分享:
分享到微信朋友圈
X
临床研究
基于磁共振成像技术的社交隔离大脑变化研究:一项激活似然估计法的Meta分析
褚者者 张建平 樊梦雅 陈双红

Cite this article as: CHU Z Z, ZHANG J P, FAN M Y, et al. Research on brain changes in social isolation based on magnetic resonance imaging technology: A Meta-analysis based on activation likelihood estimation[J]. Chin J Magn Reson Imaging, 2025, 16(5): 96-101, 107.本文引用格式:褚者者, 张建平, 樊梦雅, 等. 基于磁共振成像技术的社交隔离大脑变化研究:一项激活似然估计法的Meta分析[J]. 磁共振成像, 2025, 16(5): 96-101, 107. DOI:10.12015/issn.1674-8034.2025.05.015.


[摘要] 目的 探究社交隔离(social isolation, SI)患者脑激活和脑体积易受影响的脑区及其神经生物标志物。材料与方法 在中国知网、万方、维普、中国生物医学数据库中文数据库利用中文检索主题词“社交隔离”“脑”“磁共振成像”进行中文文献检索,在Pubmed、Web of Science、Cochrane library、Embase英文数据库利用英文检索主题词“social isolation”“brain”“magnetic resonance imaging”进行英文文献检索,中英文主题词均进行同义扩展,检索时间从建库至2024年9月。按照严格的纳排标准纳入文献,采用激活似然估计法(activation likelihood estimation,ALE),利用Ginger ALE软件的single dataset模块对既往研究中SI患者相对于健康对照(healthy controls,HCs)异常的脑区进行整合分析。结果 共纳入10篇文献10个研究(SI患者488例,HCs 476例),包括任务态功能磁共振成像(task-based functional magnetic resonance imaging, task-based fMRI)和结构磁共振成像(structural magnetic resonance imaging, sMRI)研究。其中task-based fMRI研究元分析结果显示,SI患者相对于HCs左侧海马旁回和左侧杏仁核的脑激活增强(体素体积1640 mm3P<0.001),未发现脑激活减弱的脑区。sMRI研究元分析结果显示,SI患者相对于HCs右侧豆状核和右外侧苍白球、右侧梭状回的脑体积增加(体素体积分别为912、840 mm3P<0.001),左侧梭状回、右侧额下回、右侧枕中回的脑体积降低(体素体积分别为480、448、448 mm3P<0.001)。结论 本文通过ALE元分析发现SI患者脑激活易受影响的脑区为左侧海马旁回和左侧杏仁核,大脑体积易受影响的脑区为左侧梭状回、右侧额下回、右侧枕中回、右侧豆状核、右外侧苍白球和右侧梭状回,这有助于我们进一步理解SI对大脑产生影响背后的神经机制,并为预防SI的负面影响提供理论依据。本研究已在PROSPERO(https://www.crd.york.ac.uk/prospero)网站注册,注册编码为CRD42024628028。
[Abstract] Objective To explore the brain regions and their neurobiomarkers that are vulnerable to brain activation and brain volume in patients with social isolation (SI).This study has been PROSPERO (https://www.crd.york.ac.uk/prospero) web site registration, registration code for CRD42024628028.Materials and Methods Chinese literature was searched using the Chinese search terms "social isolation" "brain" and "magnetic resonance imaging" in Chinese databases including China National Knowledge Infrastructure, Wanfang, VIP, and the Chinese Biomedical Literature Database. English literature was searched using the English search terms "social isolation" "brain," and "magnetic resonance imaging" in English databases including PubMed, Web of Science, Cochrane Library, and Embase. Synonyms for both Chinese and English search terms were expanded, and the search period spanned from the establishment of the databases to September 2024. Literature was included according to strict inclusion and exclusion criteria. Activation likelihood estimation (ALE) was employed, and the single dataset module of Ginger ALE software was utilized to conduct an integrated analysis of the abnormal brain regions in SI patients compared to healthy controls (HCs) in previous studies.Results A total of 10 studies from 10 articles were included (488 SI patients and 476 HCs), encompassing task-based functional magnetic resonance imaging (task-based fMRI) and structural magnetic resonance imaging (sMRI) studies. The meta-analysis results of task-based fMRI studies revealed that SI patients exhibited increased brain activation in the left parahippocampal gyrus and left amygdala compared to HCs (voxel volume 1640 mm3, P < 0.001), with no regions showing decreased brain activation. The meta-analysis results of sMRI studies indicated that SI patients had increased brain volume in the right lentiform nucleus, right lateral globus pallidus, and right fusiform gyrus compared to HCs (voxel volume 912, 840 mm3, P < 0.001), and decreased brain volume in the left fusiform gyrus, right inferior frontal gyrus, and right middle occipital gyrus (voxel volume 480, 448, 448 mm3, P < 0.001).Conclusions This study, through ALE Meta-analysis, identified that the brain regions susceptible to activation in SI patients are the left parahippocampal gyrus and the left amygdala. The brain regions susceptible to volume changes include the left fusiform gyrus, the right inferior frontal gyrus, the right middle occipital gyrus, the right lentiform nucleus, the right lateral globus pallidus, and the right fusiform gyrus. These findings contribute to a deeper understanding of the neural mechanisms underlying the impact of social isolation on the brain and provide a theoretical basis for preventing the negative effects of social isolation.
[关键词] 脑;社交隔离;磁共振成像;激活似然估计法;Meta分析
[Keywords] brain;social isolation;magnetic resonance imaging;activation likelihood estimation;Meta-analysis

