分享:
分享到微信朋友圈
X
临床研究
磁共振动脉自旋标记成像在热性惊厥局灶性评估中的价值初探
杨洋 张顺 石妍 覃媛媛 徐三清

Cite this article as: YANG Y, ZHANG S, SHI Y, et al. Preliminary exploration of the value of magnetic resonance arterial spin labeling imaging in the focal evaluation of febrile seizures[J]. Chin J Magn Reson Imaging, 2025, 16(5): 108-112, 119.本文引用格式:杨洋, 张顺, 石妍, 等. 磁共振动脉自旋标记成像在热性惊厥局灶性评估中的价值初探[J]. 磁共振成像, 2025, 16(5): 108-112, 119. DOI:10.12015/issn.1674-8034.2025.05.017.


[摘要] 目的 探讨动脉自旋标记(arterial spin labeling, ASL)成像在热性惊厥(febrile seizure, FS)局灶性评估中的作用。材料与方法 回顾性分析2022年1月至2024年7月在华中科技大学同济医学院附属同济医院儿童神经内科住院的FS患儿的临床及影像学资料,由两位高年资放射医师对ASL脑血流(cerebral blood flow, CBF)图像进行盲法阅片并给出视觉评分。结果 共纳入符合条件的FS患儿24例,其中3例表现为全脑ASL无灌注异常(1分,12.5%),21例患者(87.5%)表现出灌注异常且均为灌注减低,其中累及颞区患者20例(83.3%)。24例患者中有22例在FS发作后24 内行脑电图(electroencephalogram, EEG)检查,EEG正常和异常组之间ASL-CBF视觉评分差异无统计学意义(P=0.698)。根据临床症状学并结合EEG结果进行分类,24例患者中6例为单纯性FS(25.0%),14例为复杂性FS(58.3%),4例为FS持续状态(16.7%);其中4例FS持续状态患儿均表现为双侧不对称减低(ASL-CBF评分为3分)。三组之间FS发作到ASL采集时间、24 h内有无复发、ASL-CBF视觉评分差异均有统计学意义(P<0.05),事后检验发现,复杂性FS与FS持续状态组之间ASL-CBF视觉评分差异无统计学意义(χ2=5.143,P=0.162),而单纯性FS与FS持续状态组之间ASL-CBF视觉评分差异有统计学意义(χ2=10.000,P=0.019)。与单纯性FS相比,复杂性FS患者的性别、年龄、FS发作到ASL采集时间、既往FS病史、家族性FS病史、EEG差异无统计学意义(P>0.05);仅24 h内是否复发差异有统计学意义(χ2=0.008,P=0.008)。结论 热性惊厥病灶主要来源可能位于颞区,FS持续状态表现为双侧灌注不对称减低。ASL技术有助于评估FS的局灶性问题,尤其是在EEG正常和常规结构磁共振成像阴性的情况下。
[Abstract] Objective To explore the role of arterial spin labeling (ASL) imaging in the focal assessment of febrile seizures (FS).Materials and Methods The clinical and imaging data of FS children admitted to pediatric Neurology Department of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology from January 2022 to July 2024 were retrospectively analyzed. Two senior radiologists performed blind reading of ASL cerebral blood flow images (ASL-CBF) and gave visual scores.Results A total of 24 eligible FS patients were included in this study, of which 3 patients showed no perfusion abnormality in ASL of the whole brain (1 point, 12.5%), and 21 patients (87.5%) showed abnormal perfusion, all with reduced perfusion, including 20 patients (83.3%) involved in the temporal region. Electroencephalogram (EEG) was performed in 22 of the 24 patients within 24 hours of FS onset, and there was no significant difference in ASL-CBF visual scores between normal and abnormal EEG groups (P = 0.698). According to the clinical symptomatology and EEG results, 6 of the 24 patients were classified as simple FS (25.0%), 14 as complex FS (58.3%), and 4 as persistent FS (16.7%); Among them, 4 patients with FS persistence showed bilateral asymmetry reduction (ASL-CBF score was 3 points). There were significant differences between the three groups in the time from FS onset to ASL collection, whether there was recurrence within 24 hours, and ASL-CBF visual score (P < 0.05). Post hoc analysis indicated that although there was no significant difference in ASL-CBF visual score between complex FS and FS persistence group (χ2 = 5.143, P = 0.162), the ASL-CBF visual score between simple FS and FS persistent state group showed significant difference (χ2 = 10.000, P = 0.019). Compared with simple FS, there were no significant differences in gender, age, time from FS onset to ASL collection, previous FS history, familial FS history, and EEG in patients with complex FS group (P > 0.05), except for whether there was recurrence within 24 hours (χ2 = 0.008, P = 0.008), which was basically consistent with clinical practice.Conclusions The underlying lesion of febrile seizures may be located in the temporal region, and the continuous state of FS showed asymmetric reduction of bilateral perfusion. ASL techniques are helpful in evaluating focal problems in FS, especially in those cases that had normal EEG and negative structural MRI.
[关键词] 热性惊厥;动脉自旋标记;磁共振成像;局灶性;颞区
[Keywords] febrile seizure;arterial spin labeling;magnetic resonance imaging;focal;temporal region

