分享:
分享到微信朋友圈
X
特别关注
磁化传递成像评价胰腺导管腺癌纤维化的可行性研究
沈志秋 杨明明 吕俊馨 张京刚 陈杰

Cite this article as: SHEN Z Q, YANG M M, LÜ J X, et al. A feasibility study of magnetization transfer imaging on the evaluation of fibrosis in pancreatic duct adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(5): 44-48.本文引用格式:沈志秋, 杨明明, 吕俊馨, 等. 磁化传递成像评价胰腺导管腺癌纤维化的可行性研究[J]. 磁共振成像, 2025, 16(5): 44-48. DOI:10.12015/issn.1674-8034.2025.05.007.


[摘要] 目的 探讨磁化传递成像(magnetization transfer imaging, MTI)评估胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)纤维化程度的能力。材料与方法 回顾性分析经术后病理证实的53例PDAC患者临床、影像及病理资料。所有患者均于术前行MTI检查,测量肿瘤的磁化传递率(magnetic transfer rate, MTR)。Masson染色评价肿瘤纤维化,并利用ImageJ软件计算纤维面积百分比,按纤维化程度将所有患者分为高、低级纤维化两组。采用独立样本t检验及单因素方差分析分别比较高、低级别纤维化组MTR值及一般特征差异。采用Spearman相关分析评估MTR值与PDAC纤维化程度相关性。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估MTR值对PDAC纤维化分级的诊断效能。结果 低级别纤维化组MTR值为(0.158±0.053),高级别纤维化组MTR值为(0.230±0.063),两组间MTR值差异具有统计学意义(t=-4.528,P<0.001),其他一般特征差异无统计学意义(P>0.05)。ROC曲线分析显示MTR值区分PDAC患者高、低级别纤维化AUC值为0.822,阈值为0.496,敏感度87.5%,特异度为62.1%。结论 MTR值作为一种无创的影像学指标,在评估PDAC纤维化方面具有潜在的应用价值。
[Abstract] Objective To evaluate the ability of magnetization transfer imaging (MTI) in assessing the fibrosis of pancreatic ductal adenocarcinoma (PDAC).Materials and Methods The clinical, imaging and pathological data of 53 patients with PDAC were analyzed retrospectively. All patients underwent MTI examination before surgery and the MTR values of the tumors were measured. Masson staining was used to evaluate tumor fibrosis. The percentage of tumor fibrous area were calculated by ImageJ software. Based on the degree of fibrosis, all patients were divided into two groups: high and low fibrosis. Independent sample t test and one-way ANOVA were used to compare the differences of the magnetic transfer rate (MTR) values and general characteristics between high- and low-grade fibrosis groups. Spearman correlation analysis was used to evaluate the correlation between MTR value and fibrosis degree of PDAC. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of MTR value for PDAC fibrosis classification.Results The MTR value of the low-grade fibrosis group was (0.158 ± 0.053), and that of the high-grade fibrosis group was (0.230 ± 0.063). There was a significant difference of MTR values between the two groups (t = -4.528, P < 0.001), while other general characteristics were not statistically significant (P > 0.05). ROC curve analysis showed that the AUC value of the MTR in evaluating the fibrosis of PDAC patients was 0.822. When a threshold was 0.496, the sensitivity and the specificity were 87.5% and 62.1%, respectively.Conclusions As a non-invasive imaging index, MTR value has a potential application value in the evaluation of PDAC fibrosis.
[关键词] 胰腺导管腺癌;磁化传递;磁共振成像;定量分析;纤维化
[Keywords] pancreatic ductal adenocarcinoma;magnetization transfer;magnetic resonance imaging;quantitative analysis;fibrosis

沈志秋 1, 2   杨明明 1   吕俊馨 1   张京刚 1   陈杰 1*  

1 苏州大学附属第三医院放射科,常州 213000

2 盐城市亭湖区人民医院放射科,盐城 224000

通信作者:陈杰,E-mail: slqyuer@126.com

作者贡献声明:陈杰负责设计本研究的方案,对稿件的重要内容进行了修改,得到了江苏省卫生健康委科研项目资助;张京刚负责本研究方案的构思与实施,获取、分析本研究的数据,对稿件的重要内容进行了修改,得到了常州市应用基础研究计划项目资助;沈志秋起草和撰写稿件,获取、分析和解释本研究的数据;杨明明、吕俊馨获取、分析本研究数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 江苏省卫生健康委科研项目 ZD2022003 常州市应用基础研究计划项目 CJ20244014
收稿日期:2024-11-29
接受日期:2025-03-10
中图分类号:R445.2  R735.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.007
本文引用格式:沈志秋, 杨明明, 吕俊馨, 等. 磁化传递成像评价胰腺导管腺癌纤维化的可行性研究[J]. 磁共振成像, 2025, 16(5): 44-48. DOI:10.12015/issn.1674-8034.2025.05.007.

