分享:
分享到微信朋友圈
X
临床研究
首发单侧基底节卒中后抑郁与非抑郁患者局部一致性和低频振幅的差异研究
许天骄 陆梦馨 李媛媛 张慕昭 邹忆怀 方继良

Cite this article as: XU T J, LU M X, LI Y Y, et al. Study on rs-fMRI imaging features of depression patients with unilateral basal ganglia stroke based on local consistencyand low-frequency amplitude[J]. Chin J Magn Reson Imaging, 2025, 16(5): 102-107.本文引用格式:许天骄, 陆梦馨, 李媛媛, 等. 首发单侧基底节卒中后抑郁与非抑郁患者局部一致性和低频振幅的差异研究[J]. 磁共振成像, 2025, 16(5): 102-107. DOI:10.12015/issn.1674-8034.2025.05.016.


[摘要] 目的 探索单侧基底节卒中后抑郁(post-stroke depression, PSD)患者静息态功能磁共振成像(resting state functional magnetic resonance imaging, rs-fMRI)特征,明确rs-fMRI在单侧基底节PSD患者临床诊治过程中的应用价值。材料与方法 纳入45例卒中患者,根据17项汉密尔顿抑郁量表(Hamilton Depression Scale 17, HAMD-17)结果,将被试分为PSD组23例和卒中后非抑郁(non post-stroke depression, NPSD)组22例,通过局部一致性(regional homogeneity, ReHo)和低频振幅(amplitude of low frequency fluctuations, ALFF)分析方法比较两组被试ReHo、ALFF值存在显著差异的脑区。结果 与PSD组相比,NPSD组在左颞极中回、左中央前回(t=5.442 8、3.507 9,P<0.05)的ReHo值升高,在左梭状回、左楔前叶(t=-3.552 8、-4.112 4,P<0.05)的ReHo值降低,在右梭状回、右颞下回、左后扣带回、右扣带回、右缘上回、左中央前回、左旁中央小叶、右中央前回(t=3.514 9、3.277 5、4.610 2、3.734 3、4.218 9、3.854 2、4.342 9、3.964 4,P<0.05)的ALFF值升高,组间差异具有统计学意义(P<0.05,FWE校正)。结论 单侧基底节PSD患者默认模式网络、感觉运动网络和社交网络部分脑区出现ReHo和ALFF变化,上述成像特征或为疾病发生发展的关键,明确了rs-fMRI在单侧基底节PSD患者临床诊治过程中的应用价值,这将为探索PSD发生发展机制相关的脑功能研究和疾病预后情况提供参考有助于PSD的早期诊断和干预治疗。本研究在中国临床试验注册中心注册(No. ChICTR1800016263)。
[Abstract] Objective To explore the resting state functional magnetic resonance imaging (rs-fMRI) characteristics of patients with depression after unilateral basal ganglia stroke, and clarify the application value of rs-fMRI in the clinical diagnosis and treatment of patients with depression after unilateral basal ganglia stroke.This study is registered at the Chinese Clinical Trial Registry (No. ChICTR1800016263).Materials and Methods Forty-five stroke patients were included, and based on the results of the 17 item Hamilton Depression Scale (HAMD-17), 23 subjects were included in the post-stroke depression (PSD) group and 22 subjects were included in the non post-stroke depression (NPSD) group. Regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) analysis methods were used to compare the brain regions with significant differences in ReHo and ALFF values between the two groups of subjects.Results Compared with the PSD group, the NPSD group showed an increase in ReHo values in the left temporal polar gyrus and left anterior cingulate gyrus (t = 5.442 8, 3.507 9; P < 0.05), a decrease in ReHo values in the left fusiform gyrus and left anterior cingulate gyrus (t = -3.552 8, -4.112 4; P < 0.05), and an increase in ALFF values in the right fusiform gyrus, right inferior temporal gyrus, left posterior cingulate gyrus, right cingulate gyrus, right superior marginal gyrus, left anterior central lobule, and right anterior cingulate gyrus (t = 3.514 9, 3.277 5, 4.610 2, 3.734 3, 4.218 9, 3.854 2, 4.342 9, 3.964 4; P < 0.05). The difference between the groups was statistically significant (P < 0.05, FWE correction).Conclusions The default mode network, sensory motor network, and social network of patients with unilateral basal ganglia depression show ReHo and ALFF changes in some brain regions. These imaging features may be key to the occurrence and development of the disease, clarifying the application value of rs-fMRI in the clinical diagnosis and treatment of patients with unilateral basal ganglia depression after stroke. This will help in the early diagnosis and intervention treatment of PSD. This will provide reference for exploring the brain function research and disease prognosis related to the development mechanism of PSD.
[关键词] 卒中后抑郁;基底节;局部一致性;低频振幅;静息态功能磁共振成像;磁共振成像
[Keywords] post-stroke depression;basal ganglia;regional homogeneity;amplitude of low frequency fluctuations;resting state functional magnetic resonance imaging;magnetic resonance imaging

