分享:
分享到微信朋友圈
X
临床研究
基于多模态磁共振对终末期肾病患者脑结构-功能耦合与认知功能的相关性研究
周宇 王海宝 齐向明 李大山 方杰 邹帆 汪海龙 郭玲玲

Cite this article as: ZHOU Y, WANG H B, QI X M, et al. Study on the correlation between brain structure-function coupling and cognitive function in end-stage renal disease patients using multimodal magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(5): 74-79.本文引用格式:周宇, 王海宝, 齐向明, 等. 基于多模态磁共振对终末期肾病患者脑结构-功能耦合与认知功能的相关性研究[J]. 磁共振成像, 2025, 16(5): 74-79. DOI:10.12015/issn.1674-8034.2025.05.012.


[摘要] 目的 首次结合分数低频振幅(fractional amplitude of low-frequency fluctuation, fALFF)方法与基于体素的形态测量学(voxel-based morphometry, VBM)技术,系统探讨终末期肾病(end-stage renal disease, ESRD)患者脑结构-功能耦合特征及其与认知功能障碍的关联机制。材料与方法 前瞻性纳入57名ESRD患者及45名健康对照者,两组均接受头颅3D-T1结构像、静息态功能MRI(resting-state functional MRI, rs-fMRI)扫描及认知功能评估测试[包括简易精神状态检查(Mini-Mental State Examination, MMSE)、蒙特利尔认知评估(Montreal Cognitive Assessment, MoCA)、连线试验A(Trail Making Test A, TMT-A)]。获取两组fALFF及灰质体积(gray matter volume, GMV)图,计算每个体素的fALFF与GMV的比值得到结构-功能耦合(fALFF/GMV)图,比较两组间的差异,并将具有差异脑区的fALFF/GMV值与认知评分进行Pearson相关性分析。结果 与健康对照组相比,ESRD患者双侧海马、豆状壳核、颞中回、小脑Cere8区及右侧杏仁核、嗅皮质、海马旁回、左侧豆状苍白球、梭状回、小脑Cere7b区fALFF/GMV值增加,双侧内侧额上回、顶下小叶fALFF/GMV值降低(P<0.001,FDR校正)。左侧豆状壳核、左侧豆状苍白球与MMSE总分存在显著负相关;左侧豆状壳核与MoCA总分存在显著负相关;双侧内侧额上回与TMT-A评分存在显著正相关(P<0.05,FDR校正)。结论 ESRD患者在默认网络、执行控制网络多个相关脑区表现出显著的结构-功能失耦合现象,且与患者认知功能障碍程度密切相关。
[Abstract] Objective For the first time, this study combines the fractional amplitude of low-frequency fluctuation (fALFF) method with voxel-based morphometry (VBM) technique to systematically investigate the brain structural-functional coupling characteristics in end-stage renal disease (ESRD) patients and their associative mechanisms with cognitive dysfunction.Materials and Methods Prospectively, 57 ESRD patients and 45 healthy control were recruited. Both groups underwent cranial 3D-T1 structural imaging, resting-state functional magnetic resonance imaging (rs-fMRI) scanning, and cognitive function assessment tests [including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Trail Making Test A (TMT-A)]. The fALFF maps and gray matter volume (GMV) maps of the two groups were obtained. By calculating the ratio of fALFF to GMV for each voxel, the structure-function coupling (fALFF/GMV) maps were generated. The differences between the two groups were compared, and a Pearson correlation analysis was conducted between the fALFF/GMV values of the brain regions with significant differences and the cognitive scores.Results Compared with the healthy control group, in ESRD patients, the fALFF/GMV values increased in the bilateral hippocampi, putamina, middle temporal gyri, cerebellar Cere8 regions, as well as the right amygdala, olfactory cortex, parahippocampal gyrus, left lenticular pallidum, fusiform gyrus, and cerebellar Cere7b region. The fALFF/GMV values decreased in the bilateral medial superior frontal gyri and inferior parietal lobules (P < 0.001, corrected by FDR). There was a significant negative correlation between the total score of the MMSE and the fALFF/GMV values in the left putamen and left lenticular pallidum. A significant negative correlation was observed between the total score of MoCA and the fALFF/GMV values in the left putamina. There was a significant positive correlation between the TMT-A and the fALFF/GMV values in the bilateral medial superior frontal gyri (P < 0.05, corrected by FDR).Conclusions ESRD patients exhibit a significant phenomenon of structural-functional decoupling in multiple relevant brain regions within the default network and the executive control network, which is closely associated with the degree of cognitive impairment in these patients.
[关键词] 终末期肾病;结构-功能耦合;认知功能障碍;磁共振成像;多模态磁共振成像;基于体素的形态学测量;静息态功能磁共振成像
[Keywords] end-stage renal disease;structural-functional coupling;cognitive impairment;magnetic resonance imaging;multimodal magnetic resonance imaging;voxel-based morphometry;resting-state functional magnetic resonance imaging