0 引言

       胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)是最常见的消化系统恶性肿瘤之一[1],其恶性程度高,侵袭性强,五年生存率仅为10%左右[2, 3]。新辅助放化疗作为局部晚期PDAC患者的一个常用治疗手段,尽管可以潜在降低肿瘤分期,但对总体生存期延长有限[4, 5]。一些研究表明,肿瘤间质纤维化可能是导致疗效不佳的一个重要影响因素[6, 7]。肿瘤内间质纤维基质作为一种机械和生化屏障,降低了肿瘤内的血管密度,从而影响化疗药物的输送[8]。PDAC瘤内纤维化高、低程度与肿瘤的生物学行为、治疗反应和患者预后有着密切的关系[9]

       目前,术后标本病理组织学检查是评估肿瘤内纤维化的金标准,但具有滞后性,且不适用于中晚期无法手术的患者。细针穿刺活检术属于有创检查,且常因送检样本组织含量不足、肿瘤异质性[10]等原因,不能满足诊断要求,具有一定的局限性[11]。因此,寻找一种能够在术前无创准确评估PDAC纤维化的检查技术,对指导临床个体化治疗具有重要意义。

       磁化传递成像(magnetization transfer imaging, MTI)是一种无创的MRI定量技术,利用组织内自由池质子与结合池质子间能量互相传递的特性,通过选择性饱和脉冲对结合池中的大分子物质信号进行抑制,从而间接反映体内大分子物质的浓度[12, 13]。既往研究证实,MTI在评估心肌纤维化、肾纤维化、克罗恩肠道纤维化等方面均显示出很好的效果[14, 15, 16, 17]。在评估胰腺癌纤维化程度方面的价值,目前尚不清楚,国内外报道较少。早期的一项研究[18]仅在动物实验中分析了相关性,并未进一步探讨MTI技术的临床应用价值。本研究旨在评估临床应用中MTI反映PDAC纤维化程度的能力,用于预测新辅助化疗疗效,为临床制订治疗方案提供依据。

1 材料与方法

1.1 研究对象

       本研究回顾性分析了苏州大学附属第三医院(常州市第一人民医院)自2022年2月起至2023年6月期间经过手术及病理证实的PDAC患者的影像学资料。纳入标准:(1)术前3周内行MRI扫描检查;(2)经手术切除且病理证实为PDAC的患者。排除标准:(1)图像存在明显伪影,影响病灶观察;(2)患者肿瘤直径小于0.5 cm无法测值;(3)有胰腺外其他恶性肿瘤病史;(4)术前有放化疗等治疗病史。本研究遵照《赫尔辛基宣言》,并经常州市第一人民医院伦理委员会批准,免除受试者知情同意,批准文号:2022(科)第004号。

1.2 检查方法

       本研究采用超导型3.0 T MRI扫描仪(Siemens MAGNETOM VIDA,德国),患者仰卧位,扫描前空腹6小时以上。分别行横断位基于MTI技术的T1WI及常规T2WI、动态增强T1WI扫描。基于MTI技术的T1WI序列采用扰相梯度回波序列,参数:TR 249.00 ms,TE 2.46 ms,FOV 320 mm×256 mm,矩阵160×128,层厚3.0 mm,翻转角 65°,偏中心饱和脉冲频率1500 Hz。T2WI序列参数:TR 1400 ms,TE 94 ms,FOV 360 mm×293 mm,矩阵384×311,层厚5.0 mm。动态增强T1WI序列参数:TR 3.8 ms,TE 1.25 ms,FOV 360 mm×270 mm,矩阵288×216,层厚3.0 mm,对比剂为钆双胺注射液(GE Healthcare Ireland,美国),注射速率 2 mL/s,注射剂量 0.2 mL/kg,注射对比剂后连续多期相采集图像。

