储容量和高效的数据管理系统,这对基础设施要求较高。所以解决数据质量、模型泛化、可解释性、图像分割和设施需求等相关问题对进一步提高ECE的诊断性能至关重要[48, 49, 50]

4 小结与展望

       PCa是男性常见且致死率高的癌症,其治疗的关键在于ECE的精确诊断。MpMRI作为PCa术前分期的首选方法,为ECE的评估提供了丰富的附加信息。然而,mpMRI的诊断效能受放射科医师专业知识储备的影响,存在主观性和不一致性。为解决这一问题,研究者们开发了多种基于mpMRI的风险评估分级系统,将ESUR评分、Likert量表、ECE分级及PI-QUAL评分系统等与mpMRI相结合,旨在提高ECE诊断的准确性和一致性。尽管取得了一定的成效,其诊断效能仍存在无可避免的主观性。因此,开发更标准化、客观化的诊断ECE的工具成为当前研究的热点。影像组学和DL作为新兴技术,在ECE评估中展现出巨大潜力。影像组学常通过传统ML算法构建预测模型提取肉眼难以识别的定量特征,以支持临床决策。而DL是传统ML的进一步发展,能自动提取特征,减少人工干预,提高诊断的客观性。然而,DL技术在实际应用中仍面临诸多挑战,如外部验证不足、模型泛化能力弱、图像质量差异等。因此,基于DL模型对ECE的评估在很大程度上仍未得到充分探索。

       综合来看,三种评估手段各有优劣,目前都无法完全满足临床精准诊断ECE的需求。未来,关于PCa ECE评估的研究应聚焦于以下几个方向:一是扩大数据集规模,由单中心向多中心发展,以提高DL模型的泛化能力;二是开发更标准化、客观化的图像质量评估方法和可解释性更高的诊断模型;三是优化图像分割算法,提高分割精度和效率。此外,随着人工智能技术的发展,构建大模型也成为未来的一个重要发展趋势,通过结合更大的数据集,以期开发出一种更符合临床实际的ECE诊断模型,进一步提高诊断的准确性,为临床制订更精准的治疗方案提供基础。

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
KATSIMPERIS S, JULIEBØ-JONES P, TA A, et al. Surgical techniques to preserve continence after robot-assisted radical prostatectomy[J/OL]. Front Surg, 2023, 10: 1289765 [2025-01-19]. https://www.ncbi.nlm.nih.gov/pubmed/38026481. DOI: 10.3389/fsurg.2023.1289765.
[3]
BUYYOUNOUSKI M K, CHOYKE P L, MCKENNEY J K, et al. Prostate cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J]. CA Cancer J Clin, 2017, 67(3): 245-253. DOI: 10.3322/caac.21391.
[4]
SUGANO D, SIDANA A, JAIN A L, et al. Index tumor volume on MRI as a predictor of clinical and pathologic outcomes following radical prostatectomy[J]. Int Urol Nephrol, 2019, 51(8): 1349-1355. DOI: 10.1007/s11255-019-02168-4.
[5]
PELLEGRINO F, FALAGARIO U G, KNIPPER S, et al. Assessing the impact of positive surgical margins on mortality in patients who underwent robotic radical prostatectomy: 20 years' report from the EAU robotic urology section scientific working group[J]. Eur Urol Oncol, 2024, 7(4): 888-896. DOI: 10.1016/j.euo.2023.11.021.
[6]
ZHU Z S, ZHU Y Y, XIAO Y Y, et al. Indications for nerve-sparing surgery for radical prostatectomy: Results from a single-center study[J/OL]. Front Oncol, 2022, 12: 896033 [2025-01-19]. https://www.ncbi.nlm.nih.gov/pubmed/35965515. DOI: 10.3389/fonc.2022.896033.
[7]
PRESTON M A, BREAU R H, LANTZ A G, et al. The association between nerve sparing and a positive surgical margin during radical prostatectomy[J/OL]. Urol Oncol, 2015, 33(1): 18.e1-18. e6 [2025-01-08]. https://www.ncbi.nlm.nih.gov/pubmed/25308562. DOI: 10.1016/j.urolonc.2014.09.006.
[8]
WEI J T, BAROCAS D, CARLSSON S, et al. Early detection of prostate cancer: AUA/SUO guideline part I: prostate cancer screening[J]. J Urol, 2023, 210(1): 46-53. DOI: 10.1097/JU.0000000000003491.