杨洋 1   张顺 1   石妍 1   覃媛媛 1*   徐三清 2  

1 华中科技大学同济医学院附属同济医院放射科,武汉 430000

2 华中科技大学同济医学院附属同济医院儿童神经内科,武汉 430000

通信作者:覃媛媛,E-mail: qinyuanyuan-1021@163.com

作者贡献声明:覃媛媛设计本研究的方案,对稿件重要内容进行了修改;杨洋起草和撰写稿件,获取、分析和解释本研究的数据;张顺、石妍、徐三清获取、分析或解释本研究的数据,对稿件重要内容进行了修改;覃媛媛获得了国家自然科学基金项目的资助,张顺获得了湖北省自然科学基金联合基金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81873890 湖北省自然科学基金联合基金项目 2024AFD108
收稿日期:2024-12-31
接受日期:2025-05-10
中图分类号:R445.2  R720.597 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.017
本文引用格式:杨洋, 张顺, 石妍, 等. 磁共振动脉自旋标记成像在热性惊厥局灶性评估中的价值初探[J]. 磁共振成像, 2025, 16(5): 108-112, 119. DOI:10.12015/issn.1674-8034.2025.05.017.

0 引言

       热性惊厥(febrile seizure, FS)是儿童最常见的惊厥类型,影响约2%~5%的婴幼儿和年幼儿童,是儿科急诊中的常见问题[1]。尽管大多数为良性的单纯性FS,其后发生癫痫的风险与普通人群无差别,但复杂或非典型FS则显著增加未来癫痫的风险[2, 3, 4, 5]。在复杂FS的特征中,发作的局灶性被认为是预测随后癫痫最可靠的预后因素。然而,在临床实践中对局灶性发作的判断多依赖于症状学描述,准确性有限。由于FS多发生于学龄前儿童,难以获得可靠的临床观察,加之发作期间通常无法进行视频脑电图(electroencephalogram, EEG)监测[6],因此,准确识别局灶性发作始终是复杂性FS临床评估中的一大挑战。

       动脉自旋标记(arterial spin labeling, ASL)是一种利用血液中水分子作为内源性、可自由扩散示踪剂进行颅脑灌注成像的MRI技术[7, 8],可在不使用外源性对比剂的情况下定量脑血流量(cerebral blood flow, CBF)。近年来,随着伪连续式ASL(pseudo-continuous ASL, pCASL)技术的成熟[9],其在图像质量、成像范围、成像速度等方面均有了显著提升。目前,ASL已被广泛用于多种神经系统疾病[10, 11, 12, 13, 14],由于无须辐射暴露和注射对比剂,特别适合儿童人群的无创脑灌注评估[15]。已有研究表明,癫痫发作后ASL异常灌注区域与假定的发作起始位置部分或完全一致[16];ASL已被用于检测局部性癫痫发作间期和发作后期脑灌注动态的变化,以定位发作起始区域[17, 18]。然而,目前尚缺乏关于ASL技术在FS局灶性评估的系统研究,尤其是在EEG正常和MR结构成像阴性的情况下。本研究旨在探讨MR ASL技术在FS局灶性评估中的价值,为FS局灶性的识别提供重要参考。

1 材料与方法

1.1 临床资料

       本研究遵守《赫尔辛基宣言》,经华中科技大学同济医学院附属同济医院伦理委员会批准,免除受试者知情同意,批准文号:TJ-IRB202412200。回顾性分析2022年1月至2024年4月在华中科技大学同济医学院附属同济医院儿童神经内科住院收治的FS患儿,纳入标准:(1)年龄6个月~9岁;(2)体温≥38 ℃;(3)无代谢失衡或中枢神经系统感染的证据;(4)既往无热惊厥的病史;(5)在FS发作后24 h内进行包括ASL序列的脑部MRI检查。排除标准:(1)MR结构成像发现占位、血管性病变或其他实质性病灶;(2)有头部手术史;(3)图像质量差或体位不正不能用于评估。

1.2 研究资料

       收集患者具体资料,包括性别、年龄(岁)、发作类型、FS发作到ASL采集时间(小时)、24 h内FS有无复发、既往有无FS病史、有无神经发育迟缓、家庭中有无FS或癫痫病史等。按照头颅MRI标准序列采集结构性图像,包括T1WI、T2WI及T2液体衰减反转恢复(T2 fluid-attenuated inversion recovery, T2-FLAIR)序列。22例患者在FS发作后行EEG检查。

