分享:
分享到微信朋友圈
X
临床研究
基于多模态MRI的影像组学模型对自身免疫性与单纯疱疹病毒性脑炎的鉴别诊断研究
刘焕 戴健 刘先平 李郁欣 吴昊 耿道颖

Cite this article as: LIU H, DAI J, LIU X P, et al. Differential diagnosis of autoimmune encephalitis and herpes simplex virus encephalitis using radiomics models based on multimodal MRI .[J]. Chin J Magn Reson Imaging, 2025, 16(5): 127-135.本文引用格式:刘焕, 戴健, 刘先平, 等. 基于多模态MRI的影像组学模型对自身免疫性与单纯疱疹病毒性脑炎的鉴别诊断研究[J]. 磁共振成像, 2025, 16(5): 127-135. DOI:10.12015/issn.1674-8034.2025.05.020.


[摘要] 目的 探讨基于多模态MRI的影像组学模型对自身免疫性脑炎(autoimmune encephalitis, AE)与单纯疱疹病毒性脑炎(herpes simplex virus encephalitis, HSE)的鉴别诊断价值。材料与方法 回顾性收集2013年1月至2024年7月期间复旦大学附属华山医院经脑脊液或血液学检查确诊的急性和亚急性期AE与HSE。将AE和HSE患者按照8∶2的比例随机分为训练集和独立测试集。收集患者的T2液体衰减反转恢复(T2 fluid-attenuated inversion recovery, T2-FLAIR)序列、T1加权成像(T1 weighted imaging, T1WI)、扩散加权成像(diffusion weighted imaging, DWI)资料。手动勾画T2-FLAIR高信号感兴趣区(region of interest, ROI)。应用Pyradiomics提取影像组学特征,最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)算法和相关性分析筛选特征。应用随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和K近邻(K-nearest neighbor, KNN)分类器构建模型,使用五折交叉验证优化模型参数。在独立测试集中验证模型的诊断效能。绘制模型受试者工作特征(receiver operating characteristic, ROC)曲线,计算曲线下面积(area under the curve, AUC)、敏感度、特异度及准确率以评估模型的诊断效能。结果 共纳入117例AE和110例HSE患者。从训练集的182个患者中共提取出810个病灶,测试集的45个患者共提取出215个病灶。经数据降维,多模态和T2-FLAIR、DWI、T1WI分别保留了22、10、15和12个特征。多模态、T2-FLAIR、DWI和T1WI的RF模型训练集AUC值分别为0.884、0.841、0.775和0.799,测试集AUC值分别为0.805、0.809、0.696和0.737,测试集准确率分别为74.9%、73.5%、67.0%和67.4%;SVM模型的训练集AUC值分别为0.831、0.820、0.780和 0.816,测试集AUC值分别为0.792、0.807、0.696 和0.728,测试集准确率分别为74.9%、76.7%、68.8%和68.8%;KNN模型的训练集AUC值分别为0.850、0.806、0.760和 0.766,测试集AUC值分别为0.805、0.809、0.712和0.734,测试集准确率分别为74.0%、73.0%、67.9%和71.2%;测试集中基于多模态和T2-FLAIR的RF、SVM和KNN模型诊断效能较好,AUC值均高于基于DWI的模型,差异具有统计学意义(P<0.05)。测试集中各模态RF、SVM和KNN模型的AUC值无明显差异。结论 基于多模态MRI和T2-FLAIR的影像组学RF、SVM和KNN模型对AE与HSE具有较高的鉴别诊断效能,可辅助临床医生进行无创性诊断,有助于临床决策的及早制订。
[Abstract] Objective To investigate the diagnostic value of radiomics models based on multimodal MRI in differentiating autoimmune encephalitis (AE) from herpes simplex virus encephalitis (HSE).Materials and Methods A retrospective collection was conducted for patients with acute or subacute autoimmune encephalitis (AE) and herpes simplex encephaliti (HSE) confirmed by cerebrospinal fluid or serological tests at Huashan Hospital Affiliated to Fudan University between January 2013 and July 2024. Patients were randomly divided into training and independent test sets at a ratio of 8∶2. T2-fluid attenuated inversion recovery (T2-FLAIR), T1-weighted imaging (T1WI), and diffusion weighted imaging (DWI) data were collected. All T2-FLAIR hyperintense lesions were manually delineated. Pyradiomics was employed to extract radiomic features, followed by feature selection using the least absolute shrinkage and selection operator (LASSO) algorithm and correlation analysis. The random forest (RF), support vector machine (SVM) and K-nearest neighbor (KNN) models were established; the model parameters were optimized via five-fold cross-validation, and the models were validated on the independent test set. Diagnostic performance was evaluated by AUC, sensitivity, specificity, and accuracy of ROC curves.Results The study totally included 117 AE cases and 110 HSE cases. There were 182 patients including 810 lesions in the training set and 45 patients including 215 lesions in the test set, there were respectively 22, 10, 15, and 12 features being selected for the multimodal, T2-FLAIR, DWI, and T1WI models. The AUCs of RF models based on multimodal, T2-FLAIR, DWI, and T1WI were 0.884, 0.841, 0.775, and 0.799 respectively in the training set. The corresponding AUCs were 0.805, 0.809, 0.696, and 0.737 in the test set, with accuracies of 74.9%, 73.5%, 67.0%, and 67.4% respectively. The AUCs of SVM models based on multimodal, T2-FLAIR, DWI, and T1WI were 0.831, 0.820, 0.780 and 0.816 respectively in the training set. The corresponding AUCs were 0.792, 0.807, 0.696 and 0.728 in the test set, with accuracies of 74.9%, 76.7%, 68.8% and 68.8% respectively. The AUCs of KNN models based on multimodal, T2-FLAIR, DWI, and T1WI were 0.850, 0.806, 0.760 and 0.766 respectively in the training set. The corresponding AUCs were 0.805, 0.809, 0.712 and 0.734 in the test set, with accuracies of 74.0%, 73.0%, 67.9% and 71.2% respectively. The multimodal and T2-FLAIR-based RF, SVM and KNN models exhibited significantly higher AUCs than the DWI-based model (P < 0.05). There were no significant differences in the AUC values of the RF, SVM, and KNN models based on different MRI modalities in the test set.Conclusions The radiomics RF, SVM and KNN models based on multimodal MRI and T2-FLAIR sequence achieved a high diagnostic performance in distinguishing AE from HSE, assistting clinicians making diagnoses in a non-invasive method and helpful for the early formulation of clinical decisions.
[关键词] 自身免疫性脑炎;单纯疱疹病毒性脑炎;多模态磁共振成像;影像组学
[Keywords] autoimmune encephalitis;herpes simplex virus encephalitis;multimodal magnetic resonance imaging;radiomics