[9]
PASCHEN U, STURTZ S, FLEER D, et al. Assessment of prostate-specific antigen screening: an evidence-based report by the German institute for quality and efficiency in health care[J]. BJU Int, 2022, 129(3): 280-289. DOI: 10.1111/bju.15444.
[10]
HALPERN J A, OROMENDIA C, SHOAG J E, et al. Use of digital rectal examination as an adjunct to prostate specific antigen in the detection of clinically significant prostate cancer[J]. J Urol, 2018, 199(4): 947-953. DOI: 10.1016/j.juro.2017.10.021.
[11]
VIS A N, VAN DEN BERGH R C N, VAN DER POEL H G, et al. Selection of patients for nerve sparing surgery in robot-assisted radical prostatectomy[J]. BJUI Compass, 2021, 3(1): 6-18. DOI: 10.1002/bco2.115.
[12]
VON OSTAU N E, HANDKE A E, WIESENFARTH M, et al. Bicenter validation of a risk model for the preoperative prediction of extraprostatic extension of localized prostate cancer combining clinical and multiparametric MRI parameters[J/OL]. World J Urol, 2024, 42(1): 530 [2025-01-08]. https://www.ncbi.nlm.nih.gov/pubmed/39302458. DOI: 10.1007/s00345-024-05232-6.
[13]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[14]
CAGLIC I, SUSHENTSEV N, COLARIETI A, et al. Value of the capsular enhancement sign on dynamic contrast-enhanced prostate multiparametric MRI for the detection of extracapsular extension[J/OL]. Eur J Radiol, 2022, 150: 110275 [2025-01-11]. https://www.ncbi.nlm.nih.gov/pubmed/35358786. DOI: 10.1016/j.ejrad.2022.110275.
[15]
WALKER S M, TURKBEY B. PI-RADSv2.1: current status[J]. Turk J Urol, 2021, 47(Supp1): S45-S48. DOI: 10.5152/tud.2020.20403.
[16]
DE ROOIJ M, ISRAËL B, TUMMERS M, et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists' training[J]. Eur Radiol, 2020, 30(10): 5404-5416. DOI: 10.1007/s00330-020-06929-z.
[17]
TRIQUELL M, REGIS L, WINKLER M, et al. Multiparametric MRI for staging of prostate cancer: a multicentric analysis of predictive factors to improve identification of extracapsular extension before radical prostatectomy[J/OL]. Cancers, 2022, 14(16): 3966 [2025-01-08]. https://www.ncbi.nlm.nih.gov/pubmed/36010963. DOI: 10.3390/cancers14163966.
[18]
MERDER E, ARıMAN A, ALTUNRENDE F. A modified partın table to better predict extracapsular extensıon in clinically localized prostate cancer[J]. Urol J, 2021, 18(1): 74-80. DOI: 10.22037/uj.v16i7.6477.
[19]
CALIMANO-RAMIREZ L F, VIRARKAR M K, HERNANDEZ M, et al. MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review[J]. Abdom Radiol, 2023, 48(7): 2379-2400. DOI: 10.1007/s00261-023-03924-y.
[20]
FENG T S, SHARIF-AFSHAR A R, WU J, et al. Multiparametric MRI improves accuracy of clinical nomograms for predicting extracapsular extension of prostate cancer[J]. Urology, 2015, 86(2): 332-337. DOI: 10.1016/j.urology.2015.06.003.
[21]
SHEN J K, KILDAY P, LAU C S. Possible drop metastasis after treatment of renal cell carcinoma with percutaneous cryoablation[J]. Urology, 2019, 130: 17-19. DOI: 10.1016/j.urology.2019.04.010.
[22]
WANG J G, HUANG B T, HUANG L, et al. Prediction of extracapsular extension in prostate cancer using the Likert scale combined with clinical and pathological parameters[J/OL]. Front Oncol, 2023, 13: 1229552 [2025-01-11]. https://www.ncbi.nlm.nih.gov/pubmed/37614509. DOI: 10.3389/fonc.2023.1229552.
[23]
MEHRALIVAND S, SHIH J H, HARMON S, et al. A grading system for the assessment of risk of extraprostatic extension of prostate cancer at multiparametric MRI[J]. Radiology, 2019, 290(3): 709-719. DOI: 10.1148/radiol.2018181278.