周宇 1   王海宝 1*   齐向明 2   李大山 2   方杰 1   邹帆 1   汪海龙 1   郭玲玲 1  

1 安徽医科大学第一附属医院放射科,合肥 230022

2 安徽医科大学第一附属医院肾脏内科,合肥 230022

通信作者:王海宝,E-mail: wanghaibao916@163.com

作者贡献声明:王海宝设计本研究的方案,对稿件的重要内容进行了修改;周宇起草和撰写稿件,获取、分析和解释本研究的数据;齐向明获取本研究的数据,对稿件重要内容进行了修改,获得了安徽省自然科学基金项目和安徽高校自然科学研究项目的资助;李大山、方杰、邹帆、汪海龙、郭玲玲获取、分析和解释本研究的数据,对稿件重要内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 安徽省自然科学基金项目 1908085MH245 安徽高校自然科学研究项目 KJ2018A0493
收稿日期:2025-02-21
接受日期:2025-04-10
中图分类号:R445.2  R692 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.012
本文引用格式:周宇, 王海宝, 齐向明, 等. 基于多模态磁共振对终末期肾病患者脑结构-功能耦合与认知功能的相关性研究[J]. 磁共振成像, 2025, 16(5): 74-79. DOI:10.12015/issn.1674-8034.2025.05.012.

0 引言

       终末期肾病(end-stage renal disease, ESRD)是一种严重的慢性肾脏疾病,其特征是肾小球滤过率显著降低,导致体内代谢废物和毒素的积累,患者常伴有多种并发症[1],其中认知功能障碍尤为突出[2, 3]。近年来,多模态磁共振技术已经阐明了ESRD患者存在多个脑区结构[4, 5, 6]、功能异常[7, 8, 9],并且与认知功能损害有关[10]。但当前研究多局限于单一模态分析,未能阐明灰质体积改变与自发神经活动之间的关联。值得注意的是,结构-功能耦合分析已在神经退行性疾病研究中展现独特价值,例如,在阿尔茨海默病中,海马结构-功能耦合值的升高被解释为残余神经元的功能代偿[11];在脑小血管病中,双侧尾状核的结构-功能失耦可预测执行功能衰退[12],而ESRD患者其大脑结构-功能耦合变化及内在机制仍缺乏系统性探索。现有证据表明,ESRD患者的脑功能异常与结构损伤区存在空间重叠[13],提示需采用多模态联合分析揭示其内在联系。低频振幅(amplitude of low-frequency fluctuation, ALFF)/基于体素的形态测量学(voxel-based morphometry, VBM)作为新兴指标[12],可量化单位灰质体积的神经活动强度,揭示结构损伤后的功能代偿或失代偿情况,但该指标在ESRD中的变化特征及其与认知功能的关系尚未被探索。本研究拟采用 ALFF/VBM耦合方法,通过构建分数低频振幅(fractional amplitude of low-frequency fluctuation, fALFF)/灰质体积(gray matter volume, GMV)作为量化结构-功能耦合分析的指标,探究ESRD患者脑结构-功能耦合改变及其与认知功能的相关性,进而为进一步理解ESRD患者认知障碍的神经机制提供新的视角。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,经安徽医科大学第一附属医院伦理委员会批准,批准文号:2024407,所有受试者签署知情同意书。在正式试验之前由G*Power 3.1计算所需被试量,基于预试验结果设定统计功效1-β为0.90,α为0.05,效应量d=0.74时,每组至少需要40例。本研究纳入2024年4~10月于本院肾内科诊治的ESRD患者66例(男28例,女38例)。纳入标准:(1)GFR≤15 mL/(min·1.73m2);(2)病情稳定患者;(3)右利手,无视听力障碍,能完成认知功能测试;(4)无MR检查禁忌证。排除标准:(1)存在颅脑外伤、肿瘤、卒中等疾病史;(2)存在酒精、药物滥用史;(3)存在神经精神疾病史;(4)存在肾移植或急性肾衰竭病史;(5)存在其他系统疾病,包括:急性心脑血管疾病(动脉栓塞、心力衰竭、心肌梗死、冠心病)、肝硬化等;(6)MR检查头动平移或旋转幅度大于3.0 mm或3.0°,头动平均位移(frame-wise displacement Jenkinson, FD_Jenkinson)>0.2者。对照组纳入性别、年龄及受教育年限与ESRD组相匹配53例健康受试者(男18例,女35例),所有对照组受试者均为右利手、无MR检查禁忌证、无肾脏等代谢性疾病、颅脑疾病、神经精神疾病、药物滥用史及其他系统性疾病如糖尿病、冠心病、心衰等。