刘焕 1   戴健 2   刘先平 3   李郁欣 3   吴昊 4*   耿道颖 3*  

1 复旦大学上海市重大传染病和生物安全研究院,上海 200030

2 复旦大学工程与应用技术研究院,上海 200082

3 复旦大学附属华山医院放射科,上海 200040

4 复旦大学附属华山医院皮肤科,上海 200040

通信作者:耿道颖,E-mail: daoyinggeng@fudan.edu.cn 吴昊,E-mail: seaseewh@163.com

作者贡献声明:耿道颖、吴昊设计本研究的方案,对稿件重要内容进行了修改;刘焕、戴健起草和撰写稿件,获取、分析和解释本研究的数据;刘先平、李郁欣获取、分析或解释本研究的数据,对稿件重要内容进行了修改;耿道颖获得了国家自然科学基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82372048
收稿日期:2025-03-12
接受日期:2025-05-10
中图分类号:R445.2  R512.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.020
本文引用格式:刘焕, 戴健, 刘先平, 等. 基于多模态MRI的影像组学模型对自身免疫性与单纯疱疹病毒性脑炎的鉴别诊断研究[J]. 磁共振成像, 2025, 16(5): 127-135. DOI:10.12015/issn.1674-8034.2025.05.020.

0 引言

       自身免疫性脑炎(autoimmune encephalitis, AE)抗体种类多样,最常见的类型为抗N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDAR)抗体脑炎,约占所有AE病例的54%~80%[1],其次为抗富亮氨酸胶质瘤灭活蛋白1(leucine-rich glioma inactivated 1, LG1)和抗γ-氨基丁酸受体(gamma-aminobutyric acid receptor, GABAR)抗体脑炎。单纯疱疹病毒性脑炎(herpes simplex virus encephalitis, HSE)是最常见的病毒性脑炎(viral encephalitis, VE),约占所有VE的50%~75%,其中超过90%的HSE为单纯疱疹病毒1型(herpes simplex virus type 1, HSV-1)感染[2, 3]。脑炎多发生于年轻患者,进展迅速,部分患者症状严重,研究显示28%~75%的AE[4, 5, 6]、50%[7]的VE患者需接受重症监护治疗,这为患者带来了极大的经济负担[8]

       VE与AE的病理机制不同。VE可能的病理机制为病毒通过血脑屏障感染中枢神经系统,释放细胞因子引起的细胞毒性直接介导细胞坏死或通过间接免疫反应性炎症造成细胞损伤[9],脑组织坏死及炎症引起的血管周围淋巴细胞浸润进一步加重了血脑屏障的破坏[10]。AE主要由自身免疫性抗体作用于细胞内、外抗原引起神经元功能障碍,包括病毒感染后、副肿瘤性和特发性AE[11, 12, 13]。因此两者的治疗方法存在明显差异[14]

       脑脊液抗体或病毒检测是AE与VE诊断的金标准。但严重脑水肿患者,腰椎穿刺可能诱发脑疝,且腰椎穿刺的有创性限制了其临床应用[15]。临床症状、影像表现可提供一定的鉴别诊断信息,但部分患者存在明显重叠[6, 16],且临床病史由患者及家属主观描述,常获得不全,可靠性差。影像组学从训练集大量数据中提取图像一阶、形状、纹理及变换后的特征,分析与疾病状态的关系,具有一定的可解释性[17, 18, 19]。在神经放射学中,影像组学广泛用于颅内肿瘤分类、胶质瘤分级与分子分型及生存预测的研究中[20, 21, 22];但目前尚无研究将影像组学用于AE与HSE的鉴别诊断。因此,本研究旨在探讨基于多模态MRI的影像组学模型对AE与HSE的鉴别诊断价值。实现对AE与HSE患者的无创性精准诊断,为患者的早期诊疗方案制订提供依据,改善患者预后。

1 材料与方法

1.1 研究对象

       本研究回顾性收集2013年1月至2024年7月期间复旦大学附属华山医院经脑脊液或血液学检查发现HSV或脑炎相关抗体的脑炎患者资料。纳入标准:(1)急性或亚急性发病(症状出现时间<3个月);(2)脑脊液或血液PCR分析发现HSV,抗体检测AE相关性抗体阳性;(3)入院颅脑MRI检查至少包括T1加权成像(T1-weighted imaging, T1WI)、T2液体衰减反转恢复(T2 fluid attenuated inversion recovery, T2-FLAIR)和扩散加权成像(diffusion weighted imaging, DWI)序列。排除标准:(1)非第一次因脑炎住院的重复患者;(2)入院MRI检查图像质量差,可能影响感兴趣区(region of interest, ROI)勾画及后续特征提取;(3)同时合并细菌、真菌或其他病原微生物导致的颅内感染。将纳入患者按照8∶2比例随机分为训练集和独立测试集。本研究遵守《赫尔辛基宣言》,经复旦大学附属华山医院伦理委员会批准,通过远程告知获得了参与者知情同意,批准文号:(2025)临审第(761)号。

1.2 设备与方法

       所有患者采用配备有8通道头颈线圈的美国GE Signa HDxT 3 T、美国GE Discovery MR750W 3 T和德国Siemens Magnetom Verio 3 T MRI设备沿前连合-后连合连线进行扫描。所有患者扫描序列至少包括轴位T1WI、T2-FLAIR和DWI序列。各MRI机器扫描参数见表1

表1  头颅MRI扫描参数
Tab. 1  Cranial MRI Scanning Parameters.

1.3 颅脑MR图像预处理

       为方便后续图像处理、研究,所有纳入患者的头颅MR原始图像数据均从复旦大学附属华山医院放射科PACS系统以DICOM格式导出,并转换为NIFTI格式。由于本研究MR图像来源于不同厂家MRI机器,病灶勾画前对所有MR图像进行N4偏置场校正;特征提取前进行信号强度Z-score标准化处理及图像重采样,以消除由于MRI机型或序列参数不同对特征提取造成的影响。此外,使用高级归一化工具(advanced normalization tools, ANTs)(https://github.com/ANTsX)将T1WI和DWI序列配准至T2-FLAIR序列。