许天骄 1   陆梦馨 2   李媛媛 3   张慕昭 2   邹忆怀 3   方继良 1*  

1 中国中医科学院广安门医院放射科,北京 100053

2 首都医科大学附属北京朝阳医院中医科,北京 100020

3 北京中医药大学东直门医院脑病科,北京 100700

通信作者:方继良,E-mail: fangmgh@163.com

作者贡献声明:方继良设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;许天骄起草和撰写稿件,获取本研究的数据;张慕昭、李媛媛、陆梦馨、邹忆怀分析、解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82174331,82174282
收稿日期:2025-01-13
接受日期:2025-05-10
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.016
本文引用格式:许天骄, 陆梦馨, 李媛媛, 等. 首发单侧基底节卒中后抑郁与非抑郁患者局部一致性和低频振幅的差异研究[J]. 磁共振成像, 2025, 16(5): 102-107. DOI:10.12015/issn.1674-8034.2025.05.016.

0 引言

       缺血性卒中是世界范围内成人致死致残主因[1],卒中后抑郁(post-stroke depression, PSD)在卒中发生后各时期普遍存在,发病率达20%~60%[2],导致卒中后康复成果受损、住院时间延长、自理能力下降、效能感知降低、死亡率上升,给家庭和社会带来沉重负担[3, 4]。因此,PSD发生发展的病理机制和临床精准诊疗成为当下研究热点[5, 6]。PSD临床表现个体差异显著,缺乏客观明确影像学诊断特征,诊疗过程易被忽略,无法及时对患者进行精准诊疗,并在此基础上评估预后,探索明确的诊断评估脑效应机制具有医学一心理一社会多重意义[7]

       静息态功能磁共振成像(resting state functional magnetic resonance imaging, rs-fMRI)基于不同脑区血氧水平依赖性(blood oxygen level dependent, BOLD)信号自发波动,无需被试执行明确任务[8],其结果可规避试验范式及过程刺激等因素影响[9]。在rs-fMRI研究中,局部一致性(regional homogeneity, ReHo)和低频振幅(amplitude of low frequency fluctuations, ALFF)是重要的评估方法[10, 11]。静息状态下,ALFF反映神经元自发活动水平,在测试-复测可靠性和可复制性间达到最佳平衡[12];ReHo反映体素间相关性强弱,是局部神经元同步活动的有序性和调节机制特征[13]。既往研究借助磁共振成像、功能磁共振成像、扩散张量成像、磁共振波谱等多种技术手段,对卒中后脑功能变化进行研究[14]。鉴于其隐匿发病和预后不良特征,与卒中后非抑郁(non post-stroke depression, NPSD)患者相较,PSD患者更需得到研究者重视。目前,尚无研究对单侧运动环路首次损伤后,PSD与非抑郁患者局部脑功能差异进行探索。

       因此,本研究拟运用rs-fMRI技术,通过ALFF、ReHo分析探讨单侧基底节PSD与非抑郁患者的局部脑功能差异,为临床精准识别和个体化预防PSD提供影像学证据,为后续探索PSD发生发展机制相关的脑功能研究提供参考。

1 材料与方法

1.1 研究对象

       本研究纳入发病1.5月以内、梗死病灶位于基底节和(或)放射冠区域单侧运动通路上的卒中后偏瘫患者45例,根据17项汉密尔顿抑郁量表(Hamilton Depression Scale 17, HAMD-17)量表评分结果及问诊情况将其分为PSD组(8≤HAMD-17评分≤24)和NPSD组(HAMD-17评分<8)。23例患者纳入PSD组,22例患者纳入NPSD组。HAMD-17量表评估和受试分组工作均由同一医师(3年量表评估经验的执业医师)完成。患者均来源于2018年12月至2023年6月北京中医药大学东直门医院脑病一区、脑病二区、针灸一区的住院患者。本研究遵守《赫尔辛基宣言》,通过了北京中医药大学东直门医院伦理委员会批准(伦理号:DZMEC-KY-2018-04),在中国临床试验注册中心注册(No. ChICTR1800016263),所有受试者均签署知情同意书。