褚者者 1, 2   张建平 1   樊梦雅 1   陈双红 1*  

1 海军军医大学海军特色医学中心,上海 200433

2 上海体育大学运动健康学院,上海 200438

通信作者:陈双红,E-mail: chen127shh@sina.com

作者贡献声明:陈双红设计了本研究的方案,并对稿件内容进行修改;褚者者起草和撰写稿件、获取、分析和解释了本研究的数据;张建平和樊梦雅参与稿件起草和撰写,并对数据文献进行分析;全体作者都同意发表最后的稿件,同意对本研究的各方面进行负责,确保本研究的准确性和诚信。


收稿日期:2025-01-12
接受日期:2025-04-30
中图分类号:R445.2  R745.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.015
本文引用格式:褚者者, 张建平, 樊梦雅, 等. 基于磁共振成像技术的社交隔离大脑变化研究:一项激活似然估计法的Meta分析[J]. 磁共振成像, 2025, 16(5): 96-101, 107. DOI:10.12015/issn.1674-8034.2025.05.015.

0 引言

       社交隔离(social isolation, SI)是指个体处于社会交往的隔绝状态,断绝与外界的联系,目前有多数研究证据表明社会交往的减少会影响人类的健康指数[1, 2, 3]。SI在生命不同时期都会普遍对身心健康产生负面影响,增加患多种精神障碍的风险,比如焦虑、抑郁、睡眠障碍、社交退缩等等[4, 5, 6]。值得注意的是,客观状态的SI和主体感觉的孤独并不完全一致,它是指主体与他人的社会联系在数量或频率上的显著不足,比如孤儿、独居青年和空巢老人,以及新冠疫情防控期间的隔离等[7],而非主观感受的孤独。孤独是感知到的SI,被定义为主观感受到的现实与期待的社会关系和人际联系的差异,即主体对自身社会关系质量的不满,缺乏社交的人不一定感到孤独,高社交环境中的人有可能感到孤独[8]。当今社会,互联网崛起、电子设备发展以及人口老龄化等导致人与人之间的社会交往在急剧减少,处于SI状态的群体日益增多,而目前对于SI的影响以及其影响大脑功能的机制理解尚不全面,我们尚不清楚SI对人脑产生影响的具体机制,因此需要发现SI对人脑产生影响的脑区,以期为未来的SI干预措施提供理论帮助。

       磁共振成像(magnetic resonance imaging, MRI)技术作为一种无创的成像手段在神经认知科学以及精神病学领域应用广泛。其多模态成像技术可以为我们提供全面、细致的大脑信息,有助于深入了解大脑不同区域的协作信息。有研究学者采用多种MRI技术对SI患者进行研究,揭示SI患者的大脑变化,但因其实验任务不同、被试数量等的差异,各研究结果并未一致[5, 9, 10, 11]。激活似然估计法(activation likelihood estimation, ALE)可以将众多脑成像结果进行整合,通过自动化的统计分析获得稳定的激活脑区,且不受实验设计、范式、任务、被试数量及数据分析方法的限制[12, 13],可以帮助我们获得SI影响的一致脑区。有研究发现,SI与海马体积减小显著相关,增加痴呆的患病风险,但对SI的定义不一致(客观SI状态vs.主观孤独感)加剧了结果分歧,且采用单一模态的MRI技术,缺乏对多模态数据的综合分析,并聚焦于老年群体,难以全面揭示SI的神经生物学效应[14]。为进一步全面研究客观SI对人脑产生的具体影响,本研究选取有关SI主题的同类文献以扩大样本量,应用ALE分析方法计算整合后的SI患者大脑差异脑区,探究SI患者的神经生物标志物,以期为高风险人群(如独居老人、留守儿童)的脑健康监测提供预警指标,帮助临床及公共卫生部门识别易受SI影响的脆弱个体,推动公共卫生健康发展。

1 材料与方法

1.1 文献检索

       文献检索主要包括中文检索和英文检索,搜索中国知网、万方、维普、中国生物医学数据库、Pubmed、Web of Science、Cochrane library、Embase。在中文数据库以“社交隔离”“脑”“磁共振成像”作为主题词,主题词进行同义词扩展和模糊匹配,采用布尔逻辑运算符AND连接主题词,OR连接主题词与对应的同义词,然后进行文献检索。英文数据库检索,以“social isolation”“brain”“magnetic resonance imaging”作为主题词,采用主题词和自由词组合的方式进行检索,主题词与主题词之间采用布尔逻辑运算符AND连接,主题词与自由词之间采用OR连接。检索时间从建库至2024年9月。为防止遗漏,从已有综述的参考文献补充检索,并导入Endnote X9文献管理工具中进行筛选。文献检索及筛选过程见图1

图1  文献筛选流程图。
Fig. 1  Flow chart of study selection strategy.