1.2 研究方法

1.2.1 神经心理学测试

       所有受试者在接受MR检查前,通过简易智能精神状态评估量表(Mini-Mental State Examination, MMSE)、蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)、数字连线测试A(Trail Making Test A, TMT-A)进行认知功能评估。

1.2.2 MRI图像采集

       采用Siemens MAGNETOM Vida 3.0 T MRI系统(64通道头线圈)进行影像采集,检查前向受试者说明注意事项,要求其取仰卧位并全程保持身体静止及情绪稳定,同时佩戴耳塞降低噪声干扰,头部使用海绵垫固定以减少运动伪影,扫描时首先通过T2WI序列,确认颅内无显著异常后,继续执行脑结构与功能成像序列采集。影像采集参数如下。3D-T1W结构像(矢状位):TE 2.9 ms,TR 2300 ms,FOV 256 mm×256 mm,FA 9°,矩阵256×256,体素大小1 mm×1 mm×1 mm,层厚1 mm,层数208,扫描时间5 min 12 s。静息态功能像(AC-PC平面对齐):TE 30 ms,TR 3000 ms,FOV 220 mm×220 mm,FA 90°,矩阵64×64,体素大小3.4 mm×3.4 mm×3.4 mm,层厚3.4 mm,层数48,时间点197,扫描时间10 min。

1.2.3 MRI图像处理

       VBM数据处理:基于 Matlab R2021a数据处理平台,利用SPM 12(http://www.fil.ion.ucl.ac.uk/spm/software/spm12)软件内的CAT 12(http://dbm.neuro.uni-jena.de/cat12/)工具包进行VBM。将3D-T1WI原始MRI数据文件由.dcm格式转变为.nii格式,在MatlabR 2021a平台内加载SPM 12并调用CAT 12工具包,参照蒙特利尔神经科学研究所(Montreal Neurological Institute, MNI)空间模板对nii格式数据进行分割、重建、校正及配准处理,并去除受试者颅内总体积(total intracranial volume, TIV)的影响,分割后灰质结构像数据采用全宽半高(full width at half-maximum, FWHM)4 mm高斯核平滑处理,得到灰质体积(gray matter volume, GMV)图。

       静息态功能MRI(resting-statefunctional MRI, rs-fMRI)数据处理:(1)采用dpabi软件包(DPABI_V8.2_240510)(http://rfmri.org/dpabi)将MRI数据由DICOM格式转换为NIFTI格式,剔除前10个时间点的静息态数据。(2)头动校正。执行时间-空间校正,设定头动阈值(平移>3 mm、旋转>3°以及平均FD__Jenkinson大于0.2的受试者被排除)。(3)空间标准化及其他预处理。去除头皮结构后进行空间标准化、去除协变量(包括Friston 24头动参数、白质和脑脊液信号以及全局信号)、去线性漂移处理。(4)平滑与滤波降噪。以FWHM为4 mm的高斯核行空间平滑,并以时滤波(0.01~0.10 Hz)降噪。(5)计算指标。采用傅里叶变换将时间序列转换为频域信号,通过计算选定低频范围(0.01~0.08 Hz)内功率谱的均方根获得标准ALFF,将其除以全频段ALFF值后生成fALFF图谱。

       fALFF/GMV耦合图的计算:经过上述图像处理,得到每例受试者的fALFF图和相应的GMV图后,将fALFF图及GMV图重采样(体素大小3 mm×3 mm×3 mm)并共配准,分别计算每例受试者每个体素的fALFF与GMV的比值,即得到fALFF/GMV耦合图来评估ESRD患者脑结构-功能耦合情况。

1.2.4 统计分析

       采用SPSS Statistics 22.0统计软件对两组基础资料及神经认知评分的差异进行分析。计量资料行两独立样本t检验,计数资料行卡方检验。采用自动化解剖标记(automated anatomical labeling, AAL)模板将大脑分为116个脑区,采用SPM 12软件中的两独立样本检验分析结构-功能耦合(fALFF/GMV)图,比较两组间各脑区的差异,控制年龄、性别和教育水平的影响,统计分析经FDR校正,设定显著性阈值为P<0.001。通过DPABI(DPABI_V8.2_240510)软件包,提取了差异脑区的fALFF/GMV值,以Pearson相关分析评价ESRD组结构-功能耦合值(fALFF/GMV)与认知指标之间的相关性,统计分析经FDR校正,显著性阈值设为P<0.05。