1.4 建立并评估影像组学模型

       影像组学分析流程包括病灶分割、特征提取、特征选择、模型构建与评价(图1)。

1.4.1 病灶勾画

       应用ITK-SNAP软件(version 4.0, open source,http://www.itksnap.org)在T2-FLAIR轴向视图中逐层手动勾画T2-FLAIR高信号病变ROI。每一层均将ROI边缘相对病灶边缘内移1~2 mm以减少部分容积效应的影响。先由一位具有5年神经放射工作经验的住院医师(医师1)完成所有患者勾画;然后随机选取50例患者,由另一位具有12年神经放射工作经验的主治医师(医师2)再次勾画;间隔1月后由医师1再次勾画随机选取的50例患者。采用组内相关系数(intra-class correlation coefficient, ICC)评估观察者内及观察者间的一致性。所有参与勾画的医师对患者临床信息与最终诊断分类均不知晓。代表性病例ROI勾画见图2

图2  代表性病例ROI勾画。2A~2C:男,48岁,因头晕伴精神行为异常2个月入院,诊断为抗LGI1抗体相关AE,2A为T2-FLAIR原始图像,2B为T2-FLAIR最大异常区ROI勾画,2C为提取的ROI;2D~2F:男,26岁,因头痛、发热伴意识改变7天入院,诊断为HSE,2D为T2-FLAIR原始图像,2E为T2-FLAIR最大异常区ROI勾画,2F为提取的ROI。红色代表T2-FLAIR病变高信号感兴趣区。ROI:感兴趣区;LGI1:富亮氨酸胶质瘤失活蛋白1;AE:自身免疫性脑炎;T2-FLAIR:T2-液体衰减反转恢复;HSE:单纯疱疹病毒性脑炎。
Fig. 2  Representative ROI delineation. 2A-2C: A 48-year-old male patient is admitted to the hospital due to dizziness accompanied by abnormal mental behavior for 2 months and diagnosed with LGI1 antibody-associated AE. 2A is the original T2-FLAIR image, 2B is the ROI delineation of the maximum abnormal area on T2-FLAIR, and 2C is the extracted ROI. 2D-2F: A 26-year-old male patient is admitted to the hospital due to headache and fever accompanied by the change of consciousness for 7 days and diagnosed with HSE. 2D is the original T2-FLAIR image, 2E is the ROI delineation of the maximum abnormal area on T2-FLAIR, and 2F is the extracted ROI. Red represents the region of interest with high signal intensity on T2-FLAIR. ROI: region of interest; LGI1: leucine-rich glioma inactivated 1 protein; AE: autoimmune encephalitis; T2-FLAIR: T2-fluid attenuated inversion recovery; HSE: herpes simplex encephalitis.

1.4.2 影像组学特征提取

       应用Python(V3.12.7,https://www.python.org/)软件中连通阈分析识别每例患者所有不连续的病灶,排除最大径小于3 mm的病灶。应用Python软件中的Pyradiomics程序包(V3.1.0, https://pyradiomics.readthedocs.io/en/v3.1.0/)进行特征提取,从T2-FLAIR、DWI、T1WI三个序列分别提取出9类共1052个特征。包括18个形状特征、19个一阶特征、24个灰度共生矩阵(gray level cooccurrence matrix, GLCM)、14个灰度依赖矩阵(gray level dependence matrix, GLDM)、16个灰度游程矩阵(gray level run length matrix, GLRLM)、16个灰度尺寸区域矩阵(gray level size zonematrix, GLSZM)、5个相邻灰度差分矩阵(neighboring gray tone difference matrix, NGTDM)、188个拉普拉斯高斯滤波特征和752个小波特征。

1.4.3 影像组学特征选择与模型构建

       特征降维应用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)算法十折交叉验证法,选取最小均方误差对应的λ作为最优调整参数,根据最优λ分别从AE与HSE患者各序列提取的1052个影像组学特征及所有序列的3156个影像组学特征中筛选出观察者内与观察者间ICC>0.8且LASSO回归系数不为零的特征。然后将系数不为零的特征进行特征之间的相关性分析,排除相关性较大的特征对中LASSO回归系数值较小者。剩余特征分别用于随机森林(random forest, RF)、支持向量机(support vector machine, SVM)、K近邻(K-nearest neighbor, KNN)分类器构建模型。将训练集数据进行五折交叉验证,获得模型最佳参数,用于所有训练集数据训练模型,随后应用独立测试集数据测试模型性能。

图1  影像组学分析流程图。GLCM:灰度共生矩阵;GLRLM:灰度游程矩阵;GLSZM:灰度尺寸区域矩阵;NGTDM:相邻灰度差分矩阵;GLDM:灰度依赖矩阵。
Fig. 1  Flow chart of radiomics analysis. GLCM: gray level cooccurrence matrix; GLRLM: gray level run length matrix; GLSZM: gray level size zonematrix; NGTDM: neighboring gray tone difference matrix; GLDM: gray level dependence matrix.