1.3 图像分析

       感兴趣区(region of interest, ROI)勾画及MTR值的测量分别由具有5年及10年以上腹部MRI诊断经验的两名医师在对病理结果不知情的情况下独立分完成。使用MATLAB软件(R2013b,MathWorks,美国)生成磁化传递率(magnetic transfer rate, MTR)图[19]。MTR值计算公式为MTR=(MT无饱和-MT饱和)/MT无饱和×100%,其中MT无饱和和MT饱和分别表示无饱和脉冲和有饱和脉冲时梯度回波序列图像的信号强度[20, 21]。ROI勾画主要参考T2WI及MRI增强图像选取轴向肿瘤最大层面,在MTR图像上随机手动绘制3个ROI测量MTR值,ROI面积在8~12 mm2范围内。在勾画过程中,尽量避开血管、胰管、坏死区、钙化及伪影区域。每张图像上所勾画的3个ROI值取平均数即为肿瘤的MTR值。勾画ROI时,同时记录肿瘤部位及大小。根据美国癌症联合委员会TNM分期手册第8版,按肿瘤最大径分成≤2 cm、>2 cm且≤4 cm、>4 cm三组。上述10年以上工作经验的医师在1个月后进行第2次测量,取其第1次测值结果进行后续研究。

1.4 病理分析

       术后病理切片利用Masson染色对肿瘤胶原纤维进行定量评估[22]。利用ImageJ软件计算胶原纤维所占面积的比例[23, 24]。按比例将纤维化分为4级:0%~15%为1级;15%~30%为2级;30%~45%为3级;45%~60%为4级[25]。随后,将患者分为低纤维化组(1级和2级)和高纤维化组(3级和4级)[26]

1.5 统计学方法

       使用SPSS 26.0软件进行数据统计分析。采用Kolmogorov-Smirnov检验评价计量资料是否符合正态分布,符合正态分布的计量资料用(x¯±s)表示,不符合正态分布的计量资料用中位数MQ1,Q3)表示。高、低级别纤维化组间的一般特征采用单因素方差分析。高、低级别纤维化组间的MTR值采用独立样本t检验。使用组内相关系数(intra-class correlation coefficient, ICC)对2名观察者间及同一名观察者前后2次所测MTR值进行一致性检验,组内相关系数>0.75认为一致性较高。采用Spearman相关分析评估MTR值与PDAC纤维化程度相关性。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估高、低级别纤维化组诊断效能,并计算曲线下面积(area under the curve, AUC)、敏感度及特异度。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       本研究共计纳入53例PDAC患者病例,其中:低级别纤维化组29例,年龄(68±10)岁;高级别纤维化组24例,年龄(68±8)岁。两组间性别、肿瘤部位及最大径差异均无统计学意义(均P>0.05)。患者一般资料详见表1

表1  高、低级别纤维化组间PDAC患者的一般特征比较
Tab. 1  Comparison of general characteristics between PDAC patients with high and low levels of fibrosis

2.2 一致性检验结果

       两名观察者间及同一名观察者前后2次所测MTR值进行一致性评价,ICC分别为0.83(95% CI:0.712~0.904,P<0.001)、0.88(95% CI:0.794~0.931,P<0.001),均具有较高一致性。

2.3 相关性分析结果

       本研究入组53例PDAC患者所测胶原纤维面积比值与MTR值间呈正相关(r=0.630,P<0.001)。随着胶原纤维面积占比的增加,MTR值也相应增加。

2.4 高、低级别纤维化组PDAC患者的MTR值比较及效能分析

       低级别纤维化组MTR值为(0.158±0.053),高级别纤维化组MTR值为(0.230±0.063),两组间MTR值差异存在统计学意义(t=-4.528,P<0.001)(图1~2)。ROC曲线分析显示MTR值对区分高、低纤维化组AUC值为0.822(95% CI:0.712~0.931),阈值为0.496,敏感度为87.5%,特异度为62.1%(图3)。