1.3 ASL数据的采集及处理

       所有患儿均在美国GE premier 3.0 T磁共振扫描仪上采集,患儿使用16通道相控阵列头颅线圈。在MRI检查前15~20分钟,口服医院自制水合氯醛口服溶液,剂量为0.8 mL/kg,扫描时使用海绵固定患儿头部,静音耳塞隔绝噪音,并注意保暖,确保环境温暖舒适。在整个MRI检查过程中由一名儿科医生全程陪同。

       ASL采用pCASL技术进行三维采集,TR 4788 ms,TE 14.6 ms,层厚5 mm,层间隔1 mm,视野240 mm×240 mm,矩阵64×64,标记后延迟(post label delay, PLD)时间1525 ms。所有患者的ASL原始图像经过GE公司工作站(AW 4.6版本)后处理得到CBF图用于分析。

1.4 CBF影像分析

       分别由1名高级职称(10年工作经验)和1名中级职称(7年工作经验)放射医师对CBF图像进行阅片,阅片医师对患儿的其他临床资料及电生理检查均不知情。根据以下定义对ASL-CBF图像评估[19, 20]。(1)高灌注/低灌注:与同一层面上正常对侧或同侧实质的灰质相比;(2)灌注状态:分为无异常、低灌注、高灌注;(3)灌注变化分布分3类:单侧(累及1个或多个脑叶)、双侧(涉及两个半球,并进一步细分为有、无不对称性)、全脑(涉及几乎所有的大脑);(4)如果灌注异常累及颞叶,无论是否包括其相邻区域,则定义为颞区的灌注异常;否则,则被定义为颞外区域。灌注变化的局灶性量表采用4点评分量表:全脑高灌注或无灌注异常为1分,双侧对称减低2分,双侧不对称3分,单侧灌注变化4分(颞区/颞外区)。如果评分结果不一致,则由两位阅片医师共同商议后,确定是否存在灌注异常及分布模式,最终达成一致。

1.5 统计学方法

       采用SPSS 29.0统计学软件进行数据分析,计数资料以例(%)表示,组间比较采用χ2检验或Fisher精确检验。定量资料三组间比较采用单因素方差分析,两组间比较采用独立样本t检验。以P<0.05为差异有统计学意义。

2 结果

       本研究共纳入符合条件的FS患儿24例,其中男9例、女15例,年龄为11个月~9岁;24 h内复发的有10例;首发FS患儿有11例,既往有FS病史的有13例;4例(16.7%)患儿有FS家族史;所有患儿均无神经发育迟缓。患儿均行结构MRI及ASL序列检查,并且结构MRI结果都为阴性。24例患者中,有3例表现为全脑ASL无灌注异常(1分,12.5%)(图1A),21例患者(87.5%)表现出灌注异常且均为灌注减低,其中累及颞区患者20例(83.3%)。ASL-CBF灌注减低中,呈双侧对称减低4例(2分,16.7%)(图1B),均累及颞区;双侧不对称减低9例(3分,37.5%)(图1C),其中8例累及颞区;单侧灌注减低8例(4分,33.3%)(图1D),5例累及颞区,3例累及颞区和颞外区。

       24例患者中,22例在FS发作后24 h内行EEG检查,正常范围EEG患者13例(59.0%),异常EEG患者9例(41.0%)。将EEG结果与ASL-CBF视觉评分进行对比,发现正常EEG组中4例存在单侧CBF减低(4分),5例双侧不对称减低(3分),3例双侧对称减低(2分),1例未见明显灌注异常(1分);而异常EEG组中,ASL-CBF灌注异常减低的有7例,其中2例存在单侧CBF减低(4分),4例双侧不对称减低(3分),1例双侧对称减低(2分),无明显灌注异常(1分)的有2例。EEG正常患儿和异常患儿组之间ASL-CBF视觉评分差异无统计学意义(P=0.698)。

       根据临床症状学并结合EEG检查结果,24患者中4例为FS持续状态(16.7%)(图2),14例为复杂性FS(58.3%)(图3),6例为单纯性FS(25.0%)(图4),其中FS持续状态患儿均表现为双侧不对称减低(ASL-CBF评分为3分)。对三组之间的ASL-CBF灌注变化及临床资料进行分析,发现三组之间FS发作到ASL采集时间(P=0.010)、24 h内有无复发(P=0.021)、ASL-CBF视觉评分(P=0.047)差异均有统计学意义(表1)。事后检验显示,复杂性FS与FS持续状态组之间ASL-CBF视觉评分差异无统计学意义(χ2=5.143,P=0.162),而单纯性FS与FS持续状态组之间ASL-CBF视觉评分差异有统计学意义(χ2=10.000,P=0.019)。与单纯性FS相比,复杂性FS患者的性别、年龄、FS发作到ASL采集时间、既往FS病史、家族性FS病史、EEG、ALS-CBF视觉评分差异均无统计学意义(P>0.05);仅24 h内是否复发差异均有统计学意义(χ2=0.008,P=0.008)。