1.5 统计学分析

       本研究中所用影像组学模型构建与统计学分析均采用Python软件进行。训练集与测试集之间的人口学特征中,计量资料根据数据分布类型采用t检验或Mann-Whitney U检验,计数资料采用卡方检验。特征降维采用LASSO十折交叉验证法。采用Spearman相关性系数评估特征之间的相关性,相关性系数绝对值超过0.8认为相关性较大。绘制模型的受试者工作特征(receiver operating characteristic, ROC)曲线,计算曲线下面积(area under the curve, AUC),应用AUC、敏感度、特异度及准确率评估模型的诊断效能。采用DeLong检验比较不同影像组学模型AUC值的差异。P<0.05定义为差异有统计学意义。

2 结果

2.1 一般资料

       本研究共纳入227例脑炎患者,AE患者117例,HSE患者110例,30%(33/110)的HSE患者后期出现AE相关性抗体。训练集中有182例患者包括88例HSE和94例AE,测试集中有45例患者包括22例HSE和23例AE。训练集与测试集患者在性别、年龄,脑炎类型占比上差异无统计学意义(P>0.05),如表2所示。

表2  训练集与测试集的人口学特征
Tab. 2  Demographic characteristics of the training set and the test set

2.2 影像组学特征

       训练集的182例患者中共提取出810个病灶,测试集的45例患者中共提取出215个病灶。经LASSO降维,从多模态的3156个特征和T2-FLAIR、DWI、T1WI各单模态的1052个特征中分别筛选出25,11,15和13个系数不为0的特征。图3展示了多模态数据集LASSO特征筛选的交叉验证曲线和系数路径图。经特征间的相关性分析排除相关性大于0.8的特征对中LASSO系数较小者,多模态影像组学数据和T2-FLAIR、DWI、T1WI各单模态影像组学数据分别剩余22,10,15和12个特征。图4展示了纳入模型的特征重要性图。

图4  纳入模型的特征重要性图。4A:多模态模型;4B:T2-FLAIR模型;4C:DWI模型;4D:T1WI模型。T2-FLAIR:T2-液体衰减反转恢复;DWI:扩散加权成像。
Fig. 4  Feature importance diagram in the models. 4A: Mmultimodal model; 4B: T2-FLAIR model; 4C: DWI model; 4D: T1WI model. T2-FLAIR: T2-fluid attenuated inversion recovery; DWI: diffusion weighted imaging.
图3  多模态数据集LASSO影像组学特征选择过程。3A:交叉验证曲线;3B:系数路径图。LASSO:最小绝对收缩和选择算子。
Fig. 3  The radiomics feature selection process using LASSO in the multimodal dataset. 3A: Cross-validation curve; 3B: Coefficient path diagram. LASSO: least absolute shrinkage and selection operator.

2.3 影像组学模型表现

2.3.1 RF模型表现

       基于多模态、T2-FLAIR、DWI和T1WI的RF模型训练集AUC值分别为0.884、0.841、0.775和0.799,准确率分别为79.8%、75.3%、69.9%和72.0%。基于多模态、T2-FLAIR、DWI和T1WI的RF模型测试集AUC值分别为0.805、0.809、0.696和0.737,准确率分别为74.9%、73.5%、67.0%和67.4%,具体见表3图5A5B。在测试集中,多模态与T2-FLAIR模型AUC值相近,均明显高于DWI模型(P<0.05);多模态和T2-FLAIR模型与T1WI模型AUC值差异无统计学意义;T1WI模型与DWI模型AUC值差异无统计学意义(图5C)。