图1  女,51岁,低纤维化PDAC患者。1A:T2WI图示胰头前部稍高信号结节(箭);1B:胰腺实质期T1WI增强图,不均匀中度强化(箭);1C:MTR伪彩图感兴趣区勾画,所示MTR值为0.138;1D:病理结果(Masson ×200)为低级别纤维化。
图2  女,62岁,高纤维化PDAC患者。2A:T2WI图示胰头钩突部稍高信号肿块影(箭);2B:胰腺实质期T1WI增强图,不均匀中度强化(箭);2C:MTR伪彩图感兴趣区勾画,所示MTR值为0.263;2D:病理结果(Masson ×200)为高级别纤维化。PDAC:胰腺导管腺癌;MTR:磁化传递率。
Fig. 1  Female, 51 years old, with low fibrosis PDAC. 1A: T2WI shows a slightly high signal nodule in the neck of the pancreas (arrow); 1B: Pancreatic parenchymal phase T1WI enhanced image, with uneven moderate enhancement (arrow); 1C: MTR image with ROI delineation, the MTR value is 0.138; 1D: Pathological (Masson ×200) results indicate low-grade fibrosis.
Fig. 2  Female, 62 years old, with high fibrosis PDAC. 2A: T2WI shows a slightly high signal mass in the uncinate process of the pancreas head (arrow); 2B: Pancreatic parenchymal phase T1WI enhanced image with uneven mild enhancement (arrow); 2C: MTR image with ROI delineation, the MTR value is 0.263; 2D: Pathological (Masson ×200) results indicate high-grade fibrosis. PDAC: pancreatic ductal adenocarcinoma; MTR: magnetic transfer rate; ROI: region of interest.
图3  MTR值鉴别PDAC高、低级别纤维化ROC曲线。MTR:磁化传递率;PDAC:胰腺导管腺癌;ROC:受试者工作特征;AUC:曲线下面积。
Fig. 3  ROC curves for distinguishing high and low levels of fibrosis in PDAC using MTR value. MTR: magnetic transfer rate; PDAC: pancreatic ductal adenocarcinoma; ROC: receiver operating characteristic; AUC: area under the curve.

3 讨论

       本研究利用MTI技术,通过测量MTR值来评估PDAC肿瘤内高、低别纤维化程度。研究发现MTR值与病理纤维化程度呈正相关,组织学纤维化程度越高,所测得的MTR值越高。ROC曲线分析显示MTR值对预测高、低级别纤维化组有较高的特异性。本研究在国内率先将MTI技术用于评估PDAC瘤内纤维化的程度,并且在人体试验中验证了其可行性,为PDAC纤维化程度的无创评估提供了新方法。

3.1 MTR值与PDAC纤维化程度相关性

       MTI技术的核心机制在于利用质子间的磁化传递效应来揭示组织内部的微观结构信息。该技术通过引入一个偏离中心频率的饱和脉冲,选择性地使胶原蛋白周围的结合水大分子达到能量饱和状态。然后,通过结合水与自由水间的能量传递,使部分自由水提前饱和,因此不能产生MRI信号,从而使组织图像对比度增加。当被饱和的水分子数量增多时,MRI信号的对比效果也会相应增强[27, 28]。本次研究结果显示高级别纤维组的MTR值要高于低级别纤维化组,并且MTR值与病理纤维化程度之间呈正相关,与之前的研究结果一致[18]。这可能与PDAC中胶原蛋白含量有关。在多种因子的调控下,包括成纤维细胞的增殖和转化等因素,会促使PDAC内胶原蛋白沉积,导致纤维化的形成[29, 30, 31]。PDAC患者高级别纤维组的瘤内胶原蛋白含量增高,水质子池跟大分子池之间的磁化传递能量增加,最终导致了MTR值的升高。

3.2 MTR值在PDAC高、低级纤维化的研究价值

       本研究还通过构建ROC曲线分析,显示MTR值对于区分PDAC患者高、低级别纤维化具有显著的鉴别能力。前期一项利用体素内不相干运动(intravoxel incoherent motion, IVIM)扩散加权成像(diffusion-weighted imaging, DWI)评价PDAC瘤内纤维化的研究[25],显示灌注分数(f值)诊断高、低级纤维组的敏感度和特异度分别95.8%、53.8%。而本研究利用MTI技术,显示出更高的特异性,这可能与成像序列本身特点有关。MTI技术通过特定频率的饱和脉冲,直接作用于间质纤维中胶原蛋白等这些大分子物质,MTR值高低由胶原蛋白浓度决定[32, 33]。而IVIM-DWI技术的f值代表体素内微循环灌注效应与总扩散效应的比值,当纤维化逐渐形成,细胞结构受损,细胞间隙减小,导致微循环血流减低及扩散运动受制,其本质上是通过微循环灌注来间接反映组织纤维化程度[34, 35, 36]