图1  ASL-CBF视觉评分图。1A:无灌注异常:1分;1B:双侧对称减低:2分;1C:双侧不对称减低:3分;1D:单侧灌注减低:4分。ASL:动脉自旋标记;CBF:脑血流量。
Fig. 1  ASL-CBF visual assessment scale chart. 1A: No perfusion abnormalities: 1 point; 1B: Bilateral symmetric hypoperfusion: 2 points; 1C: Bilateral asymmetric hypoperfusion: 3 points; 1D: Unilateral hypoperfusion: 4 points. ASL: arterial spin labeling; CBF: cerebral blood flow.
图2  FS持续状态患儿的MR图像。女,4岁11个月,间期脑电图表现为双侧枕区慢波节律。患儿左侧放射冠有少许局灶性髓鞘化不良表现,轴向T2WI图像显示左侧放射冠少许结片状稍长T2信号,T2 FLAIR呈稍高信号(箭,2A~2B),DWI未见明显扩散受限(2C)。ASL-CBF显示双侧顶枕区不对称减低(箭,2D)。FS:热性惊厥;T2 FLAIR:液体衰减反转恢复;DWI:扩散加权成像;ASL:动脉自旋标记;CBF:脑血流量。
Fig. 2  MR images of children with persistent FS. A female patient aged 4 years and 11 months, interictal EEG shows slow-wave rhythms in bilateral occipital regions. Axial T2WI and T2 FLAIR shows patchy slightly hyperintense signals in the left corona radiata (arrows in 2A and 2B), indicating small focal areas of delayed myelination. DWI shows no significant restricted diffusion (2C). ASL-CBF shows asymmetric hypoperfusion in the bilateral parieto-occipital regions (arrows in 2D). FS: febrile seizures; T2 FLAIR: T2 fluid-attenuated inversion recovery; DWI: diffusion-weighted imaging; ASL: arterial spin labeling; CBF: cerebral blood flow.
图3  复杂性FS患儿的MR图像。男,7岁,入院行MRI检查,常规MRI序列(3A:T1WI;3B:T2WI;3C:T2 FLAIR)未见明显异常。间期脑电图显示双侧额-前颞区稍多量高波幅δ慢波或节律,ASL-CBF显示双侧额叶不对称减低,右侧减低为著(箭,3D)。FS:热性惊厥;T2 FLAIR:液体衰减反转恢复;ASL:动脉自旋标记;CBF:脑血流量。
Fig. 3  MR images of complex FS children. A 7-year-old boy was admitted to hospital for an MRI scan, conventional MRI sequences (3A: T1WI; 3B: T2WI; 3C: T2 FLAIR) shows no significant abnormalities. Interictal EEG shows moderately increased high-amplitudeδslow waves or rhythms in bilateral frontal-anterior temporal regions. ASL-CBF shows asymmetric hypoperfusion in bilateral frontal lobes, more pronounced on the right side (arrows in 3D). FS: febrile seizures; T2 FLAIR: T2 fluid-attenuated inversion recovery; ASL: arterial spin labeling; CBF: cerebral blood flow.
图4  单纯性FS患儿的MR图像。男,1岁2个月,其奶奶有癫痫史。患儿行MRI常规序列检查(4A:T1WI;4B:T2WI;4C:T2 FLAIR)未见明显异常,间期脑电图结果正常。然而,ASL-CBF显示双侧颞叶CBF对称性减低(箭,4D)。FS:热性惊厥;T2 FLAIR:液体衰减反转恢复;ASL:动脉自旋标记;CBF:脑血流量。
Fig. 4  MR images of children with simple FS. A 1 year and 2 months old boy has a positive family history of epilepsy (paternal grandmother). Interictal EEG shows unremarkable (within normal limits). No structural abnormalities are detected on conventional MRI sequences (4A: T1WI; 4B: T2WI; 4C: T2 FLAIR). ASL-CBF shows symmetric hypoperfusion in bilateral temporal lobes (arrows in 4D). FS: febrile seizures; T2 FLAIR: T2 fluid-attenuated inversion recovery; ASL: arterial spin labeling; CBF: cerebral blood flow.
表1  单纯性FS、复杂性FS与FS持续状态三组之间临床特征及ASL-CBF视觉评分比较
Tab. 1  Comparison of clinical characteristics and ASL-CBF visual scores among the three groups of simple FS, complex FS and FS persistence status