1.2 文献筛选

       纳入标准:(1)研究类型为随机对照试验、非随机对照试验、观察性研究、队列研究;(2)所纳入文献的研究对象经历过SI状态(社交互动和联系减少),不区分隔离时长;(3)排除孤独;(4)排除他人排斥;(5)采用至少一种磁共振成像技术;(6)采用基于全脑体素分析或至少包含一个全脑分析;(7)结局指标:以标准MNI或Talairach坐标形式报告激活峰值坐标;(8)对照(healthy controls, HCs)组为健康人。

       排除标准:(1)无法获取原始数据的文献;(2)发表类型为综述、会议、个例报道和动物实验;(3)试验组和对照组已确诊为精神或神经类疾病;(4)采用功能连接(functional connectivity, FC)、独立成分分析(independent component analysis, ICA)、小世界、度中心度、默认模式网络及其他网络等分析的文献;(5)缺乏对照组数据及自身前后对照的文献;(6)同类文献(同一MRI研究技术)少于3篇。

1.3 质量评价

       采用纽卡斯尔-渥太华量表(Newcastle-Ottawascale,NOS)对纳入的文献进行质量评价,共3个层面,8个条目,满分为9分(表1),若评分≥5分则认为文献质量较高,反之较低。

表1  卡斯尔-渥太华量表
Tab. 1  The scale of Newcastle-Ottawascale

1.4 数据提取

       背景信息:第一作者、发表年份、受试者样本量、年龄;磁共振扫描设备机型和场强、所用的分析方法、SI患者相对于HCs差异脑区的个数以及结果呈现的坐标空间。

1.5 数据处理

1.5.1 激活似然估计法元分析

       本研究使用Ginger ALE 3.0.2 软件在标准MNI空间下进行,因此,需要将以Talairach标准空间报告的坐标通过 Ginger ALE 3.0.2的内置插件将Talairach坐标转换成MNI坐标。将提取的激活坐标集按照所纳入文献的数据分析方法分为两个研究组,分别是任务态功能磁共振成像(task-based functional magnetic resonance imaging, task-based fMRI)激活坐标集和结构磁共振成像(structural magnetic resonance imaging, sMRI)的基于体素形态学分析(voxel-based morphometry, VBM)激活坐标集,然后按照ALE指导手册推荐的格式分别录入foci文本中。采用Ginger ALE的single dataset模块进行数据分析,两个研究组均未进行年龄控制,根据每个研究组的激活坐标集,进行三维高斯建模,得到ALE图,再基于高斯模型计算脑区激活概率P值,构建3D-P值分布图,最后基于3D-P值分布图设定统计检验阈值,参考Ginger ALE官方指导手册,参数设置如下:未校正,P=0.001,Min Volume为250 mm3,得到阈值图(ALE-image),最后使用DPABI软件进行结果可视化。

1.5.2 敏感性分析

       采用Jackknife敏感性分析方法对元分析结果的可重复性进行检测,每次剔除1项研究后,对剩余研究的数据使用Ginger ALE 3.0.2软件进行ALE元分析,重复8次这样的操作(task-based fMRI 6次,sMRI-VBM 2次),查看剔除某项研究后的结果与原结果的可重复性。

2 结果

2.1 文献检索结果

       在数据库中,根据主题词共检索出1887篇文献,从已有综述补充文献48篇,共获取1935篇文献。对获取的1935篇文献进行筛选:采用Endnote软件剔除314篇重复文献;阅读文献标题和摘要后剔除无关主题及综述、会议、动物实验和个例报道的文献1462篇,阅读原文后根据纳入排除标准剔除文献149篇,最终本研究共纳入10篇文献,其中采用task-based fMRI技术研究的文献7篇,sMRI技术研究的文献3篇。

2.2 数据提取结果

       共提取SI患者488名,HCs 476名。task-based fMRI研究激活差异脑区57个,sMRI研究差异脑区12个,共计69个差异脑区。所纳入文献特征见表2