3.3 一般特征在PDAC高、低级纤维化的研究价值

       此外,本研究还分析了高、低级别纤维化组PDAC患者的性别、肿瘤部位和最大径特征,结果均未发现差异有统计学意义。MENG等[37]的一项研究中发现,不同间质纤维比例的PDAC患者,肿瘤T分期差异存在统计学意义,其他特征与本研究结果一致。导致结果不一致的原因可能是样本选择性偏倚造成的,本研究入组T3~T4期病例数所占比例低于上述MENG等的研究。这两项不同的研究结果反而表明了,PDAC纤维化程度与肿瘤分期有着一定的关联,随着肿瘤分期的提高,纤维化程度越高,后期需进一步增加样本量进行探讨。

3.4 本研究的局限性

       本研究也存在一些不足与局限。首先,本研究为回顾性研究,且样本量相对较小;其次,本研究目前仅在实验阶段证实了MTI技术在评估PDAC纤维化程度方面的潜力。后续研究需进一步扩大样本量,并且纳入PDAC患者接受新辅助化疗后的疗效评估数据,以进一步验证MTI技术的临床价值。

4 结论

       综上所述,MTR值作为一种无创、简便的影像学指标,在评估PDAC纤维化方面具有潜在的应用价值,有望为PDAC的精准诊断和治疗提供新的思路和方法。

[1]
CONNOR A A, GALLINGER S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data[J]. Nat Rev Cancer, 2022, 22(3): 131-142. DOI: 10.1038/s41568-021-00418-1.
[2]
AHMEDIN JEMAL DVM P. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[3]
XU C M, JUN E, OKUGAWA Y, et al. A circulating panel of circRNA biomarkers for the noninvasive and early detection of pancreatic ductal adenocarcinoma[J/OL]. Gastroenterology, 2024, 166(1): 178-190.e16 [2024-12-06]. https://pubmed.ncbi.nlm.nih.gov/37839499/. DOI: 10.1053/j.gastro.2023.09.050.
[4]
HO W J, JAFFEE E M, ZHENG L. The tumour microenvironment in pancreatic cancer: clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17: 527-540. DOI: 10.1038/s41571-020-0363-5.
[5]
SHI S, LIU R, ZHOU J, et al. Development and validation of a CT-based radiomics model to predict survival-graded fibrosis in pancreatic ductal adenocarcinoma[J]. Int J Surg, 2025, 111(1): 950-961. DOI: 10.1097/js9.0000000000002059.
[6]
MENG Y H, ZHANG H, LI Q, et al. Magnetic resonance radiomics and machine-learning models: an approach for evaluating tumor-stroma ratio in patients with pancreatic ductal adenocarcinoma[J]. Acad Radiol, 2022, 29(4): 523-535. DOI: 10.1016/j.acra.2021.08.013.
[7]
LI X Y, HOU W T, XIAO C X, et al. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma[J]. Cell Oncol, 2024, 47(5): 1561-1578. DOI: 10.1007/s13402-024-00970-6.
[8]
YEE E J, TORPHY R J, THIELEN O N, et al. Radiologic occult metastases in pancreatic cancer: analysis of risk factors and survival outcomes in the age of contemporary neoadjuvant multi-agent chemotherapy[J]. Ann Surg Oncol, 2024, 31(9): 6127-6137. DOI: 10.1245/s10434-024-15443-1.
[9]
HEGER U, MARTENS A, SCHILLINGS L, et al. Myofibroblastic CAF density, not activated stroma index, indicates prognosis after neoadjuvant therapy of pancreatic carcinoma[J/OL]. Cancers, 2022, 14(16): 3881 [2024-09-13]. https://pubmed.ncbi.nlm.nih.gov/36010874/. DOI: 10.3390/cancers14163881.
[10]
王宏伟, 马晓青, 高松, 等. 肿瘤类器官在胰腺癌综合治疗中的应用及研究进展[J]. 中华外科杂志, 2024, 62(7): 710-713. DOI: 10.3760/cma.j.cn112139-20240403-00164.
WANG H W, MA X Q, GAO S, et al. Application and research progress of patient-derived organoids in the multimodality treatment of pancreatic cancer[J]. Chin J Surg, 2024, 62(7): 710-713. DOI: 10.3760/cma.j.cn112139-20240403-00164.
[11]
FUKUI H, ONISHI H, OTA T, et al. Pancreatic fibrosis assessment and association with pancreatic cancer: comparison with the extracellular volume fraction[J/OL]. Clin Radiol, 2024, 79(11): e1356-e1365 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/39266374/. DOI: 10.1016/j.crad.2024.08.007.
[12]
PREISNER F, BEHNISCH R, FOESLEITNER O, et al. Reliability and reproducibility of sciatic nerve magnetization transfer imaging and T2 relaxometry[J]. Eur Radiol, 2021, 31(12): 9120-9130. DOI: 10.1007/s00330-021-08072-9.