3 讨论

       本研究采用回顾性分析方法探讨了MR ASL技术在FS局灶性评估中的价值。研究揭示了FS患儿脑血流灌注的异常模式,发现颞区可能是主要受累区域;证实了ASL技术在评估FS局灶性方面的价值,尤其是可为EEG正常和MR结构成像阴性的FS患儿提供客观的脑功能评估依据,具有重要的临床价值。

3.1 ASL成像揭示FS患儿颞区局灶性低灌注特征

       热性惊厥是儿童时期最常见的儿科急症之一,一般预后良好,部分复杂性FS会向癫痫进展[21, 22, 23],发作的局灶性可能是随后癫痫发作的重要特征[24]。因此,定位FS的局灶性具有重要意义。本研究对结构MRI阴性的FS儿童患者进行ASL序列检查,结果发现大部分表现为灌注减低,与之前的报道一致[16, 18, 25, 26, 27],表明FS病灶主要来源可能位于颞区。YEOM等[19]研究结果表明,FS的局灶性发病比以前认为的更常见,并且支持了颞区可能是FS主要起源的假设,与本研究结果一致。ASL技术是一种新兴的磁共振灌注成像技术,可以在不使用静脉钆对比剂的情况下量化CBF。目前,已有较多研究证实了ASL成像能有效定位癫痫灶,如PASCA等[25]比较了42例MRI阴性癫痫患儿的EEG和ASL检查,发现33例(79%)患者表现出灌注异常,且主要表现低灌注(占所有ASL改变的74.5%)。另一项研究利用ASL技术定位癫痫发作区,发现71.4%(15/21例)的患者术后灌注减少,且灌注不足的位置部分或完全与假定的癫痫发作区位置一致[16]。GAJDOŠ等[28]的研究也提示ASL序列是可能有助于癫痫灶定位的生理参数之一,特别是在MRI阴性的癫痫患者中。据报道,在几乎一半的FS患者中,其CBF值通常是减少的,然而这些灌注异常通常是局灶性的[29]。总而言之,FS局灶性发作的ASL灌注变化是频繁的,这些变化最常发生在颞区。

3.2 ASL灌注改变与EEG的相关性

       有研究表明,FS患儿的脑电图异常发生率可能与发作类型相关,复杂性FS脑电图异常发生率明显高于单纯性[30]。李斌等[31]选取了50例复杂性FS患儿(观察组),并以同期住院的单纯性FS患儿为对照,发现观察组中EEG异常明显高于对照组(32例/14例)。然而,本研究未发现EEG正常患儿和异常患儿组之间ASL-CBF视觉评分的差异。PASCA等[25]的研究提示局灶性癫痫患者的ASL灌注改变与EEG一致性表现更明显,但差异无统计学意义,与本研究结果一致。

3.3 ASL灌注改变与FS发作到ASL的采集时间有关

       本研究还发现,FS持续状态表现为双侧灌注不对称减低,与单纯性FS患者ASL-CBF视觉评分差异有统计学意义,但与复杂性FS差异无统计学意义。有研究表明复杂FS可能在患有神经系统疾病的儿童中更常见[32],但本研究纳入的病例均未发现神经系统发育迟滞,可能与病例选择偏倚有关。研究显示,FS持续状态发生率在所有FS中不到5%,通常具有局灶性特征[32, 33]。本研究中4例FS持续状态患儿均表现为ASL-CBF灌注双侧不对称减低。与本研究不同的是,有报道称FS持续状态患者的ASL-CBF在发作时增加,而在间歇状态时减少,并且其与发作灶的位置相对应[34],因此我们认为ASL序列显示的灌注改变可能与FS发作到ASL采集时间有关[35]。一项对FS持续状态的大鼠幼崽模型的研究发现,FS持续状态能改变皮层和基底外侧杏仁核中的血管拓扑,影响ASL灌注变化[36]。有研究认为,从热性惊厥发作停止到MRI扫描的时间和低灌注的分布对于FS持续状态的确诊非常重要[37]。本研究中,单纯性FS、复杂性FS及FS持续状态三组之间从FS发作到ASL采集时间存在差异,可能是导致ASL灌注改变不同的原因。

3.4 局限性

       本研究具有以下局限性。首先,本研究样本量较小,大多数研究提示FS患者的ASL-CBF图像中低灌注比高灌注更常见,但本研究FS患者均表现为低灌注,未表现出高灌注,这可能与样本量相对较小有关。其次,本研究是一项回顾性研究,病例来源是单中心,可能存在一定的选择偏倚。ASL灌注异常与惊厥发作的相关性仍需通过前瞻性纵向设计进一步验证,未来可对病例进行纵向随访,整合急性期-恢复期ASL数据加以明确。