       卒中患者纳入标准:(1)符合脑梗死诊断标准,诊断标准参照2010年《中国脑血管病防治指南》;(2)首次发病,且发病时间为1.5月以内;(3)左侧或右侧偏瘫患者,病灶位于单侧放射冠或基底节;(4)右利手;(5)年龄40~75岁之间,男女均可;(6)患者无意识障碍,病情相对平稳;(7)近一月来未服用精神类药物;(8)患者本人或直系家属签署知情同意书;意识清楚、因偏瘫导致书写不便的患者,由直系亲属代签。排除标准:(1)合并心血管、高血压、消化、造血系统、肝、肾等严重原发性疾病者;(2)精神病患者,过敏体质,易合并感染及出血者;(3)孕妇、哺乳期及经期妇女;(4)不能理解配合检查或有幽闭恐怖症等其他MRI检查禁忌者;(5)在MRI扫描中发现严重的头颅解剖结构不对称或有其他明确病变的;(6)一个月内参加过类似神经影像学试验者。剔除与脱落标准:(1)不符合纳入标准而被误入的病例;(2)受试者依从性差,MRI扫描中头动过大,不能配合试验进行。中止标准:发生严重不良事件或并发症,不宜继续而被中止试验的病例。

1.2 观察指标

1.2.1 rs-fMRI图像数据采集

       本研究在北京中医药大学东直门医院核磁室进行,使用Siemens Novus 3.0 T超导磁共振扫描仪。被试在接受针刺干预前后分别进行一次扫描,被试取仰卧位,头套固定以保持头位不动,维持视听封闭状态,进行rs-fMRI扫描。(1)结构成像参数:采用T1WI序列,TR 1900 ms,TE 2.52 ms,矩阵256×256,层厚 1.0 mm,视野256 mm×256 mm,翻转角 9°,扫描时间4分10秒。(2)血氧水平依赖成像参数:采用T2WI序列,TR 2000 ms,TE 30 ms,矩阵64×64,层厚5.0 mm,视野225 mm×225 mm,翻转角90°,扫描时间8分10秒。

1.2.2 影像图像数据处理

       在Matlab 2023b平台应用工具包SPM12(https://www.fil.ion.ucl.ac.uk/spm/)和DPARSF 5.4(http://rfmri.org/dpabi)对fMRI数据进行预处理。基于预处理后数据,应用DPARSF 5.4工具包进行ALFF和ReHo分析。(1)ALFF分析:通过计算每个体素时间序列与其点线面相连的共26个体素时间序列的肯德尔和谐系数,将得出ReHo值除以全脑平均值,获得标准化ReHo值,得出每位被试szReHo图。(2)ALFF分析:通过计算每个体素时间序列傅里叶变换后在0.01~0.08 Hz频率段振幅,得出每位被试szALFF图。数据处理过程由2名神经内科医生A和B(3年诊断经验的住院医师)分别单独完成,同时由1名神经内科医生C(30年临床诊断经验的主任医师)重新处理数据,1名放射科医生D(30年临床诊断经验的主任医师)审查结果。当A和B两名医生结果不一致时,以C医生处理结果为准,并将C医生所得结果送予1名放射科医生D审查,以明确该结果是否与常规情况严重背离。

1.3 统计学方法

1.3.1 人口统计学

       使用SPSS 23.0软件对人口学资料进行统计分析。年龄、身高、体质量、BMI指数采用双样本t检验,性别等分类变量采用卡方检验分析,以P<0.05为差异有统计学意义。

1.3.2 差异脑区获取

       通过Matlab平台DPABI工具包中统计分析模块(http://rfmri.org/dpabi)对PSD组、NPSD组的ReHo值、ALFF值进行双样本t检验,获取t值统计图。将年龄、性别和受教育程度作为协变量,使用FWE校正对统计结果进行多重比较校正,体素水平显著性阈值voxel P<0.001,团块水平显著性阈值cluster P<0.05,通过AAL_90.nii模板展示结果,获取差异脑区。

2 结果

2.1 人口学资料

       被试人口学资料对比结果见表1。被试年龄、身高、体质量、身体质量指数(body mass index, BMI)数据做双样本t检验,性别数据做卡方检验,差异无统计学意义(P>0.05)。

表1  两组被试人口学资料比较
Tab. 1  Comparison of demographic data between two groups of participants