[13]
MOOSHAGE C M, SCHIMPFLE L, TSILINGIRIS D, et al. Magnetization transfer ratio of the sciatic nerve differs between patients in type 1 and type 2 diabetes[J/OL]. Eur Radiol Exp, 2024, 8(1): 6 [2025-01-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10774497/. DOI: 10.1186/s41747-023-00405-1.
[14]
LÓPEZ K, NEJI R, BUSTIN A, et al. Quantitative magnetization transfer imaging for non-contrast enhanced detection of myocardial fibrosis[J]. Magn Reson Med, 2021, 85(4): 2069-2083. DOI: 10.1002/mrm.28577.
[15]
GANDHI D B, SAEEDI M AL, KRIER J D, et al. Evaluation of renal fibrosis using magnetization transfer imaging at 1.5T and 3T in a porcine model of renal artery stenosis[J/OL]. J Clin Med, 2023, 12(8): 2956 [2024-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10140905/. DOI: 10.3390/jcm12082956.
[16]
DE KOCK I, BOS S, DELRUE L, et al. MRI texture analysis of T2-weighted images is preferred over magnetization transfer imaging for readily longitudinal quantification of gut fibrosis[J]. Eur Radiol, 2023, 33(9): 5943-5952. DOI: 10.1007/s00330-023-09624-x.
[17]
LI Z L, CHEN Z H, ZHANG R N, et al. Comparative analysis of [18F] f-fapi pet/ct, [18F] f-fdg pet/ct and magnetization transfer mr imaging to detect intestinal fibrosis in Crohn's disease: A prospective animal model and human cohort study[J]. Eur J Nucl Med Mol Imaging, 2024, 51(7): 1856-1868. DOI: 10.1007/s00259-024-06644-7.
[18]
LI W G, ZHANG Z L, NICOLAI J, et al. Magnetization transfer MRI in pancreatic cancer xenograft models[J]. Magn Reson Med, 2012, 68(4): 1291-1297. DOI: 10.1002/mrm.24127.
[19]
HU H, CHEN L, ZHOU J, et al. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: Added value from magnetization transfer imaging[J/OL]. Eur J Radiol, 2022, 151: 110295 [2024-08-13]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X22001450. DOI: 10.1016/j.ejrad.2022.110295.
[20]
DEEN S S, MCLEAN M A, GILL A B, et al. Magnetization transfer imaging of ovarian cancer: initial experiences of correlation with tissue cellularity and changes following neoadjuvant chemotherapy[J/OL]. BJR Open, 2022, 4(1): 20210078 [2024-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9459873/. DOI: 10.1259/bjro.20210078.
[21]
ZHU D T, WU W H, YU W J, et al. Ultrashort echo time magnetization transfer imaging of knee cartilage and meniscus after long-distance running[J]. Eur Radiol, 2023, 33(7): 4842-4854. DOI: 10.1007/s00330-023-09462-x.
[22]
DUAN K L, ZHOU H H, XU W N, et al. Evaluation of tumor fibrosis in pancreatic ductal adenocarcinoma by 2-D shear wave elastography: A pilot study[J]. Ultrasound Med Biol, 2023, 49(9): 2119-2125. DOI: 10.1016/j.ultrasmedbio.2023.06.003.
[23]
严俊, 王玲, 黄益龙, 等. 基于轴位T1WI图像大腿肌肉脂肪浸润量化方法的可行性研究[J]. 磁共振成像, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
YAN J, WANG L, HUANG Y L, et al. Feasibility study on quantification method of fat infiltration in thigh muscle based on axial T1WI image[J]. Chin J Magn Reson Imag, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
[24]
ERSTAD D J, SOJOODI M, TAYLOR M S, et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI[J]. Clin Cancer Res, 2020, 26(18): 5007-5018. DOI: 10.1158/1078-0432.CCR-18-1359.
[25]