4 结论

       总之,本研究初步探索了MR ASL技术在FS局灶性评估中的价值,发现该技术在评估FS的局灶性问题方面具有显著优势,特别是在EEG正常和MR结构成像阴性的情况下。未来可在临床实践中进一步扩大ASL序列的应用场景,规范FS发作到ASL采集的时间,并对患儿进行纵向随访,更深入地挖掘MR ASL成像在儿童神经系统疾病诊治中的潜在价值。

[1]
中华医学会儿科学分会神经学组. 热性惊厥诊断治疗与管理专家共识(2017实用版)[J]. 中华实用儿科临床杂志, 2017, 32(18): 1379-1382. DOI: 10.3760/cma.j.issn.2095-428X.2017.18.005.
The Subspecialty Group of Neurology, the Society of Pediatrics, Chinese Medical Association. Experts Consensus of Diagnosis, Treatment and Management of Febrile Seizures (2017 Practical Version)[J]. Chin J Appl Clin Pediatr, 2017, 32(18): 1379-1382. DOI: 10.3760/cma.j.issn.2095-428X.2017.18.005.
[2]
WHITNEY R, SAMANTA D, SHARMA S, et al. Complex Febrile Seizures: Usual and the Unusual[J]. Indian J Pediatr, 2025, 92: 44-51. DOI: 10.1007/s12098-024-05301-z.
[3]
FERRETTI A, RIVA A, FABRIZIO A, et al. Best Practices for the Management of Febrile Seizures in Children[J/OL]. Ital J Pediatr, 2024, 50(1): 95 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/38735928/. DOI: 10.1186/s13052-024-01666-1.
[4]
CHOUDHARI P R, LOWDEN A, DOLCE A. Exploring the Age-Old Question: What Is the Predictive Value of Eeg for Future Epilepsy in Children with Complex Febrile Seizures?[J]. J Child Neurol, 2023, 38(5): 290-297. DOI: 10.1177/08830738231171799.
[5]
张喜凤, 杨延成, 杨丽昆, 等. 热性惊厥发作患儿3年内继发癫痫的影响因素分析[J]. 中国实用医刊, 2022, 49(4): 31-34. DOI: 10.3760/cma.j.cn115689-20211120-04170.
ZHANG X F, YANG Y C, YANG L K, et al. Influencing Factors of Secondary Epilepsy in Children with Febrile Convulsion within 3 Years[J]. Chin J Pract Med, 2022, 49(3): 31-34. DOI: 10.3760/cma.j.cn115689-20211120-04170.
[6]
WANG T, DONG H, LI K, et al. Trends and Hotspots of Stereoelectroencephalogram from 2002 to 2023: A Bibliometric Analysis[J/OL]. Front Neurol, 2024, 15: 1464657 [2024-12-31]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2024.1464657/full. DOI: 10.3389/fneur.2024.1464657.
[7]
中华医学会放射学分会质量管理与安全管理学组中华医学会放射学分会磁共振学组. 动脉自旋标记脑灌注MRI技术规范化应用专家共识[J]. 中华放射学杂志, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
Chinese Medical Association Chinese Society of Radiology Quality and Safety Group, Chinese Medical Association Chinese Society of Radiology MR Group. Recommended Clinical Application of Arterial Spin Labeling MRI: An Expert Consensus[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[8]
ÁLVAREZ M G M, MADHURANTHAKAM A J, UDAYAKUMAR D. Quantitative Non-Contrast Perfusion MRI in the Body Using Arterial Spin Labeling[J]. MAGMA, 2024, 37(4): 681-695. DOI: 10.1007/s10334-024-01188-1.
[9]
李冬雪, 范晓媛, 韩华璐, 等. 5.0T全脑准连续动脉自旋标记MRI参数优化[J]. 中国医学影像技术, 2024, 40(5): 643-647. DOI: 10.13929/j.issn.1003-3289.2024.05.002.
LI D X, FAN X Y, HAN H L, et al. Optimization for Parameters of 5.0t Pseudo Continuous Arterial Spinlabeling MRI of Whole Brain[J]. Chin J Med Imaging Technol, 2024, 40(5): 643-647. DOI: 10.13929/j.issn.1003-3289.2024.05.002.
[10]
TASO M, ALSOP D C. Arterial Spin Labeling Perfusion Imaging[J]. Magnetic Resonance Imaging Clinics, 2024, 32(1): 63-72. DOI: 10.1016/j.mric.2023.08.005.
[11]
ZHANG X Y, ZHANG H, BAO Q N, et al. Diagnostic Value of Arterial Spin Labeling for Alzheimer's Disease: A Systematic Review and Meta-Analysis[J/OL]. PLoS One, 2024, 19(11): e0311016 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/39570963/. DOI: 10.1371/journal.pone.0311016.
[12]