表3  不同影像组学模型诊断性能
Tab. 3  Diagnostic performance of different radiomics models

2.3.2 SVM模型表现

       基于多模态、T2-FLAIR、DWI和T1WI的SVM模型训练集AUC值分别为0.831、0.820、0.780和0.816,准确率分别为77.0%、74.1%、71.7%和73.5%。基于多模态、T2-FLAIR、DWI和T1WI的SVM模型测试集AUC值分别为0.792、0.807、0.696和0.728,准确率分别为74.9%、76.7%、68.8%和68.8%,具体见表3图5D5E。在测试集中,多模态与T2-FLAIR模型AUC值相近,均明显高于DWI模型(P<0.05);多模态和T2-FLAIR模型与T1WI模型AUC值差异无统计学意义;T1WI模型与DWI模型AUC值差异无统计学意义(图5F)。

图5  不同模型分类结果。5A:不同模态RF模型训练集ROC曲线;5B:不同模态RF模型测试集ROC曲线;5D:不同模态SVM模型训练集ROC曲线;5E:不同模态SVM模型测试集ROC曲线;5G:不同模态KNN模型训练集ROC曲线;5H:不同模态KNN模型测试集ROC曲线。5C、5F、5I分别为不同模态RF、SVM、KNN模型测试集AUC值比较的DeLong检验热图,结果均为多模态、T2-FLAIR模型AUC值明显高于DWI模型,其余两两比较差异均不具有统计学意义。RF:随机森林;SVM:支持向量机;KNN:K近邻;ROC:受试者工作特征;AUC:曲线下面积;T2-FLAIR:T2-液体衰减反转恢复;DWI:扩散加权成像。
Fig. 5  Classification results of different models. 5A: ROC curves of different modality RF models in the training set; 5B: ROC curves of different modality RF models in the test set; 5D: ROC curves of different modality SVM models in the training set; 5E: ROC curves of different modality SVM models in the test set; 5G: ROC curves of different modality KNN models in the training set. 5H: ROC curves of different modality KNN models in the test set. 5C, 5F, and 5I: Heatmaps of DeLong's test for pairwise comparing the AUC values of RF, SVM, and KNN models among different modalities in the test set. The results show that the AUC values of the multimodal and T2-FLAIR models are significantly higher than those of the DWI model, while no statistical differences are found in the pairwise comparisons among the rest. RF: random forest; SVM: support vector machine; KNN: K-nearest neighbor; ROC: receiver operating characteristic; AUC: area under the curve; T2-FLAIR: T2-fluid attenuated inversion recovery; DWI: diffusion weighted imaging.

2.3.3 KNN模型表现

       基于多模态、T2-FLAIR、DWI和T1WI的KNN模型训练集AUC值分别为0.850、0.806、0.760和0.766,准确率分别为77.0%、72.6%、70.5%和70.9%。基于多模态、T2-FLAIR、DWI和T1WI的KNN模型测试集AUC值分别为0.805、0.809、0.712和0.734,准确率分别为74.0%、73.0%、67.9%和71.2%,具体见表3图5G5H。在测试集中,同样为多模态与T2-FLAIR模型AUC值相近,均高于DWI模型(P<0.05);多模态和T2-FLAIR模型AUC值高于T1WI模型,但差异无统计学意义;T1WI模型与DWI模型AUC值差异无统计学意义(图5I)。

图7  RF、SVM、KNN模型在测试集表现最佳的混淆矩阵。7A:基于多模态的RF模型;7B:基于T2-FLAIR的SVM模型;7C:基于多模态的KNN模型。RF:随机森林;SVM:支持向量机;KNN:K近邻;T2-FLAIR:T2-液体衰减反转恢复。
Fig. 7  Confusion matrices of the best RF, SVM, and KNN models in the test set. 7A: RF model based on multimodality; 7B: SVM model based on T2-FLAIR; 7C: KNN model based on multimodality. RF: random forest; SVM: support vector machine; KNN: K-nearest neighbor; T2-FLAIR: T2-fluid attenuated inversion recovery.