表2  纳入研究的特点
Tab. 2  Characteristics of included studies

2.3 数据分析

2.3.1 激活似然估计法元分析结果

       task-based fMRI共7项研究,合计57个组间(SI患者相对HCs)激活脑区的MNI坐标,其中SI患者相对HCs激活增强的MNI坐标37个,激活减弱的MNI坐标20个。采用ALE分析法进行激活脑区计算,并将计算后的三维坐标投影至标准解剖模板。结果显示,SI患者相对HCs,激活增强脑区有:左侧海马旁回、左侧杏仁核,无激活减弱的脑区(图2表3)。

       sMRI共3项研究,合计12个组间(SI患者相对HCs)体积差异脑区的MNI坐标,其中SI患者相对HCs体积增加的MNI坐标5个,体积降低的MNI坐标7个。采用ALE分析法进行体积差异脑区计算,并将计算后的三维坐标投影至标准解剖模板。结果显示,相对HCs,SI患者体积增加脑区有:右侧梭状回、右侧豆状核、右外侧苍白球(图3表4);体积降低脑区有:左侧梭状回、右侧额下回、右侧枕中回(图4表4)。

图2  SI患者相对HCs任务态脑激活增强的脑区。暖色调区域代表SI患者相对HCs任务态脑激活增强的区域,脑激活增强区域为左侧海马旁回和左侧杏仁核(体素体积为1640 mm3,未校正P<0.001)。SI:社交隔离;HCs:健康对照;ALE:激活似然估计法。
Fig. 2  The brain regions of SI patients with enhanced brain activation relative to HCs task-based fMRI. The warm tone area represents the area of enhanced brain activation in SI patients in task-based fMRI relative to HCs. The enhanced brain activation areas are left parahippocampal gyrus and left amygdala (voxel volume is 1640 mm3, uncorrected P < 0.001). SI: social isolation; HCs: healthy controls; ALE: activation likelihood estimation.
图3  SI患者相对HCs大脑体积增加的脑区。3A:暖色调区域代表SI患者相对HCs右侧豆状核、右外侧苍白球区域体积增加(体素体积912 mm3,未校正P<0.001);3B:暖色调区域代表SI患者相对HCs右侧梭状回区域体积增加(体素体积840 mm3,未校正P<0.001)。SI:社交隔离;HCs:健康对照;ALE:激活似然估计法。
Fig. 3  The brain regions of SI patients with increased brain volume relative to HCs. The warm tone area in 3A represents the increase in the volume of the right lenticular nucleus and the right lateral globus pallidus area in SI patients relative to HCs (voxel volume 912 mm3, uncorrected P < 0.001); The warm tone area in 3B represents the increase in the volume of the right fusiform gyrus area of SI patients relative to HCs (voxel volume 840 mm3, uncorrected P < 0.001). SI: social isolation; HCs: healthy controls; ALE: activation likelihood estimation.
图4  SI患者相对HCs大脑体积降低的脑区。4A:冷色调区域代表SI患者相对HCs左侧梭状回区域体积减小(体素体积480 mm3,未校正P<0.001);4B:冷色调区域代表SI患者相对HCs右侧额下回区域体积降低(体素体积448 mm3,未校正P<0.001);4C:冷色调区域代表SI患者相对HCs右侧枕中回区域体积降低(体素体积448 mm3,未校正P<0.001)。SI:社交隔离;HCs:健康对照;ALE:激活似然估计法。
Fig. 4  The brain regions of SI patients with reduced brain volume relative to HCs. The cool tone area in 4A represents the volume reduction of the left fusiform gyrus area in SI patients relative to HCs (voxel volume 480 mm3, uncorrected P < 0.001); The cool tone area in 4B represents that the volume of the right inferior frontal gyrus in patients with SI decreased relative to that in patients with HCs (voxel volume 448 mm3, uncorrected P < 0.001); The cold tone area in 4C represents the volume reduction of the right middle occipital gyrus in patients with SI relative to HCS (voxel volume 448 mm3, uncorrected P < 0.001). SI: social isolation; HCs: healthy controls; ALE: activation likelihood estimation.
表3  SI患者相对HCs任务态激活增加脑区的ALE元分析结果
Tab. 3  ALE Meta-analysis results of brain regions with increased task state functional activity in SI patients relative to HCs
表4  SI患者相对HCs大脑体积差异脑区的ALE元分析结果
Tab. 4  ALE Meta-analysis results of brain regions with relative HCs brain volume differences in patients with SI

2.3.2 敏感性分析结果

       task-based fMRI研究中左侧海马旁回和左侧杏仁核在6次分析中重复性均达到了4次,sMRI研究中右侧额下回、右侧枕中回和双侧梭状回在2次分析中重复性均达到了2次。

3 讨论

       本研究采用ALE元分析方法探讨了应用MRI技术(task-based fMRI和sMRI)研究SI患者相对于HCs大脑改变的脑区,研究结果显示,SI患者变化脑区主要分布于左侧海马旁回、左侧杏仁核、双侧梭状回、右侧枕中回、右侧豆状核和右外侧苍白球,研究结果从神经影像学角度揭示了SI的潜在机制。本研究首次系统性结合MRI技术和ALE元分析方法研究SI的脑区差异,弥补了此领域的空白,研究发现的差异脑区可作为生物标志物,帮助早期识别高风险人群并实施干预,为预防SI的负面影响(如心理健康教育)提供理论依据,具有一定的临床价值。