JAAFAR N, ALSOP D C. Arterial Spin Labeling: Key Concepts and Progress Towards Use as a Clinical Tool[J]. Magn Reson Med Sci, 2024, 23(3): 352-366. DOI: 10.2463/mrms.rev.2024-0013.
[13]
HANAPI N A, HALIM S A, AB RAZAK A, et al. Roles of Arterial Spin Labelling in Cognitive Impairment: Case Series[J]. Radiol Case Rep, 2024, 19(11): 4736-4740. DOI: 10.1016/j.radcr.2024.07.087.
[14]
OKAZAKI A, YAMASAKI T, KATAOKA E, et al. Clinical Benefits of Arterial Spin-Labeling Magnetic Resonance Imaging for Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Presenting with Lymphomatosis Cerebri: A Case Report[J/OL]. Cureus, 2024, 16(8): e67577 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/39310434/. DOI: 10.7759/cureus.67577.
[15]
CLEMENT P, PETR J, DIJSSELHOF M B, et al. A Beginner's Guide to Arterial Spin Labeling (Asl) Image Processing[J/OL]. Front Radiol, 2022, 2: 929533 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/37492666/. DOI: 10.3389/fradi.2022.929533.
[16]
GAXIOLA-VALDEZ I, SINGH S, PERERA T, et al. Seizure Onset Zone Localization Using Postictal Hypoperfusion Detected by Arterial Spin Labelling MRI[J]. Brain, 2017, 140(11): 2895-2911. DOI: 10.1093/brain/awx241.
[17]
RAHIMZADEH H, KAMKAR H, GHAFARIAN P, et al. Exploring Asl Perfusion MRI as a Substitutive Modality for 18f-Fdg Pet in Determining the Laterality of Mesial Temporal Lobe Epilepsy[J]. Neurol Sci, 2024, 45(5): 2223-2243. DOI: 10.1007/s10072-023-07188-8.
[18]
NGO A, ROYER J, RODRIGUEZ-CRUCES R, et al. Associations of Cerebral Blood Flow Patterns with Gray and White Matter Structure in Patients with Temporal Lobe Epilepsy[J/OL]. Neurology, 2024, 103(3): e209528 [2024-12-31]. https://www.neurology.org/doi/10.1212/WNL.0000000000209528. DOI: 10.1212/wnl.0000000000209528.
[19]
YEOM J S, KIM Y S, CHOI D S. Focality in Febrile Seizures: A Retrospective Assessment Using Arterial Spin Labeling MRI[J]. Neuropediatrics, 2023, 54(3): 197-205. DOI: 10.1055/s-0043-1761922.
[20]
XU L, WARE J B, KIM J J, et al. Arterial Spin Labeling Reveals Elevated Cerebral Blood Flow with Distinct Clusters of Hypo- and Hyperperfusion after Traumatic Brain Injury[J]. Neurotrauma, 2021, 38(18): 2538-2548. DOI: 10.1089/neu.2020.7553.
[21]
WU C, WANG Q, LI W, et al. Research Progress on Pathogenesis and Treatment of Febrile Seizures[J/OL]. Life Sci, 2024, 362: 123360 [2024-12-31]. https://www.sciencedirect.com/science/article/abs/pii/S0024320524009500. DOI: 10.1016/j.lfs.2024.123360.
[22]
ZHANG J, JING Q, LI S, et al. Risk Factors for Secondary Epilepsy Following Febrile Seizures in Children: A Meta-Analysis[J/OL]. Epilepsy Behav, 2024, 161: 110051. [2024-12-31]. https://www.sciencedirect.com/science/article/pii/S1525505024004335. DOI: 10.1016/j.yebeh.2024.110051.
[23]
李清峰, 刘欢, 董改琴. 儿童热性惊厥日后癫痫发作的危险因素及列线图预测模型构建[J]. 中华全科医学, 2024, 22(1): 86-88, 153. DOI: 10.16766/j.cnki.issn.1674-4152.003337.
LI Q F, LIU H, DONG G Q. Risk Factors for Epileptic Seizures after Febrile Seizures in Children and Construction of a Nomogram Prediction Model[J]. Chin J Gen Pract, 2024, 22(1): 86-88, 153. DOI: 10.16766/j.cnki.issn.1674-4152.003337.
[24]
冯燕玲. 热性惊厥儿童额颞叶区脑电图异常与疾病特征及预后的关系[J]. 中国实用医刊, 2024, 51(18): 48-51. DOI: 10.3760/cma.j.cn115689-20240419-01050.
FENG Y L. Correlations of Electroencephalogram Abnormalities in the Frontotemporal Region with Clinical Characteristics and Prognosis of Febrile Convulsions in Children[J]. Chin J Pract Med, 2024, 51(18): 48-51. DOI: 10.3760/cma.j.cn115689-20240419-01050.