2.3.4 各模态中RF、SVM、KNN模型比较

       基于多模态、T2-FLAIR、DWI和T1WI的RF、SVM、KNN模型在测试集的诊断效能相似,AUC值两两之间差异均无统计学意义,DeLong检验结果见图6图7展示了RF、SVM、KNN分类器在测试集诊断最优模型的混淆矩阵。典型病例展示见图8

图6  不同模态RF、SVM、KNN模型测试集AUC值比较的DeLong检验热图。6A:多模态模型;6B:T2-FLAIR模型;6C:DWI模型;6D:T1WI模型。不同模态RF、SVM、KNN模型的AUC值差异无统计学意义。RF:随机森林;SVM:支持向量机;KNN:K近邻;AUC:曲线下面积;T2-FLAIR:T2-液体衰减反转恢复;DWI:扩散加权成像。
Fig. 6  Heatmap of DeLong's test for comparing AUC values of RF, SVM, and KNN models based on different modalities in the test set. 6A: Multimodal models; 6B: T2-FLAIR models; 6C: DWI models; 6D: T1WI models. There are no significant differences in the AUC values of RF, SVM, and KNN models based on different modalities. RF: random forest; SVM: support vector machine; KNN: K-nearest neighbor; AUC: area under the curve; T2-FLAIR: T2-fluid attenuated inversion recovery; DWI: diffusion weighted imaging.
图8  典型病例。8A~8D:男,67岁,血清及脑脊液抗LG1抗体阳性;8A~8B显示T2-FLAIR上双侧海马、杏仁核高信号;8C~8D显示DWI无弥散受限。多模态影像组学模型将两个病灶均准确分类为AE。8E~8H:男,30岁,脑脊液PCR检测发现HSV-1;8E~8F显示,与AE表现类似,T2-FLAIR上累及双侧海马、杏仁核,左侧颞叶皮层水肿不明显;8G~8H显示DWI无弥散受限。多模态影像组学模型将每个病灶均正确分类为HSE。LGI1:富亮氨酸胶质瘤失活蛋白1;T2-FLAIR:T2-液体衰减反转恢复;DWI:扩散加权成像;AE:自身免疫性脑炎;PCR:聚合酶链式反应;HSV-1:单纯疱疹病毒1型;HSE:单纯疱疹病毒性脑炎。
Fig. 8  Typical cases. 8A-8D: A 67-year-old male with serum and CSF positivity of anti-LG1 antibodies. 8A-8B: T2-FLAIR sequences show bilateral hyperintense signals in the hippocampus and amygdala. 8C-8D: No restricted diffusion is observed on DWI. The multimodal radiomics models accurately classified both lesions as autoimmune encephalitis (AE). 8E-8H: A 30-year-old male with HSV-1 detected in CSF by PCR. 8E-8F: T2-FLAIR sequences reveal bilateral involvement of the hippocampus and amygdala, and minimal cortical edema in the left temporal lobe, mimicking AE. 8G-8H: No restricted diffusion is observed on DWI. The multimodal radiomics models correctly classified all lesions as HSE. LGI1: leucine-rich glioma inactivated 1 protein; T2-FLAIR: T2-fluid attenuated inversion recovery; DWI: diffusion weighted imaging; AE: autoimmune encephalitis; PCR: polymerase chain reaction; HSV-1: herpes simplex virus type 1; HSE: herpes simplex encephalitis.

3 讨论

       本研究基于多模态平扫MRI应用RF、SVM和KNN分类器建立了AE与HSE影像组学分类模型,结果显示多模态MRI影像组学模型和T2-FLAIR模型优于DWI和T1WI模型,达到了较高的诊断效能。本研究证实了基于常规无创性MRI检查的人工智能模型是极具潜力的AE与HSE鉴别诊断工具,避免了有创性的腰椎穿刺检查。

3.1 与既往相关研究的比较

       AE和HSE临床表现与MRI特征存在明显重叠,且症状严重,延误治疗明显影响患者预后,尤其是HSE患者,发病急、进展快[23]。既往已有研究分析了临床表现、传统MRI特征、实验室检查在VE和AE之间的差异,建立并评估了单纯实验室检查指标或临床表现、实验室检查指标联合模型在AE和VE中的分类性能。然而,LUO等[24]基于脑脊液犬鸟氨酸和色氨酸建立的AE和VE分类模型,依赖于有创性的腰椎穿刺检查,犬鸟氨酸和色氨酸并非常规检测项目,增加了诊疗费用。GRANILLO等[25]的研究中建立的模型同样应用了常见临床表现、脑脊液白细胞和蛋白,及肾小球滤过率(glomerular filtration rate, GFR)、apoA 1/B这些有创性或非常规实验室检查。多模态MRI是脑炎评估的首选影像检查,能够无创性、多方位地获得脑炎病变信息,然而目前MRI信息在AE和VE中并未得到充分的应用。既往对AE和VE传统MRI特征的分析,只比较了发病部位的不同,并未对病灶在不同模态的信号特点进行总结分析[26]。基于MRI的人工智能能够从多模态、多维度的影像数据中提取复杂特征,且能融合不同MRI模态的信息,显著提高了诊断准确率,避免了侵入性检查的风险。XIANG等[27]应用ResNet-18网络建立了双侧海马T1WI、T2WI、T2-FLAIR、DWI及多模态深度学习模型用于区分AE、HSE和正常对照组,结果显示基于双侧海马的各单模态和多模态模型均能将AE和HSE筛选出来,但该研究未建立用于区分AE与HSE的模型,且未关注海马外其他区域的MRI异常。此外,深度学习依赖于大规模数据集,该研究样本量较小。影像组学通过手工提取医学影像中的定量特征,结合统计学和传统机器学习模型进行分类或预测,相对于深度学习特征可解释性强[17, 18, 19]。本研究仅应用常规无创性MRI平扫序列,建立的多模态和T2-FLAIR单模态影像组学模型同样达到了较高的诊断效能。