2.2 ReHo和ALFF变化组间比较

       两组ReHo值差异脑区激活图如图1所示,与PSD组相比,NPSD组在左颞极中回、左中央前回的ReHo值升高,组间差异具有统计学意义(P<0.05,FWE校正,见表2)。两组ALFF值差异脑区激活图如图2所示,与PSD组相比,NPSD组在右梭状回、右颞下回、左后扣带回、右扣带回、右缘上回、左中央前回、左旁中央小叶、右中央前回的ALFF值升高,组间差异有统计学意义(P<0.05,FWE校正,见表2)。

图1  PSD组与NPSD组之间的ReHo差异。PSD:卒中后抑郁;NPSD:卒中后非抑郁;ReHo:局部一致性。
Fig. 1  ReHo differences between PSD group and NPSD group. PSD: post-stroke depression group; NPSD: non post-stroke depression group; ReHo: regional homogeneity.
图2  PSD组与NPSD组之间的ALFF差异。PSD:卒中后抑郁;NPSD:卒中后非抑郁;ALFF:低频振幅。
Fig. 2  ALFF differences between PSD group and NPSD group. PSD: post-stroke depression group; NPSD: non post-stroke depression group; ALFF: amplitude of low frequency fluctuations.
表2  NPSD组相较PSD组ReHo值和ALFF值有差异脑区
Tab. 2  The brain regions with different ReHo and ALFF values in the NPSD group compared with the PSD group

3 讨论

       本研究运用rs-fMRI技术探索首发单侧基底节PSD与NPSD患者的局部脑功能ALFF、ReHo差异,研究结果表明PSD组与NPSD组之间存在ALFF、ReHo值显著差异脑区。与PSD组相比,NPSD组在左颞极中回、左中央前回的ReHo值升高,在右梭状回、右颞下回、左后扣带回、右扣带回、右缘上回、左中央前回、左旁中央小叶、右中央前回的ALFF值升高,在左梭状回、左楔前叶的ReHo值降低。据我们所知,这是第一项探索首发单侧基底节PSD与NPSD患者的局部脑功能ALFF、ReHo差异的研究,可为PSD机制研究、临床诊断和预后治疗奠定脑功能特征基础。

3.1 PSD患者存在默认模式网络、感觉运动网络和社交网络等脑区功能活动异常

       本研究发现,NPSD患者与PSD患者相较,ALFF、ReHo差异脑区主要分布在默认模式网络、感觉运动网络和社交网络。颞下回、扣带回、缘上回、楔前叶属于默认模式网络,颞下回参与语言、视觉感知、记忆和情绪调节过程[15],在多模式和高级感觉处理中发挥关键作用[16];扣带回与注意力控制、情绪调节和疼痛缓解密切相关[17],大量参与情绪管理反应及恐惧和快乐体验[18],是抑郁症、焦虑症等精神疾病发生发展过程核心脑区[19];缘上回是社会认知过程顺利执行的关键[20],其静息态功能连接是重度抑郁症影像学标志物,结构完整性降低可致长期极度悲伤者认知抑制受损和情绪障碍症状持续存在[21];楔前叶可促进内部和外部刺激整合指导后续行为,这对于适当处理复杂情况非常重要[22]。颞中回、梭状回属于社交网络,颞中回是社交大脑网络关键,与抑制控制和情绪处理缺陷有关[23],参与语言组织、情感表达、社会认知等多种社交任务[24];梭状回深度参与感知、记忆和命名过程[25],对社会互动发生和完成至关重要[26],研究表明,焦虑症患者梭状回内部ReHo低于健康个体[27],且对情绪刺激呈反应性增强[28]。中央前回、旁中央小叶属于感觉运动网络,中央前回主导运动环路损伤后精细运动、整合目标等多级功能重新定位[29],抑制神经性疼痛中负面情绪和相关应对行为[30];中央旁小叶参与运动控制和认知识别[31],与情绪障碍患者自杀脑活动改变相关[32],通过调节双侧中央旁小叶脑血流量,可促进抑郁患者抑郁症状改善[33]。因此,PSD患者存在默认模式网络、感觉运动网络和社交网络等脑区功能活动异常,可能是PSD的主要发病机制。