3.1 SI对大脑功能活动的影响

       本研究的task-based fMRI元分析研究结果显示,SI患者脑激活增强的脑区为左侧海马旁回和左侧杏仁核。海马旁回和杏仁核属于边缘系统的一部分,杏仁核是情绪处理中心,参与情绪产生和表达。例如,焦虑、攻击,特别是恐惧,还参与社会处理与社交互动,而海马旁回在负面情绪加工、处理视觉空间信息和情景记忆功能中起重要作用[25]。相关研究表明社交网络大小与杏仁核体积存在关系,杏仁核损伤以及合并海马损伤的患者具有较小的社交网络[26, 27]。纳入task-based fMRI研究的SI患者多经历过机构收养,且均处于社会情感发展的关键儿童青春期,此时的大脑发育特别容易受到环境因素的影响[28],儿童的社交网络变小,用于认知发展的视觉刺激减少,缺乏正确判断社会信息以及情感体验的引导,在对情绪化面孔反应时表现出杏仁核活动增加[18],以及恐惧学习期间的海马体与内侧前额叶的连接性增加[21]。此外,在面对人物社交刺激条件时,海马旁回的激活也增加[29]。有关的动物实验研究发现,SI可以引起焦虑、抑郁样行为以及外侧杏仁核树突棘密度增加和兴奋性谷氨酸能神经元激活增加[30, 31]。因此我们推测本研究发现的SI患者左侧海马旁回和左侧杏仁核区域的脑激活增强可能是个体对以社交暴露水平降低为特征的环境适应,以调整焦虑、抑郁等心理行为。

3.2 SI对大脑结构的影响

       本研究的sMRI元分析研究结果显示,SI患者左侧梭状回、右侧额下回、右侧枕中回灰质体积降低,右侧豆状核、右外侧苍白球和右侧梭状回灰质体积增加。豆状核由苍白球和壳核组合而成,位于基底神经节,参与自主运动,苍白球分为内外两部分,其中外侧苍白球接收来自纹状体的信号输入,影响运动功能调节[32]和情绪调控[33]。有研究发现难治性精神分裂症患者双侧苍白球的灰质体积高于对照组[34],这与本研究的发现相似,且苍白球灰质体积的增加可能与精神分裂症患者的阳性症状有关[35],SI患者苍白球体积的变化可能与此有关。梭状回位于视觉联合皮层中底面,其中左侧梭状回主要承担物体加工,识别物体形状与空间关系,右侧梭状回进行面孔识别[36]。本研究发现,SI患者呈现出左侧梭状回灰质体积减小与右侧梭状回灰质体积增加的双侧不对称结构重塑。这种不对称的体积变化可能反映了个体输入减少驱动的功能重组。SI导致环境物体交换需求减少(如协作行为),左侧梭状回物体加工功能低频使用,而右侧梭状回面孔识别功能则可能通过虚拟社交刺激(如移动社交媒体)产生神经资源再分配,从而表现出灰质体积适应性增加。视觉信号的传导起自视神经,通过视交叉传到外侧膝状体进行进一步处理,然后通过视放射投射到视觉皮层[37],其中枕中回位于视觉信号传导的高级视觉皮层,在视觉信息处理中起关键作用[38]。SI可能导致个体在视觉刺激和视觉信息处理方面减少,从而降低了对枕中回的需求,枕中回的灰质体积发生相应的改变。与此相反,算盘专家在进行计算时需要较高的视觉记忆和视觉空间能力,其相应大脑区域的功能活动增加[39]。额下回属于前额叶的一部分,功能复杂,涉及语言、心理,参与调节社交互动、社交记忆[40, 41, 42]。既往啮齿动物实验表明,隔离导致大鼠前额叶结构和功能改变,社会识别缺陷[43, 44]。成年大鼠前额叶皮层树突棘密度在经历慢性SI后下降,且与快感消失等抑郁样行为有关[45]。树突棘是突触连接的主要位点,其丢失可能导致局部灰质体积减小。SI减少社会互动(如语言交流),使额下回功能低频使用,可能导致灰质体积减小。

3.3 研究局限性及未来展望

       本研究首次结合MRI技术与ALE元分析方法研究SI的脑区差异,反映SI患者大脑结构和功能改变,但仍存在一些局限性:(1)纳入的task-based fMRI研究多聚焦机构收养的青春期被试,其脑发育处于关键敏感期,结果可能受发育阶段特异性影响,未必完全适用于其他年龄群体。(2)纳入的文献数量、差异脑区数量较少,未能发现SI患者脑功能活动降低的区域,未来可能需要更大规模的样本。(3)同时ALE元分析不仅忽略了研究间的变异,也没有考虑到激活的强度,这可能导致激活强度不高的脑区被遗漏。(4)在非神经影像学研究中经常进行异质性评估,但没有评估ALE或其他基于坐标的荟萃分析的异质性的方法[12]。ALE方法提供的是对特定区域活动在患者和对照组间可能不同的概率的估计,而不是对区域信号变化的平均差异的估计[46]。因此,传统的异质性测量方法并不适用ALE。然而,脑成像的ALE 元分析方法具有对不同研究中位置信息整合的优点,未来可应用ALE元分析方法结合更大规模的样本量来探讨SI患者脑功能活动和结构改变较为一致的脑区。