2 结果

2.1 两组临床资料及认知功能测试评分比较

       经质量控制后,剔除头动较大(平移>3 mm、旋转>3°或mean FD_Jenkinson>0.2者)的9名ESRD患者和8名健康受试者,最终纳入ESRD患者57例以及健康受试者45例。组间人口学特征(年龄、性别、受教育年限)差异无统计学意义(P>0.05)。认知功能评估显示,患者组MMSE、MoCA评分显著低于对照组,TMT-A完成时间显著延长(P均<0.05),详见表1

表1  两组间临床数据分析
Tab. 1  The analysis of clinical data between the two groups

2.2 两组受试者脑结构-功能耦合值(fALFF/GMV)差异

       与正常对照组相比,ESRD患者双侧海马、双侧豆状壳核、双侧颞中回、双侧小脑Cere8区、右侧杏仁核、右侧嗅皮质、右侧海马旁回、左侧豆状苍白球、左侧梭状回、左侧小脑Cere7b区fALFF/GMV值增加,双侧内侧额上回、双侧顶下小叶fALFF/GMV值降低(P<0.001,FDR校正),详见表2图1

图1  两组受试者结构-功能耦合值(fALFF/GMV)差异脑区空间分布图。红色表示ESRD组fALFF/GMV值升高区域,色阶范围对应t值为1.00~4.40,蓝色表示降低区域,色阶范围对应t值为-1.00~-3.80,统计阈值为P<0.001(FDR校正)。fALFF:分数低频振幅;GMV:灰质体积;ESRD:终末期肾病。
Fig. 1  Spatial distribution maps of brain regions with structural-functional coupling (fALFF/GMV ratio) differences between the two groups of subjects. Red indicates regions with increased fALFF/GMV values in the ESRD group, with a color scale range corresponding to t values from 1.00 to 4.40; blue indicates regions with decreased values, with a color scale range corresponding to t values from -1.00 to -3.80. Statistical thresholds were set at P < 0.001 (FDR corrected). fALFF: fractional amplitude of low-frequency fluctuation; GMV: gray matter volume; ESRD: end-stage renal disease.
表2  两组受试者结构-功能耦合值(fALFF/GMV)差异脑区
Tab. 2  Brain regions with differences in the structural-functional coupling (fALFF/GMV ratio) between the two groups of subjects

2.3 ESRD组差异有统计学意义的脑区的fALFF/GMV值与认知评分相关性

       左侧豆状壳核、左侧豆状苍白球与MMSE总分存在显著负相关(r=-0.394,P=0.036,95% CI:-0.614~-0129;r=-0.371,P=0.036,95% CI:-0.600~-0.089);左侧豆状壳核与MoCA总分存在显著负相关(r=-0.401,P=0.036,95% CI:-0.603~-0.156);双侧内侧额上回与TMT-A评分存在显著正相关(左侧r=0.428,P=0.018,95% CI:0.183~0.612;右侧r=0.380,P=0.036,95% CI:0.141~0.590)(P均<0.05,FDR校正)。详见表3图2

图2  相关分析散点图。ESRD组差异有统计学意义脑区的fALFF/GMV值与认知评分(MMSE、MoCA、TMT-A)的相关性。ESRD:终末期肾病;fALFF:分数低频振幅;GMV:灰质体积;MMSE:简易精神状态检查;MoCA:蒙特利尔认知评估;TMT-A:连线试验的A部分。
Fig. 2  Scatter plot of correlation analysis. Correlation between the fALFF/VBM values of the brain regions with differences in the ESRD group and the cognitive scores (MMSE, MoCA, TMT-A). fALFF: fractional amplitude of low-frequency fluctuation; GMV: gray matter volume; ESRD: end-stage renal disease; MMSE: Mini-Mental State Examination; MoCA:Montreal Cognitive Assessment; TMT-A:Trail Making Test A.
表3  ESRD组脑结构-功能耦合值(fALFF/GMV)与神经认知量表评分的相关性
Tab. 3  Correlation between brain structural-functional coupling (fALFF/GMV ratio) in the ESRD group and scors of neurocognitive scales

3 讨论

       本研究首次通过fALFF/GMV值探索ESRD患者脑结构-功能耦合的改变,并分析其与认知功能之间的相关性。对于每个受试者,体素水平的fALFF/GMV表征了区域神经元活动强度与灰质体积变化之间的关系,不同区域的耦合值增加和减少都涉及结构和功能的失耦合,即大脑功能活动与结构变化之间的协调性受损。研究结果表明,ESRD患者在多个脑区表现显著的结构-功能失耦合现象,并且在双侧内侧额上回、左侧豆状壳核、左侧豆状苍白球等多个脑区结构-功能失耦合程度与认知功能存在相关性,提示特定脑区结构-功能失耦合与认知功能损害有关,这一发现为深入理解ESRD患者认知功能障碍的神经机制提供了重要线索。