[24]
ASFUROĞLU U, ASFUROĞLU B B, ÖZER H, et al. Which one is better for predicting extraprostatic extension on multiparametric MRI: ESUR score, Likert scale, tumor contact length, or EPE grade?[J/OL]. Eur J Radiol, 2022, 149: 110228 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/35255320. DOI: 10.1016/j.ejrad.2022.110228.
[25]
LI W, DONG A D, HONG G H, et al. Diagnostic performance of ESUR scoring system for extraprostatic prostate cancer extension: A meta-analysis[J/OL]. Eur J Radiol, 2021, 143: 109896 [2025-01-12]. https://www.ncbi.nlm.nih.gov/pubmed/34416449. DOI: 10.1016/j.ejrad.2021.109896.
[26]
MAYOR N, ELDRED-EVANS D, TAM H, et al. Prostagram magnetic resonance imaging in a screening population: Prostate Imaging-Reporting and Data System or Likert?[J]. BJU Int, 2024, 133(1): 112-117. DOI: 10.1111/bju.16155.
[27]
WINDISCH O, BENAMRAN D, DARIANE C, et al. Role of the prostate imaging quality PI-QUAL score for prostate magnetic resonance image quality in pathological upstaging after radical prostatectomy: a multicentre European study[J]. Eur Urol Open Sci, 2022, 47: 94-101. DOI: 10.1016/j.euros.2022.11.013.
[28]
PONSIGLIONE A, STANZIONE A, CALIFANO G, et al. MR image quality in local staging of prostate cancer: Role of PI-QUAL in the detection of extraprostatic extension[J/OL]. Eur J Radiol, 2023, 166: 110973 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/37453275. DOI: 10.1016/j.ejrad.2023.110973.
[29]
COELHO F M A, AMARAL L T W, MITSUTAKE L K N, et al. Quality assessment of prostate MRI by PI-QUAL score: inter-reader agreement and impact on prostate cancer local staging at 3 tesla[J/OL]. Eur J Radiol, 2023, 165: 110921 [2025-01-11]. https://www.ncbi.nlm.nih.gov/pubmed/37336037. DOI: 10.1016/j.ejrad.2023.110921.
[30]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[31]
JANIESCH C, ZSCHECH P, HEINRICH K. Machine learning and deep learning[J]. Electron Mark, 2021, 31(3): 685-695. DOI: 10.1007/s12525-021-00475-2.
[32]
MA S, XIE H H, WANG H H, et al. MRI-based radiomics signature for the preoperative prediction of extracapsular extension of prostate cancer[J]. J Magn Reson Imaging, 2019, 50(6): 1914-1925. DOI: 10.1002/jmri.26777.
[33]
LOSNEGÅRD A, REISÆTER L A R, HALVORSEN O J, et al. Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediate- and high-risk prostate cancer patients[J]. Acta Radiol, 2020, 61(11): 1570-1579. DOI: 10.1177/0284185120905066.
[34]
HUANG J Q, HE C, XU P R, et al. Development and validation of a clinical-radiomics model for prediction of prostate cancer: a multicenter study[J/OL]. World J Urol, 2024, 42(1): 275 [2025-01-13]. https://www.ncbi.nlm.nih.gov/pubmed/38689190. DOI: 10.1007/s00345-024-04995-2.
[35]
XU L L, ZHANG G, ZHAO L, et al. Radiomics based on multiparametric magnetic resonance imaging to predict extraprostatic extension of prostate cancer[J/OL]. Front Oncol, 2020, 10: 940 [2025-01-19]. https://www.ncbi.nlm.nih.gov/pubmed/32612953. DOI: 10.3389/fonc.2020.00940.
[36]
FAN X H, XIE N, CHEN J W, et al. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer[J/OL]. Front Oncol, 2022, 12: 839621 [2025-01-19]. https://www.ncbi.nlm.nih.gov/pubmed/35198452. DOI: 10.3389/fonc.2022.839621.
[37]
VAN DEN BERG I, SOETERIK T F W, VAN DER HOEVEN E J R J, et al. The development and external validation of artificial intelligence-driven MRI-based models to improve prediction of lesion-specific extraprostatic extension in patients with prostate cancer[J/OL]. Cancers, 2023, 15(22): 5452 [2025-01-19]. https://www.ncbi.nlm.nih.gov/pubmed/38001712. DOI: 10.3390/cancers15225452.