LIU Q, ZHANG J G, JIANG M, et al. Evaluating the histopathology of pancreatic ductal adenocarcinoma by intravoxel incoherent motion-diffusion weighted imaging comparing with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 670085 [2024-06-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8261286/. DOI: 10.3389/fonc.2021.670085.
[26]
MURAOKA N, UEMATSU H, KIMURA H, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations[J]. J Magn Reson Imaging, 2008, 27(6): 1302-1308. DOI: 10.1002/jmri.21340.
[27]
ASSLÄNDER J, GULTEKIN C, MAO A, et al. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model[J]. Magn Reson Med, 2024, 91(4): 1478-1497. DOI: 10.1002/mrm.29951.
[28]
XUE Y P, MA Y J, WU M, et al. Quantitative 3D ultrashort echo time magnetization transfer imaging for evaluation of knee cartilage degeneration in vivo[J]. J Magn Reson Imaging, 2021, 54(4): 1294-1302. DOI: 10.1002/jmri.27659.
[29]
LEPPÄNEN J, LINDHOLM V, ISOHOOKANA J, et al. Tenascin C, fibronectin, and tumor-stroma ratio in pancreatic ductal adenocarcinoma[J]. Pancreas, 2019, 48(1): 43-48. DOI: 10.1097/MPA.0000000000001195.
[30]
HELMS E, KATHRINA ONATE M, SHERMAN M H. Fibroblast heterogeneity in the pancreatic tumor microenvironment[J]. Cancer Discov, 2020, 10(5): 648-656. DOI: 10.1158/2159-8290.CD-19-1353.
[31]
PEREIRA B A, RITCHIE S, CHAMBERS C R, et al. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response[J/OL]. Sci Adv, 2024, 10(27): eadl1197 [2025-01-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11221519/. DOI: 10.1126/sciadv.adl1197.
[32]
KISELEV V G, KÖRZDÖRFER G, GALL P. Toward quantification: microstructure and magnetic resonance fingerprinting[J]. Invest Radiol, 2021, 56(1): 1-9. DOI: 10.1097/RLI.0000000000000738.
[33]
FERRAUTO G, TRIPEPI M, DI GREGORIO E, et al. Detection of U-87 tumor cells by RGD-functionalized/Gd-containing giant unilamellar vesicles in magnetization transfer contrast magnetic resonance images[J]. Invest Radiol, 2021, 56(5): 301-312. DOI: 10.1097/RLI.0000000000000742.
[34]
HECHT E M, LIU M Z, PRINCE M R, et al. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma?[J]. J Magn Reson Imaging, 2017, 46(2): 393-402. DOI: 10.1002/jmri.25581.
[35]
MALAGI A V, SHIVAJI S, KANDASAMY D, et al. Pancreatic mass characterization using IVIM-DKI MRI and machine learning-based multi-parametric texture analysis[J/OL]. Bioengineering, 2023, 10(1): 83 [2024-09-06]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9854749/. DOI: 10.3390/bioengineering10010083.
[36]
ZENG P E, MA L, LIU J F, et al. The diagnostic value of intravoxel incoherent motion diffusion-weighted imaging for distinguishing nonhypervascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas[J/OL]. Eur J Radiol, 2022, 150: 110261 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35316674/. DOI: 10.1016/j.ejrad.2022.110261.
[37]
MENG Y H, ZHANG H, LI Q, et al. CT radiomics and machine-learning models for predicting tumor-stroma ratio in patients with pancreatic ductal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 707288 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8606777/. DOI: 10.3389/fonc.2021.707288.

上一篇 扩散峰度成像定量参数预测胰腺导管腺癌HIF-1α的初步研究
下一篇 广泛性焦虑症双侧杏仁核静息态和动态功能连接特征的功能磁共振成像研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2