3.1 ESRD患者脑结构-功能耦合变化

       默认网络主要包括内侧前额叶皮层、后扣带回、楔前叶和双侧顶下小叶等脑区[14],参与自我相关思维、情景记忆和未来计划等功能[15]。CHEN等[16]通过静息态fMRI发现,ESRD患者在默认网络多个区域的局部一致性(regional homogeneity, ReHo)值降低,且与认知功能下降相关。LI等[17]研究指出,ESRD患者在默认网络的功能连接减弱,与认知功能障碍密切相关。在本研究中发现ESRD患者双侧内侧额上回和顶下小叶的fALFF/GMV值降低,提示默认网络重要区域结构-功能失耦合,且与认知障碍密切相关,这一结果与既往研究发现ESRD患者默认网络结构、功能改变相符合[9, 18]。在ESRD患者中,该区域结构-功能耦合的异常可能扰乱了默认网络的正常功能连接[19],进而影响信息在大脑中的整合与传递,最终导致认知功能损伤[20],这在TMT-A测试结果中得以体现。此外,本研究发现 ESRD 患者双侧内侧额上回 fALFF/GMV值降低,与YIN等[21]报道的透析患者该区域神经-血管耦合(neurovascular coupling, NVC)系数显著减低具有一致性。值得注意的是,YIN等通过ALFF与NVC的联合分析揭示了神经活动和脑血流之间的关系,而本研究进一步从结构-功能耦合角度发现ESRD患者内侧额上回灰质体积与神经元活动强度之间的失代偿。两种不同的多模态指标结合表明内侧额上回作为默认网络的核心节点,可能存在结构-功能及神经-血管的双重失耦,导致患者默认网络整合功能受损,进而加剧认知功能损伤。

       杏仁核、海马作为边缘系统的重要区域,同时也是情绪记忆网络的关键组成部分[22],在ESRD患者中也显示出fALFF/GMV值的变化。杏仁核对于情感调节至关重要[23],而海马则参与情景记忆的编码、检索及存储[24],海马旁回同样在空间记忆和其他形式的记忆中扮演重要角色[25]。本研究发现海马和海马旁回的fALFF/GMV值增加,但患者的认知表现并未因此改善,这可能是由于功能代偿[26]无法弥补长期结构性损伤[4]导致的神经网络效率降低。例如,CHEN等[27]研究指出,ESRD患者的认知功能障碍与边缘系统的功能网络重组有关。当这些区域出现结构-功能失耦合时,患者可能出现认知功能下降。

       本研究发现ESRD患者双侧豆状壳核及左侧豆状苍白球fALFF/GMV值增加,且与MMSE和MoCA评分之间存在显著相关性。基底节是运动控制的重要中枢,同时也参与认知、情感处理以及决策制订等功能[28]。近年来的研究指出,基底节区的功能障碍与认知衰退密切相关,且言语流畅度减低[29]。在ESRD背景下,尿毒症毒素积累和其他代谢紊乱可能会直接或间接地影响基底节区的正常运作[30, 31],从而导致认知表现下降。研究发现[32],ESRD患者基底节的白质完整性受到损害,提示结构性损伤可能存在,这与较差的认知表现有关。JIN等[33]研究发现,ESRD患者的基底节区功能连接降低,影响患者的认知、运动控制等功能。这些研究均表明ESRD能够影响患者基底节的结构与功能,本研究进一步证实此猜测,且发现二者之间存在失耦合现象。

       除了上述三个主要区域外,其他一些脑区如小脑、颞中回、梭状回也表现出显著的fALFF/GMV值差异。小脑不仅协调精细动作[34],还在认知任务中发挥重要作用,特别是在工作记忆和语言处理方面[35]。颞中回则是语言理解和语义加工的关键区域[36],其改变或许反映了患者言语流畅性和命名能力的减退[37];梭状回负责面部识别等功能,其异常可能影响社交互动[38]。值得注意的是,小脑Cere8区虽然传统上被认为主要是协调精细动作,但近年来的研究表明它同样参与到认知任务中[39]。另外,ESRD患者的颞中回灰质体积减小已被多次报道[4, 7],这与语言理解和沟通障碍有关。梭状回的改变可能解释了为什么ESRD患者在面部识别和社会认知方面存在困难[40]