[25]
PASCA L, SANVITO F, BALLANTE E, et al. Arterial Spin Labelling Qualitative Assessment in Paediatric Patients with MRI-Negative Epilepsy[J/OL]. Clin Radiol, 2021, 76(12): 942.e15-942.e23. [2024-12-31]. https://europepmc.org/article/MED/34645570. DOI: 10.1016/j.crad.2021.09.016.
[26]
FARRELL J S, COLANGELI R, WOLFF M D, et al. Postictal Hypoperfusion/Hypoxia Provides the Foundation for a Unified Theory of Seizure‐Induced Brain Abnormalities and Behavioral Dysfunction[J]. Epilepsia, 2017, 58(9): 1493-1501. DOI: 10.1111/epi.13827.
[27]
RENTZEPERIS F, ABDENNADHER M, SNYDER K, et al. Lateralization of Interictal Temporal Lobe Hypoperfusion in Lesional and Non-Lesional Temporal Lobe Epilepsy Using Arterial Spin Labeling MRI[J/OL]. Epilepsy Res, 2023, 193: 107163 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/37187039/. DOI: 10.1016/j.eplepsyres.2023.107163.
[28]
GAJDOŠ M, ŘíHA P, KOJAN M, et al. Epileptogenic Zone Detection in MRI Negative Epilepsy Using Adaptive Thresholding of Arterial Spin Labeling Data[J/OL]. Sci Rep, 2021, 11(1): 10904 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/34035336/. DOI: 10.1038/s41598-021-89774-4.
[29]
KUYA K, FUJII S, MIYOSHI F, et al. A Case of Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion: Utility of Arterial Spin Labeling Sequence[J]. Brain Dev, 2017, 39(1): 84-88. DOI: 10.1016/j.braindev.2016.07.003.
[30]
CHAIRUNNISA A, GUNAWAN P I, SUHARJANTI I. Pattern of Electroencephalography in Recurrent Febrile Seizure Patient[J]. Health Notions, 2019, 3(12): 471-474. DOI: 10.33846/hn31203.
[31]
李斌, 周辉. 复杂性热性惊厥儿童视频脑电图及头颅神经影像学特点分析[J]. 南通大学学报(医学版), 2020, 40(3): 245-247. DOI: 10.16424/j.cnki.cn32-1807/r.2020.03.013.
LI B, ZHOU H. Analysis of Video Electroencephalogram and Cranial Neuroimaging Characteristicsin Children with Complex Febrileseizures[J]. J Nantong Univ(Med Sci), 2020, 40(3): 245-247. DOI: 10.16424/j.cnki.cn32-1807/r.2020.03.013.
[32]
PAVLIDOU E, HAGEL C, PANTELIADIS C. Febrile Seizures: Recent Developments and Unanswered Questions[J]. Childs Nerv Syst, 2013, 29(11): 2011-2017. DOI: 10.1007/s00381-013-2224-3.
[33]
KAVANAGH F A, HEATON P A, CANNON A, et al. Recognition and Management of Febrile Convulsions in Children[J]. Br J Nurs, 2018, 27(20): 1156-1162. DOI: 10.12968/bjon.2018.27.20.1156.
[34]
TELISCHAK N A, DETRE J A, ZAHARCHUK G. Arterial Spin Labeling MRI: Clinical Applications in the Brain[J]. J Magn Reson Imaging, 2015, 41(5): 1165-1180. DOI: 10.1002/jmri.24751.
[35]
POTTKÄMPER J C, VERDIJK J P, AALBREGT E, et al. Changes in Postictal Cerebral Perfusion Are Related to the Duration of Electroconvulsive Therapy‐Induced Seizures[J]. Epilepsia, 2024, 65(1): 177-189. DOI: 10.1111/epi.17831.
[36]
SALEHI A, SALARI S, JULLIENNE A, et al. Vascular Topology and Blood Flow Are Acutely Impacted by Experimental Febrile Status Epilepticus[J]. J Cereb Blood Flow Metab, 2023, 43(1): 84-98. DOI: 10.1177/0271678x221117625.
[37]
UETANI H, KITAJIMA M, SUGAHARA T, et al. Perfusion Abnormality on Three-Dimensional Arterial Spin Labeling in Patients with Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion[J/OL]. J Neurol Sci, 2020, 408: 116558 [2024-12-31]. https://pubmed.ncbi.nlm.nih.gov/31715327/. DOI: 10.1016/j.jns.2019.116558.

上一篇 首发单侧基底节卒中后抑郁与非抑郁患者局部一致性和低频振幅的差异研究
下一篇 全面发育迟缓儿童脑灌注异常的三维准连续动脉自旋标记成像研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2