3.2 左侧半球在基底节、放射冠区卒中发生前期存在优先侧化康复倾向

       本研究发现,NPSD患者与PSD患者相较,ReHo差异脑区均分布于左侧半球,左侧中央前回、颞中回ReHo值上升,左侧梭状回、楔前叶ReHo值下降。左侧半球神经元激活与积极情绪相关,左侧半球在回馈特有的重新评估策略进行情绪调节层面较右侧更为优越,反映了个体对潜在奖励或机会的积极反应[34],这与经典情绪侧化理论和躁狂患者左侧半球过度活动结果一致[35]。研究表明,与健康人相较,非自杀性自伤患者左中央后回皮层厚度升高,这可能具有异常神经元密度或神经胶质细胞增殖增加[36],主要负责运动控制的中央前回在非自杀性自伤患者中表现出功能和结构异常,可能增加自残风险[37];抑郁症患者左颞叶皮层更薄,左颞叶皮层厚度与抑郁症严重程度呈负相关[38]。研究表明,与健康人相较,晚年抑郁症患者左侧梭状回ReHo水平与认知、记忆功能呈负相关,梭状回过度活跃与抑郁症患者对负面刺激的过度反应、更严重的抑郁症状和负面认知偏差有关[39];抑郁症患者左楔前叶ReHo水平显著升高[40]。上述研究结果与本项研究论证两组间ReHo差异脑区结果一致。因此,本项研究结果提示,与PSD患者相较,NPSD患者脑功能恢复预后较好,或得益于左侧半球在康复过程中的优先侧化康复倾向。

3.3 ALFF是卒中康复过程中抑郁发生与否及预后情况的重点评估特征

       本研究发现,NPSD患者与PSD患者相较,差异脑区右侧梭状回、右侧颞下回、左侧后扣带回、右侧枕上回、右侧缘上回、左侧中央前回、左侧旁中央小叶、右侧中央前回ALFF水平均显著升高。ALFF特征作为BOLD低频范围每个体素信号频谱振幅,反馈出静息状态下体素自发活动水平,代表局部神经元活动强度[41]。据报道,ALFF是评估区域脑活动可靠且敏感的指标[42],非常适合表征静息态相关的大脑活动,并且具有很高重测可靠性[43]。研究表明,圆满快感缺乏与右侧梭状回和左侧中央前回中的 ALFF 值呈正相关[44];童年性虐待等负性刺激与重度抑郁症患者右侧颞下回ALFF值改变呈负相关[42];双相Ⅱ型障碍抑郁症患者左后扣带回ALFF值低于健康对照组[45];与健康人相较,重度抑郁症患者右枕上回ALFF值下降[46];重度抑郁症患者经疗程电休克疗法治疗后,右侧缘上回ALFF值显著下降[47];冠状病毒大流行期间,与国内大学生相较,存在抑郁焦虑情绪的海外留学生左侧旁中央小叶ALFF值下降[48];与健康人相较,伴自杀倾向的抑郁症患者右侧中央前回ALFF值下降[49]。上述结果与本项研究结果相符,初步提示ALFF是卒中康复过程中抑郁发生与否及预后情况的重点评估特征,可作为PSD临床诊疗和科学研究的影像学标志物。

3.4 局限性

       本研究存在以下不足。首先,样本量偏小,入组样本高同质性可保证统计学效力,但结果不可避免存在部分偏倚[50],在今后研究中,可通过设立分中心扩大样本量,从而校正偏倚。其次,针对基线情况进行fMRI数据研究,长效或即刻体针、耳针等干预方式引起脑功能活动区域信号变化暂未可知,在今后研究中,可进行经颅磁刺激、经皮耳穴迷走神经刺激治疗前后组内和设置安慰剂针刺对照进行组间对比。最后,本研究仅对ReHo、ALFF值变化进行观察,指标相对单一,在今后研究中,可进一步采集患者动脉自旋标记、波谱成像等指标进行统计分析,以提高本研究科学价值和序贯性。

4 结论

       默认模式网络、感觉运动网络和社交网络与PSD发生发展息息相关,局部脑功能成像特征可为PSD临床诊断、鉴别和治疗决策提供有价值参考,有望在PSD精准诊疗和预后评估的临床疗效实践中发挥更高价值。