3.2 ESRD患者脑结构-功能耦合改变与认知功能的相关性

       本研究发现,具有差异脑区结构-功能耦合系数(ALFF/VBM)与认知功能量表之间存在显著相关性。左侧豆状壳核、左侧豆状苍白球与MMSE评分呈负相关,左侧豆状壳核与MoCA评分呈负相关,提示这些脑区的结构-功能失耦合程度越严重,患者的认知功能总体水平越低,进一步证实了这些脑区在认知功能中的重要作用。此外,研究发现双侧内侧额上回结构-功能耦合改变与TMT-A存在正相关,提示ESRD患者不同脑区可能在注意力集中以及视觉搜索速度等方面出现问题,进而影响其在该任务中的整体表现。

3.3 本研究的局限性及未来展望

       本研究存在一定局限性。研究为横断面设计,无法推断结构-功能失耦合与认知障碍的因果关系,可能存在双向作用或第三方因素(如尿毒症毒素累积、血管病变)的影响,未来需要开展队列研究来进一步阐明其时间顺序和因果机制。尽管样本量满足功效分析要求,但未来需扩大样本以验证结果的泛化性。研究未区分是否透析及透析模式,未来研究可进一步探讨不同透析方式对脑结构-功能耦合的潜在影响,以明确混杂因素。

4 结论

       综上所述,本研究通过多模态磁共振技术发现终末期肾病患者在边缘系统、基底节、额顶叶、颞叶、小脑等脑区表现出显著的结构-功能失耦合现象,涉及默认网络、边缘系统及基底节等多个区域,该现象与患者的认知功能障碍程度密切相关。这一发现为ESRD患者认知功能障碍的神经机制研究提供了新的视角,未来可探索fALFF/GMV比值作为早期评估认知衰退的影像学标志物,为ESRD患者的认知功能干预提供新靶点。