4 结论

       本研究基于ALE元分析方法整合task-based fMRI和sMRI研究证据,系统揭示了SI患者在脑功能活动与结构上的特异性改变,SI患者在左侧海马旁回和左侧杏仁核区域的脑激活增强,在左侧梭状回、右侧额下回、右侧枕中回的灰质体积减小,在右侧豆状核、右外侧苍白球和右侧梭状回的灰质体积增加,为理解SI的神经机制提供了重要理论依据。

[1]
BRANDT L, LIU S Y, HEIM C, et al. The effects of social isolation stress and discrimination on mental health[J/OL]. Transl Psychiatry, 2022, 12(1): 398 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/36130935/. DOI: 10.1038/s41398-022-02178-4.
[2]
HANLON P, WIGHTMAN H, POLITIS M, et al. The relationship between frailty and social vulnerability: a systematic review[J/OL]. Lancet Healthy Longev, 2024, 5(3): e214-e226 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/38432249/. DOI: 10.1016/S2666-7568(23)00263-5.
[3]
KADOTANI H, OKAJIMA I, YANG K M, et al. Editorial: The impact of social isolation and loneliness on mental health and wellbeing[J/OL]. Front Public Health, 2022, 10: 1106216 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/36589932/. DOI: 10.3389/fpubh.2022.1106216.
[4]
TAHERI ZADEH Z, RAHMANI S, ALIDADI F, et al. Depresssion, anxiety and other cognitive consequences of social isolation: Drug and non-drug treatments[J/OL]. Int J Clin Pract, 2021, 75(12): e14949 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/34614276/. DOI: 10.1111/ijcp.14949.
[5]
ZHANG X, RAVICHANDRAN S, GEE G C, et al. Social isolation, brain food cue processing, eating behaviors, and mental health symptoms[J/OL]. JAMA Netw Open, 2024, 7(4): e244855 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/38573637/. DOI: 10.1001/jamanetworkopen.2024.4855.
[6]
PROMMAS P, LWIN K S, CHEN Y C, et al. The impact of social isolation from COVID-19-related public health measures on cognitive function and mental health among older adults: a systematic review and meta-analysis[J/OL]. Ageing Res Rev, 2023, 85: 101839 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/36596396/. DOI: 10.1016/j.arr.2022.101839.
[7]
赵嘉盈, 纪小小, 潘玉峰, 等. 社交隔离调控本能行为的神经机制研究进展[J]. 生理学报, 2024, 76(2): 309-318. DOI: 10.13294/j.aps.2024.0019.
ZHAO J Y, JI X X, PAN Y F, et al. Research progress on the neural mechanism of the regulation of social isolation on innate behaviors[J]. Acta Physiol Sin, 2024, 76(2): 309-318. DOI: 10.13294/j.aps.2024.0019.
[8]
VALTORTA N, HANRATTY B. Loneliness, isolation and the health of older adults: do we need a new research agenda?[J]. J R Soc Med, 2012, 105(12): 518-522. DOI: 10.1258/jrsm.2012.120128.
[9]
HIRABAYASHI N, HONDA T, JUN H T, et al. Association between frequency of social contact and brain atrophy in community-dwelling older people without dementia: the JPSC-AD study[J/OL]. Neurology, 2023, 101(11): e1108-e1117 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/37438128/. DOI: 10.1212/WNL.0000000000207602.
[10]
WHITE S F, VOSS J L, CHIANG J J, et al. Exposure to violence and low family income are associated with heightened amygdala responsiveness to threat among adolescents[J/OL]. Dev Cogn Neurosci, 2019, 40: 100709 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/31654964/. DOI: 10.1016/j.dcn.2019.100709.
[11]
WASSENAAR T M, YAFFE K, VAN DER WERF Y D, et al. Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies[J/OL]. Neurobiol Aging, 2019, 80: 56-70 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/31103633/. DOI: 10.1016/j.neurobiolaging.2019.04.006.
[12]
ANTONIOU G, LAMBOURG E, STEELE J D, et al. The effect of adverse childhood experiences on chronic pain and major depression in adulthood: a systematic review and meta-analysis[J]. Br J Anaesth, 2023, 130(6): 729-746. DOI: 10.1016/j.bja.2023.03.008.
[13]
邓沁丽, 陈俊. 基于坐标的脑成像元分析方法: 激活似然性评估[J]. 心理科学, 2015, 38(1): 216-220. DOI: 10.16719/j.cnki.1671-6981.2015.01.028.
DENG Q L, CHEN J. A coordinate-based meta-analysis in brain imaging study: activation likelihood estimation[J]. J Psychol Sci, 2015, 38(1): 216-220. DOI: 10.16719/j.cnki.1671-6981.2015.01.028.
[14]
SHEN C, ROLLS E T, CHENG W, et al. Associations of social isolation and loneliness with later dementia[J/OL]. Neurology, 2022, 99(2): e164-e175 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/35676089/. DOI: 10.1212/WNL.0000000000200583.