[1]
YU K, CHEN X F, GUO J, et al. Assessment of bidirectional relationships between brain imaging-derived phenotypes and stroke: a Mendelian randomization study[J/OL]. BMC Med, 2023, 21(1): 271 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37491271/. DOI: 10.1186/s12916-023-02982-9.
[2]
SARKAR A, SARMAH D, DATTA A, et al. Post-stroke depression: Chaos to exposition[J]. Brain Res Bull, 2021, 168: 74-88. DOI: 10.1016/j.brainresbull.2020.12.012.
[3]
LIU C, TANG H, LIU C, et al. Transcutaneous auricular vagus nerve stimulation for post-stroke depression: A double-blind, randomized, placebo-controlled trial[J]. J Affect Disord, 2024, 354: 82-88. DOI: 10.1016/j.jad.2024.03.005.
[4]
KIPER P, PRZYSIĘŻNA E, CIEŚLIK B, et al. Effects of Immersive Virtual Therapy as a Method Supporting Recovery of Depressive Symptoms in Post-Stroke Rehabilitation: Randomized Controlled Trial[J]. Clin Interv Aging, 2022, 17: 1673-1685. DOI: 10.2147/CIA.S375754.
[5]
QIU X, LAN Y, MIAO J, et al. Depressive symptom dimensions predict the treatment effect of repetitive transcranial magnetic stimulation for post-stroke depression[J/OL]. J Psychosom Res, 2023, 171: 111382 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37285667/. DOI: 10.1016/j.jpsychores.2023.111382.
[6]
YAN N, HU S. The safety and efficacy of escitalopram and sertraline in post-stroke depression: a randomized controlled trial[J/OL]. BMC Psychiatry, 2024, 24(1): 365 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/38750479/. DOI: 10.1186/s12888-024-05833-w.
[7]
KWAKKEL G, STINEAR C, ESSERS B, et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework[J]. Eur Stroke J, 2023, 8(4): 880-894. DOI: 10.1177/23969873231191304.
[8]
RAIMONDO L, ĹAF OLIVEIRA, HEIJ J, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. Neuroimage, 2021, 243: 118503 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/34479041/. DOI: 10.1016/j.neuroimage.2021.118503.
[9]
CANARIO E, CHEN D, BISWAL B. A review of resting-state fMRI and its use to examine psychiatric disorders[J]. Psychoradiology, 2021, 1(1): 42-53. DOI: 10.1093/psyrad/kkab003.
[10]
ZHE X, TANG M, AI K, et al. Decreased ALFF and Functional Connectivity of the Thalamus in Vestibular Migraine Patients[J/OL]. Brain Sci, 2023, 13(2): 183 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36831726/. DOI: 10.3390/brainsci13020183.
[11]
SHEN W, WANG X, LI Q, et al. Research on adults with subthreshold depression after aerobic exercise: a resting-state fMRI study based on regional homogeneity (ReHo)[J/OL]. Front Neurosci, 2024, 18: 1231883 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/38533447/. DOI: 10.3389/fnins.2024.1231883.
[12]
LIU L, HU X, ZHANG Y, et al. Effect of Vestibular Rehabilitation on Spontaneous Brain Activity in Patients With Vestibular Migraine: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Hum Neurosci, 2020, 14: 227 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/32595463/. DOI: 10.3389/fnhum.2020.00227.
[13]
LIU S, MA R, LUO Y, et al. Facial Expression Recognition and ReHo Analysis in Major Depressive Disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/34630204/. DOI: 10.3389/fpsyg.2021.688376.
[14]
JIANG S, ZHANG H, FANG Y, et al. Altered Resting-State Brain Activity and Functional Connectivity in Post-Stroke Apathy: An fMRI Study[J/OL]. Brain Sci, 2023, 13(5): 730 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37239202/. DOI: 10.3390/brainsci13050730.
[15]
CHEN Y, LI X, WANG L, et al. Effects of Repetitive Transcranial Magnetic Stimulation on Cognitive Function in Patients With Stress-Related Depression: A Randomized Double-Blind fMRI and 1H-MRS Study[J/OL]. Front Neurol, 2022, 13: 844606 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35493813/. DOI: 10.3389/fneur.2022.844606.
[16]
LIN Y H, YOUNG I M, CONNER A K, et al. Anatomy and White Matter Connections of the Inferior Temporal Gyrus[J/OL]. World Neurosurg, 2020, 143: e656-e666 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/32798785/. DOI: 10.1016/j.wneu.2020.08.058.
[17]
MAHGOUB R, BAYRAM A K, SPENCER D D, et al. Functional parcellation of the cingulate gyrus by electrical cortical stimulation: a synthetic literature review and future directions[J]. J Neurol Neurosurg Psychiatry, 2024, 95(8): 704-721. DOI: 10.1136/jnnp-2023-332246.
[18]