[1]
BALUARTE J H. Neurological Complications of Renal Disease[J]. Semin Pediatr Neurol, 2017, 24(1): 25-32. DOI: 10.1016/j.spen.2016.12.004.
[2]
OLCZYK P, KUSZTAL M, GOŁĘBIOWSKI T, et al. Cognitive Impairment in End Stage Renal Disease Patients Undergoing Hemodialysis: Markers and Risk Factors[J/OL]. Int J Environ Res Public Health, 2022, 19(4): 2389 [2025-02-20]. https://doi.org/10.3390/ijerph19042389. DOI: 10.3390/ijerph19042389.
[3]
PARIBELLO G, PAPA F, GANZERLI MARIA C, et al. Cognitive Impairment in Renal Replacement Therapy: Comparison between Methods[J]. J Clin Nephrol, 2024, 8: 1-7. DOI: 10.29328/journal.jcn.1001119.
[4]
YUAN H, LUO Z, GU W, et al. Abnormal grey matter structural changes in patients with end-stage kidney disease and mild cognitive impairment: correlations with clinical features[J]. Metab Brain Dis, 2023, 38(8): 2817-2829. DOI: 10.1007/s11011-023-01293-5.
[5]
QI Y, SONG L, LIU X, et al. Cerebral white matter injury in haemodialysis patients: a cross-sectional tract-based spatial statistics and fixel-based analysis[J/OL]. Clin Kidney J, 2024, 17(10): sfae286 [2025-02-20]. https://doi.org/10.1093/ckj/sfae286. DOI: 10.1093/ckj/sfae286.
[6]
CHOI B, HEO C M, YI J, et al. Effect of Dialysis on Structural Brain Connectivity in Patients with End-Stage Renal Disease[J]. Blood Purif, 2025, 54(1): 28-36. DOI: 10.1159/000541239.
[7]
WANG C, SONG L, LIU X, et al. Brain surface area and function alterations are correlated with cognition in patients with end-stage renal disease[J]. Quant Imaging Med Surg, 2025, 15(1): 217-229. DOI: 10.21037/qims-24-1265.
[8]
LI R, LIU M, XIA B, et al. Altered spontaneous brain activity in patients with progressive-stage and end-stage chronic kidney disease: insights from dALFF analysis[J/OL]. Metab Brain Dis, 2024, 40(1): 55 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/39641814/. DOI: 10.1007/s11011-024-01488-4.
[9]
SONG W, ZHAO L, LI X, et al. Altered brain activity in patients with end-stage renal disease: A meta-analysis of resting-state functional imaging[J/OL]. Brain Behav, 2023, 13(7): e3057 [2025-02-20]. https://doi.org/10.1002/brb3.3057. DOI: 10.1002/brb3.3057.
[10]
CHEN H J, ZHANG L J, LU G M. Multimodality MRI Findings in Patients with End-Stage Renal Disease[J/OL]. Biomed Res Int, 2015, 2015: 697402 [2025-02-20]. https://doi.org/10.1155/2015/697402. DOI: 10.1155/2015/697402.
[11]
ZHAO R, WANG P, LIU L, et al. Whole-brain structure-function coupling abnormalities in mild cognitive impairment: a study combining amplitude of low-frequency fluctuations and voxel-based morphometry[J/OL]. Front Neurosci, 2023, 17: 1236221 [2025-02-20]. https://doi.org/10.3389/fnins.2023.1236221. DOI: 10.3389/fnins.2023.1236221.
[12]
ZHANG X, LIANG C, WANG N, et al. Abnormal whole-brain voxelwise structure-function coupling and its association with cognitive dysfunction in patients with different cerebral small vessel disease burdens[J/OL]. Front Aging Neurosci, 2023, 15: 1148738 [2025-02-20]. https://doi.org/10.3389/fnagi.2023.1148738. DOI: 10.3389/fnagi.2023.1148738.
[13]
郑佳惠, 韩雍, 杨淇麟, 等. 终末期肾病维持性血液透析患者脑结构及功能改变的MRI研究[J]. 中国医学计算机成像杂志, 2022, 28(1): 8-12. DOI: 10.19627/j.cnki.cn31-1700/th.2022.01.022.
ZHENG J H, HAN Y, YANG Q L, et al. MRI study on brain structural and functional changes in maintenance hemodialysis patients with end-stage renal disease[J]. Chin J Med Comput Imaging, 2022, 28(1): 8-12. DOI: 10.19627/j.cnki.cn31-1700/th.2022.01.022.
[14]
SANZ-MORALES E, MELERO H. Advances in the fMRI analysis of the default mode network: a review[J/OL]. Brain Struct Funct, 2024, 230(1): 22 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/39738718/. DOI: 10.1007/s00429-024-02888-z.
[15]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[16]
CHEN H J, QI R, KONG X, et al. The impact of hemodialysis on cognitive dysfunction in patients with end-stage renal disease: a resting-state functional MRI study[J]. Metab Brain Dis, 2015, 30(5): 1247-1256. DOI: 10.1007/s11011-015-9702-0.
[17]
LI X, YAN R, YUE Z, et al. Abnormal Dynamic Functional Connectivity in Patients With End-Stage Renal Disease[J/OL]. Front Neurosci, 2022, 16: 852822 [2025-02-20]. https://doi.org/10.3389/fnins.2022.852822. DOI: 10.3389/fnins.2022.852822.
[18]
ZHENG J, SUN Q, WU X, et al. Brain Micro-Structural and Functional Alterations for Cognitive Function Prediction in the End-Stage Renal Disease Patients Undergoing Maintenance Hemodialysis[J]. Acad Radiol, 2023, 30(6): 1047-1055. DOI: 10.1016/j.acra.2022.06.019.
[19]
ZHANG Z, WEI W, WANG S, et al. Dynamic structure–function coupling across three major psychiatric disorders[J]. Psychol Med, 2024, 54(8): 1629-1640. DOI: 10.1017/S0033291723003525.
[20]
FOTIADIS P, PARKES L, DAVIS K A, et al. Structure-function coupling in macroscale human brain networks[J]. Nat Rev Neurosci, 2024, 25(10): 688-704. DOI: 10.1038/s41583-024-00846-6.