[15]
VIJAYAKUMAR N, CHENG T W, FLANNERY J E, et al. Differential neural sensitivity to social inclusion and exclusion in adolescents in foster care[J/OL]. Neuroimage Clin, 2022, 34: 102986 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/35290856/. DOI: 10.1016/j.nicl.2022.102986.
[16]
GREEN S A, GOFF B, GEE D G, et al. Discrimination of amygdala response predicts future separation anxiety in youth with early deprivation[J]. J Child Psychol Psychiatry, 2016, 57(10): 1135-1144. DOI: 10.1111/jcpp.12578.
[17]
GEE D G, GABARD-DURNAM L J, FLANNERY J, et al. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation[J]. Proc Natl Acad Sci USA, 2013, 110(39): 15638-15643. DOI: 10.1073/pnas.1307893110.
[18]
TOTTENHAM N, HARE T A, MILLNER A, et al. Elevated amygdala response to faces following early deprivation[J]. Dev Sci, 2011, 14(2): 190-204. DOI: 10.1111/j.1467-7687.2010.00971.x.
[19]
PUETZ V B, KOHN N, DAHMEN B, et al. Neural response to social rejection in children with early separation experiences[J/OL]. J Am Acad Child Adolesc Psychiatry, 2014, 53(12): 1328-1337.e8 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/25457931/. DOI: 10.1016/j.jaac.2014.09.004.
[20]
MAHEU F S, DOZIER M, GUYER A E, et al. A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect[J]. Cogn Affect Behav Neurosci, 2010, 10(1): 34-49. DOI: 10.3758/CABN.10.1.34.
[21]
SILVERS J A, LUMIAN D S, GABARD-DURNAM L, et al. Previous institutionalization is followed by broader amygdala-hippocampal-PFC network connectivity during aversive learning in human development[J]. J Neurosci, 2016, 36(24): 6420-6430. DOI: 10.1523/JNEUROSCI.0038-16.2016.
[22]
SALOMON T, COHEN A, BARAZANY D, et al. Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown[J/OL]. Neuroimage, 2021, 239: 118311 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/34182098/. DOI: 10.1016/j.neuroimage.2021.118311.
[23]
EVERAERD D, KLUMPERS F, ZWIERS M, et al. Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology[J]. Neuropsychopharmacology, 2016, 41(7): 1716-1723. DOI: 10.1038/npp.2015.344.
[24]
MACKES N K, GOLM D, SARKAR S, et al. Early childhood deprivation is associated with alterations in adult brain structure despite subsequent environmental enrichment[J]. Proc Natl Acad Sci USA, 2020, 117(1): 641-649. DOI: 10.1073/pnas.1911264116.
[25]
张琴, 侯勇哲, 张伟, 等. 原发性失眠患者易损脑区的静息态功能磁共振成像研究: 一项基于激活似然估计法的Meta分析[J]. 磁共振成像, 2022, 13(6): 88-93. DOI: 10.12015/issn.1674-8034.2022.06.017.
ZHANG Q, HOU Y Z, ZHANG W, et al. Resting-state fMRI study of vulnerable brain regions in patients with primary insomnia: a Meta-analysis based on activation likelihood estimation[J]. Chin J Magn Reson Imag, 2022, 13(6): 88-93. DOI: 10.12015/issn.1674-8034.2022.06.017.
[26]
BEADLE J N, HELLER A, ROSENBAUM R S, et al. Amygdala but not hippocampal damage associated with smaller social network size[J/OL]. Neuropsychologia, 2022, 174: 108311 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/35810880/. DOI: 10.1016/j.neuropsychologia.2022.108311.
[27]
BICKART K C, WRIGHT C I, DAUTOFF R J, et al. Amygdala volume and social network size in humans[J]. Nat Neurosci, 2011, 14(2): 163-164. DOI: 10.1038/nn.2724.
[28]
BOCK J, RETHER K, GRÖGER N, et al. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules[J/OL]. Front Neurosci, 2014, 8: 11 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/24550772/. DOI: 10.3389/fnins.2014.00011.
[29]
BAETENS K, MA N, STEEN J, et al. Involvement of the mentalizing network in social and non-social high construal[J]. Soc Cogn Affect Neurosci, 2014, 9(6): 817-824. DOI: 10.1093/scan/nst048.
[30]
HYLIN M J, WATANASRIYAKUL W T, HITE N, et al. Morphological changes in the basolateral amygdala and behavioral disruptions associated with social isolation[J/OL]. Behav Brain Res, 2022, 416: 113572 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/34499940/. DOI: 10.1016/j.bbr.2021.113572.
[31]