[38]
LIU Y. Comparison of magnetic resonance imaging-based radiomics features with nomogram for prediction of prostate cancer invasion[J]. Int J Gen Med, 2023, 16: 3043-3051. DOI: 10.2147/IJGM.S419039.
[39]
YANG L Q, JIN P F, QIAN J, et al. Value of a combined magnetic resonance imaging-based radiomics-clinical model for predicting extracapsular extension in prostate cancer: a preliminary study[J]. Transl Cancer Res, 2023, 12(7): 1787-1801. DOI: 10.21037/tcr-22-2750.
[40]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[41]
HUANG X R, LI Z T, ZHANG M H, et al. Fusing hand-crafted and deep-learning features in a convolutional neural network model to identify prostate cancer in pathology images[J/OL]. Front Oncol, 2022, 12: 994950 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36237311. DOI: 10.3389/fonc.2022.994950.
[42]
ZHAO L T, BAO J, QIAO X M, et al. Predicting clinically significant prostate cancer with a deep learning approach: a multicentre retrospective study[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 727-741. DOI: 10.1007/s00259-022-06036-9.
[43]
许杉杉, 呼延若曦, 吴哲, 等. 基于深度学习的MRI图像下前列腺癌T分期诊断研究[J]. 陆军军医大学学报, 2023, 45(11): 1229-1236. DOI: 10.16016/j.2097-0927.202212188.
XU S S, HUYAN R X, WU Z, et al. Prostate cancer T-stage intelligent diagnosis based on MRI images and deep learning[J]. J Army Med Univ, 2023, 45(11): 1229-1236. DOI: 10.16016/j.2097-0927.202212188.
[44]
BHATTACHARYA I, SEETHARAMAN A, KUNDER C, et al. Selective identification and localization of indolent and aggressive prostate cancers via CorrSigNIA: an MRI-pathology correlation and deep learning framework[J/OL]. Med Image Anal, 2022, 75: 102288 [2025-01-12]. https://www.ncbi.nlm.nih.gov/pubmed/34784540. DOI: 10.1016/j.media.2021.102288.
[45]
HOU Y, ZHANG Y H, BAO J, et al. Artificial intelligence is a promising prospect for the detection of prostate cancer extracapsular extension with mpMRI: a two-center comparative study[J]. Eur J Nucl Med Mol Imaging, 2021, 48(12): 3805-3816. DOI: 10.1007/s00259-021-05381-5.
[46]
MOROIANU Ş L, BHATTACHARYA I, SEETHARAMAN A, et al. Computational detection of extraprostatic extension of prostate cancer on multiparametric MRI using deep learning[J/OL]. Cancers, 2022, 14(12): 2821 [2025-01-23]. https://www.ncbi.nlm.nih.gov/pubmed/35740487. DOI: 10.3390/cancers14122821.
[47]
SIMON B D, MERRIMAN K M, HARMON S A, et al. Automated detection and grading of extraprostatic extension of prostate cancer at MRI via cascaded deep learning and random forest classification[J]. Acad Radiol, 2024, 31(10): 4096-4106. DOI: 10.1016/j.acra.2024.04.011.
[48]
PONSIGLIONE A, GAMBARDELLA M, STANZIONE A, et al. Radiomics for the identification of extraprostatic extension with prostate MRI: a systematic review and meta-analysis[J]. Eur Radiol, 2024, 34(6): 3981-3991. DOI: 10.1007/s00330-023-10427-3.
[49]
LIN Y, BELUE M J, YILMAZ E C, et al. Deep learning-based image quality assessment: impact on detection accuracy of prostate cancer extraprostatic extension on MRI[J]. Abdom Radiol, 2024, 49(8): 2891-2901. DOI: 10.1007/s00261-024-04468-5.
[50]
AHMAD I, ALQURASHI F. Early cancer detection using deep learning and medical imaging: a survey[J/OL]. Crit Rev Oncol Hematol, 2024, 204: 104528 [2025-01-12]. https://www.ncbi.nlm.nih.gov/pubmed/39413940. DOI: 10.1016/j.critrevonc.2024.104528.

上一篇 先天性肛门直肠畸形影像学研究进展
下一篇 非高斯扩散模型在宫颈癌的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2