[21]
YIN X, YANG W, SONG L, et al. Abnormal neurovascular coupling exists in patients with peritoneal dialysis and hemodialysis: evidence from a multi-mode MRI study[J/OL]. Clin Kidney J, 2024, 18(1): sfae353 [2025-02-20]. https://doi.org/10.1093/ckj/sfae353. DOI: 10.1093/ckj/sfae353.
[22]
KAMALI A, MILOSAVLJEVIC S, GANDHI A, et al. The Cortico-Limbo-Thalamo-Cortical Circuits: An Update to the Original Papez Circuit of the Human Limbic System[J]. Brain Topogr, 2023, 36(3): 371-389. DOI: 10.1007/s10548-023-00955-y.
[23]
AUER H, CABALO D G, RODRÍGUEZ-CRUCES R, et al. From histology to macroscale function in the human amygdala[J/OL]. eLife, 2025, 13: RP101950 [2025-02-20]. https://doi.org/10.7554/eLife.101950. DOI: 10.7554/eLife.101950.
[24]
CHANDRA S, SHARMA S, CHAUDHURI R, et al. Episodic and associative memory from spatial scaffolds in the hippocampus[J]. Nature, 2025, 638(8051): 739-751. DOI: 10.1038/s41586-024-08392-y.
[25]
HOROVITZ D J, ASKINS L A, REGNIER G M, et al. Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions[J]. Neurobiol Aging, 2025, 148: 80-97. DOI: 10.1016/j.neurobiolaging.2025.01.010.
[26]
CHEN H J, QIU J, FU Q, et al. Alterations of Spontaneous Brain Activity in Hemodialysis Patients[J/OL]. Front Hum Neurosci, 2020, 14: 278 [2025-02-20]. https://doi.org/10.3389/fnhum.2020.00278. DOI: 10.3389/fnhum.2020.00278.
[27]
CHEN P, HU R, GAO L, et al. Abnormal degree centrality in end-stage renal disease (ESRD) patients with cognitive impairment: a resting-state functional MRI study[J]. Brain Imaging Behav, 2021, 15(3): 1170-1180. DOI: 10.1007/s11682-020-00317-3.
[28]
SIMONYAN K. Recent advances in understanding the role of the basal ganglia[J/OL]. F1000Res, 2019, 8: F1000 Faculty Rev-122 [2025-02-20]. https://doi.org/10.12688/f1000research.16524.1. DOI: 10.12688/f1000research.16524.1.
[29]
SILVERI M C. Contribution of the Cerebellum and the Basal Ganglia to Language Production: Speech, Word Fluency, and Sentence Construction-Evidence from Pathology[J]. Cerebellum, 2021, 20(2): 282-294. DOI: 10.1007/s12311-020-01207-6.
[30]
ALGAHTANI H, ALGAHTANI O, SHIRAH B, et al. Uremic parkinsonism with bilateral basal ganglia lesions: a puzzling syndrome with good outcome[J]. Acta Neurol Belg, 2024, 124(5): 1709-1711. DOI: 10.1007/s13760-024-02475-3.
[31]
HAMED S, MOHAMED K, ELHAMEED S ABD, et al. Movement Disorders Due to Selective Basal Ganglia Lesions with Uremia[J]. Can J Neurol Sci, 2020, 47(3): 350-365. DOI: 10.1017/cjn.2020.29.
[32]
JIANG Y, LIU Y, GAO B, et al. Segmental Abnormalities of White Matter Microstructure in End-Stage Renal Disease Patients: An Automated Fiber Quantification Tractography Study[J/OL]. Front Neurosci, 2021, 15: 765677 [2025-02-20]. https://doi.org/10.3389/fnins.2021.765677. DOI: 10.3389/fnins.2021.765677.
[33]
JIN M, WANG L, WANG H, et al. Structural and Functional Alterations in Hemodialysis Patients: A Voxel-Based Morphometry and Functional Connectivity Study[J/OL]. Front Hum Neurosci, 2020, 14: 80 [2025-02-20]. https://doi.org/10.3389/fnhum.2020.00080. DOI: 10.3389/fnhum.2020.00080.
[34]
PRATI J M, PONTES-SILVA A, GIANLORENÇO A C L. The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review[J/OL]. Behav Brain Res, 2024, 465: 114933 [2025-02-20]. https://doi.org/10.1016/j.bbr.2024.114933. DOI: 10.1016/j.bbr.2024.114933.
[35]
XIE Y Y, ZHANG X Y, ZHU J N. The cognitive functions of the cerebellum and its role in neurodegenerative diseases[J/OL]. Ageing Neurodegener Dis, 2024, 4(4): 18 [2025-02-20]. https://www.oaepublish.com/articles/and.2024.27. DOI: 10.20517/and.2024.27.
[36]
PETRIDES M. On the evolution of polysensory superior temporal sulcus and middle temporal gyrus: A key component of the semantic system in the human brain[J]. J Comp Neurol, 2023, 531(18): 1987-1995. DOI: 10.1002/cne.25521.
[37]
SNYDER K M, FORSETH K J, DONOS C, et al. Critical role of the ventral temporal lobe in naming[J]. Epilepsia, 2023, 64(5): 1200-1213. DOI: 10.1111/epi.17555.
[38]
FLORIS D L, LLERA A, ZABIHI M, et al. A multimodal neural signature of face processing in autism within the fusiform gyrus[J]. Nat Ment Health, 2025, 3(1): 31-45. DOI: 10.1038/s44220-024-00349-4.
[39]
BOONSTRA J T. The cerebellar connectome[J/OL]. Behav Brain Res, 2025, 482: 115457 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/39884319/. DOI: 10.1016/j.bbr.2025.115457.
[40]
JOSEPHS K A, JOSEPHS K A, Jr. Prosopagnosia: face blindness and its association with neurological disorders[J/OL]. Brain Commun, 2024, 6(1): fcae002 [2025-02-20]. https://doi.org/10.1093/braincomms/fcae002. DOI: 10.1093/braincomms/fcae002.

上一篇 有氧运动对失独父母影响的多模态磁共振研究及中介分析
下一篇 基于海马体MRI影像组学模型预测2型糖尿病患者认知功能障碍的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2