VAZQUEZ-SANROMAN D B, WILSON G A, BARDO M T. Effects of social isolation on perineuronal nets in the amygdala following a reward omission task in female rats[J]. Mol Neurobiol, 2021, 58(1): 348-361. DOI: 10.1007/s12035-020-02125-8.
[32]
王娟, 李晖, 宋宁, 等. 外侧苍白球注射铁死亡诱导剂对小鼠运动行为的影响[J]. 青岛大学学报(医学版), 2024, 60(3): 317-321. DOI: 10.11712/jms.2096-5532.2024.60.048.
WANG J, LI H, SONG N, et al. Effect of stereotactic injection of a ferroptosis inducer in the external segment of globus pallidus on motor behavior in mice[J]. J Qingdao Univ Med Sci, 2024, 60(3): 317-321. DOI: 10.11712/jms.2096-5532.2024.60.048.
[33]
BA W, NOLLET M, YIN C Y, et al. A REM-active basal Ganglia circuit that regulates anxiety[J/OL]. Curr Biol, 2024, 34(15): 3301-3314.e4 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/38944034/. DOI: 10.1016/j.cub.2024.06.010.
[34]
TANG Y L, LI Y T, CAO P Y, et al. Striatum and globus pallidus structural abnormalities in schizophrenia: a retrospective study of the different stages of the disease[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 133: 111022 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/38692473/. DOI: 10.1016/j.pnpbp.2024.111022.
[35]
ITO S, MIURA K, MIYAYAMA M, et al. Association between globus pallidus volume and positive symptoms in schizophrenia[J]. Psychiatry Clin Neurosci, 2022, 76(11): 602-603. DOI: 10.1111/pcn.13465.
[36]
孙丹, 张烨. 双侧梭状回面孔区在面孔加工中的功能分工与协作[J]. 心理科学进展, 2016, 24(4): 510-516. DOI: 10.3724/SP.J.1042.2016.00510.
SUN D, ZHANG Y. The functional specialization and collaboration of the bilateral fusiform face areas[J]. Adv Psychol Sci, 2016, 24(4): 510-516. DOI: 10.3724/SP.J.1042.2016.00510.
[37]
ZHU S R, XIE T, LV Z Y, et al. Hierarchies in visual pathway: functions and inspired artificial vision[J/OL]. Adv Mater, 2024, 36(6): 2301986. [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/37435995/. DOI: 10.1002/adma.202301986.
[38]
VILLOSLADA P, SOLANA E, ALBA-ARBALAT S, et al. Retinal damage and visual network reconfiguration defines visual function recovery in optic neuritis[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(6): e200288 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/39213469/. DOI: 10.1212/NXI.0000000000200288.
[39]
TANAKA S, MICHIMATA C, KAMINAGA T, et al. Superior digit memory of abacus experts: an event-related functional MRI study[J]. Neuroreport, 2002, 13(17): 2187-2191. DOI: 10.1097/00001756-200212030-00005.
[40]
BRIGGS R G, KHAN A B, CHAKRABORTY A R, et al. Anatomy and white matter connections of the superior frontal gyrus[J]. Clin Anat, 2020, 33(6): 823-832. DOI: 10.1002/ca.23523.
[41]
CHOI T Y, JEON H, JEONG S, et al. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy[J/OL]. Neuron, 2024, 112(4): 611-627.e8 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/38086372/. DOI: 10.1016/j.neuron.2023.11.012.
[42]
ZHENG S, CHEN X M, LIU W J, et al. Association of loneliness and grey matter volume in the dorsolateral prefrontal cortex: the mediating role of interpersonal self-support traits[J]. Brain Imaging Behav, 2023, 17(5): 481-493. DOI: 10.1007/s11682-023-00776-4.
[43]
BEGNI V, SANSON A, PFEIFFER N, et al. Social isolation in rats: Effects on animal welfare and molecular markers for neuroplasticity[J/OL]. PLoS One, 2020, 15(10): e0240439 [2025-01-11]. https://pubmed.ncbi.nlm.nih.gov/33108362/. DOI: 10.1371/journal.pone.0240439.
[44]
CHOCYK A, BOBULA B, DUDYS D, et al. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats[J]. Eur J Neurosci, 2013, 38(1): 2089-2107. DOI: 10.1111/ejn.12208.
[45]
SARKAR A, KABBAJ M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats[J]. Biol Psychiatry, 2016, 80(6): 448-456. DOI: 10.1016/j.biopsych.2015.12.025.
[46]
ZHANG W N, CHANG S H, GUO L Y, et al. The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies[J]. J Affect Disord, 2013, 151(2): 531-539. DOI: 10.1016/j.jad.2013.06.039.

上一篇 失眠障碍患者脑类淋巴功能磁共振成像指标与睡眠状态的相关性研究及重复经颅磁刺激治疗对其的影响
下一篇 首发单侧基底节卒中后抑郁与非抑郁患者局部一致性和低频振幅的差异研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2