SEZER I, PIZZAGALLI D A, SACCHET M D. Resting-state fMRI functional connectivity and mindfulness in clinical and non-clinical contexts: A review and synthesis[J/OL]. Neurosci Biobehav Rev, 2022, 135: 104583 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35202647/. DOI: 10.1016/j.neubiorev.2022.104583.
[19]
ZHANG H, ZHAO Z, ZHANG S, et al. Altered cingulate gyrus subregions functional connectivity in chronic insomnia disorder with anxiety[J]. Sleep Med, 2024, 123: 42-48. DOI: 10.1016/j.sleep.2024.08.031.
[20]
SUN Y, LI G, LIU X, et al. Cerebral glucose hypometabolism and hypoperfusion of cingulate gyrus: an imaging biomarker of autoimmune encephalitis with psychiatric symptoms[J]. J Neurol, 2024, 271(3): 1247-1255. DOI: 10.1007/s00415-023-12051-z.
[21]
ZHU X, YUAN F, ZHOU G, et al. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity[J]. Brain Imaging Behav, 2021, 15(3): 1279-1289. DOI: 10.1007/s11682-020-00326-2.
[22]
TANGLAY O, YOUNG I M, DADARIO N B, et al. Anatomy and white-matter connections of the precuneus[J]. Brain Imaging Behav, 2022, 16(2): 574-586. DOI: 10.1007/s11682-021-00529-1.
[23]
JAGGER-RICKELS A, STUMPS A, ROTHLEIN D, et al. Aberrant connectivity in the right amygdala and right middle temporal gyrus before and after a suicide attempt: Examining markers of suicide risk[J]. J Affect Disord, 2023, 335: 24-35. DOI: 10.1016/j.jad.2023.04.061.
[24]
XU J, WANG C, XU Z, et al. Specific Functional Connectivity Patterns of Middle Temporal Gyrus Subregions in Children and Adults with Autism Spectrum Disorder[J]. Autism Res, 2020, 13(3): 410-422. DOI: 10.1002/aur.2239.
[25]
GAN Z, GANGADHARAN V, LIU S, et al. Layer-specific pain relief pathways originating from primary motor cortex[J]. Science, 2022, 378(6626): 1336-1343. DOI: 10.1126/science.add4391.
[26]
TENNANT V R, HARRISON T M, ADAMS J N, et al. Fusiform Gyrus Phospho-Tau is Associated with Failure of Proper Name Retrieval in Aging[J]. Ann Neurol, 2021, 90(6): 988-993. DOI: 10.1002/ana.26237.
[27]
ROSSION B, JACQUES C, JONAS J. The anterior fusiform gyrus: The ghost in the cortical face machine[J/OL]. Neurosci Biobehav Rev, 2024, 158: 105535 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/38191080/. DOI: 10.1016/j.neubiorev.2024.105535.
[28]
CUI Q, CHEN Y, TANG Q, et al. Disrupted dynamic local brain functional connectivity patterns in generalized anxiety disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 99: 109833 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/31812780/. DOI: 10.1016/j.pnpbp.2019.109833
[29]
GIAMPICCOLO D, DUNCAN J S. High plasticity within the precentral gyrus and its relevance for resective neurosurgery[J/OL]. Brain, 2023, 146(11): e98-e99 [2025-01-13]. https://doi.org/10.1093/brain/awad170. DOI: 10.1093/brain/awad170.
[30]
NG S, VALDES P A, MORITZ-GASSER S, et al. Intraoperative functional remapping unveils evolving patterns of cortical plasticity[J]. Brain, 2023, 146(7): 3088-3100. DOI: 10.1093/brain/awad116.
[31]
SUN J, LU Y, KONG D, et al. Cerebral blood flow in the paracentral lobule is associated with poor subjective sleep quality among patients with a history of methadone maintenance treatment[J/OL]. Front Neurol, 2024, 15: 1400810 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/39175760/. DOI: 10.3389/fneur.2024.1400810.
[32]
ZHANG R, ZHANG L, WEI S, et al. Increased Amygdala-Paracentral Lobule/Precuneus Functional Connectivity Associated With Patients With Mood Disorder and Suicidal Behavior[J/OL]. Front Hum Neurosci, 2021, 14: 585664 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/33519398/. DOI: 10.3389/fnhum.2020.585664.
[33]
ZHANG C, ZHU D M, ZHANG Y, et al. Neural substrates underlying REM sleep duration in patients with major depressive disorder: A longitudinal study combining multimodal MRI data[J]. J Affect Disord, 2024, 344: 546-553. DOI: 10.1016/j.jad.2023.10.090.
[34]
KELLER M, ZWEERINGS J, KLASEN M, et al. fMRI Neurofeedback-Enhanced Cognitive Reappraisal Training in Depression: A Double-Blind Comparison of Left and Right vlPFC Regulation[J/OL]. Front Psychiatry, 2021, 12: 715898 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/34497546/. DOI: 10.3389/fpsyt.2021.715898.
[35]
COTOVIO G, OLIVEIRA-MAIA A J. Functional neuroanatomy of mania[J/OL]. Transl Psychiatry, 2022, 12(1): 29 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35075120/. DOI: 10.1038/s41398-022-01786-4.
[36]
YAN R, HUANG Y, SHI J, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuits related to non-suicidal self-injury in young adults with major depressive disorder[J]. J Affect Disord, 2022, 305: 8-18. DOI: 10.1016/j.jad.2022.02.040.
[37]
PANG X, WU D, WANG H, et al. Cortical morphological alterations in adolescents with major depression and non-suicidal self-injury[J/OL]. Neuroimage Clin, 2024, 44: 103701 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/39500145/. DOI: 10.1016/j.nicl.2024.103701.
[38]
COMPÈRE L, SIEGLE G J, LAZZARO S, et al. Real-time functional magnetic resonance imaging neurofeedback training of amygdala upregulation increases affective flexibility in depression[J/OL]. J Psychiatry Neurosci, 2023, 48(3): E232-E239 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37339817/. DOI: 10.1503/jpn.220208.
[39]
CHEN B, ZHONG X, ZHANG M, et al. The additive effect of late-life depression and olfactory dysfunction on the risk of dementia was mediated by hypersynchronization of the hippocampus/fusiform gyrus[J/OL]. Transl Psychiatry, 2021, 11(1): 172 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/33731679/. DOI: 10.1038/s41398-021-01291-0.
[40]
PAN Z, QI H, ZHOU J, et al. Comparison of Brain Function and Structure in Patients with Major Depression: A Systematic Review and Meta-Analysis of MRI-Based Data[J]. Actas Esp Psiquiatr, 2024, 52(4): 561-570. DOI: 10.62641/aep.v52i4.1636.
[41]
HU Y, BING D, LIU A, et al. A preliminary study of fMRI and the relationship with depression and anxiety in Meniere's patients[J/OL]. Am J Otolaryngol, 2025, 46(1): 104531 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/39667311/. DOI: 10.1016/j.amjoto.2024.104531.
[42]
LIU Y, GAO Y, LI M, et al. Childhood sexual abuse related to brain activity abnormalities in right inferior temporal gyrus among major depressive disorder[J/OL]. Neurosci Lett, 2023, 806: 137196 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36963746/. DOI: 10.1016/j.neulet.2023.137196.
[43]
WALL M B, LAM C, ERTL N, et al. Increased low-frequency brain responses to music after psilocybin therapy for depression[J]. J Affect Disord, 2023, 333: 321-330. DOI: 10.1016/j.jad.2023.04.081.
[44]
DU H, XIA J, FAN J, et al. Spontaneous neural activity in the right fusiform gyrus and putamen is associated with consummatory anhedonia in obsessive compulsive disorder[J]. Brain Imaging Behav, 2022, 16(4): 1708-1720. DOI: 10.1007/s11682-021-00619-0.
[45]
ZHANG S, WANG Y, ZHENG S, et al. Multimodal MRI reveals alterations of the anterior insula and posterior cingulate cortex in bipolar II disorders: A surface-based approach[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 116: 110533 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35151795/. DOI: 10.1016/j.pnpbp.2022.110533.
[46]
TU Z, WU F, JIANG X, et al. Gender differences in major depressive disorders: A resting state fMRI study[J/OL]. Front Psychiatry, 2022, 13: 1025531 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36440430/. DOI: 10.3389/fpsyt.2022.1025531.
[47]
LI X K, QIU H T, HU J, et al. Changes in the amplitude of low-frequency fluctuations in specific frequency bands in major depressive disorder after electroconvulsive therapy[J]. World J Psychiatry, 2022, 12(5): 708-721. DOI: 10.5498/wjp.v12.i5.708.
[48]
LI T, DU X, ZHANG X, et al. From study abroad to study at home: Spontaneous neuronal activity predicts depressive symptoms in overseas students during the COVID-19 pandemic[J/OL]. Front Neurosci, 2023, 17: 1078119 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36816115/. DOI: 10.3389/fnins.2023.1078119.
[49]
WANG X, WU H, WANG D, et al. Reduced suicidality after electroconvulsive therapy is linked to increased frontal brain activity in depressed patients: a resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1224914 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37502809/. DOI: 10.3389/fpsyt.2023.1224914.
[50]
LIN H, XIANG X, HUANG J, et al. Abnormal degree centrality values as a potential imaging biomarker for major depressive disorder: A resting-state functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 960294 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36147977/. DOI: 10.3389/fpsyt.2022.960294.

上一篇 基于磁共振成像技术的社交隔离大脑变化研究:一项激活似然估计法的Meta分析
下一篇 磁共振动脉自旋标记成像在热性惊厥局灶性评估中的价值初探
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2