3.2 模型选择及影像组学特征分析

       本研究选择了常用的RF、SVM及KNN分类器进行建模,各模型在测试集的诊断表现无差异。尽管应用LASSO回归和相关性分析进行数据降维删除不重要或相关性较大的特征,通过交叉验证调整RF树深和评估器数量以避免过拟合问题,但多模态RF模型仍存在轻度过拟合,SVM、KNN模型较RF模型过拟合改善。数据降维后较重要的特征多为各模态中变换后的纹理特征及原始纹理特征和一阶特征。多模态数据筛选出的特征多于T2-FLAIR、T1WI和DWI各单模态,且与各单模态具有较多的重复特征。更多有意义特征的纳入能够整合不同模态的互补信息,这也解释了多模态影像组学模型诊断效能高于单模态模型的原因。在多模态模型中,小波变换后的T2-FLAIR序列GLDM大依赖特征值(large dependence emphasis, LDE)、DWI序列一阶均匀度特征值及原始T2-FLAIR序列GLRLM长游程特征值(long run emphasis, LRE)在HSE组病灶小于AE组,但原始T2-FLAIR序列GLCM逆方差特征值及小波变换后的T1WI序列GLSZM灰度不均匀性(gray level non-uniformity, GLN)大于AE组。GLDM的LDE主要强调图像中大范围连续区域的灰度一致性,值越大,表明图像中存在越多大范围连续区域。一阶均匀度特征值基于像素灰度直方图的统计特征计算,用于量化图像灰度分布的集中程度,反映整体信号分布特性,值越大,信号分布越为集中。GLRLM用于量化图像中相同灰度值的连续像素(即“游程”)的空间分布特性,LRE衡量图像中连续相同灰度值的像素长游程分布情况,反映纹理的粗糙度或平滑度,值越大表明图像中存在越多长程连续区域,值越小则提示纹理更粗糙或异质性越大。HSE患者病毒直接破坏神经元,并激活免疫系统释放促炎因子,形成出血性坏死和水肿,同时伴有胶质细胞增生[28, 29]。而AE是由自身抗体介导的免疫反应,抗体与神经元表面受体结合导致受体内化、突触功能紊乱,而非直接破坏神经元[13]。HSE病灶成分较AE更为复杂,解释了AE病灶灰度值分布更为集中,与周围区域一致性更高、存在更大范围灰度一致性区域。GLCM的逆方差用于衡量灰度共生矩阵中元素分布的离散程度,反映了不同灰度级组合出现的概率分布情况,值越大说明灰度值的变化越剧烈,图像中不同区域的差异较大,纹理越不均匀。GLSZM的GLN用于衡量图像中灰度值分布的均匀程度;同样地,该值越高,说明图像中不同灰度区域之间的差异越大,灰度分布越不均匀。因此在结构较混杂的HSE病灶中GLCM的逆方差和GLSZM的GLN值更大。在多模态模型中较为重要的T2-FLAIR和T1WI特征在T2-FLAIR和T1WI单模态模型中同样表现出了较高的重要性。且多模态模型中较为重要的特征多来源于T2-FLAIR序列,这也解释了在基于病灶的影像组学模型中T2-FLAIR单模态模型与多模态模型相似的诊断效能,高于T1WI和DWI单模态模型。

3.3 本研究的局限性

       本研究的局限性:首先,单中心回顾性研究无法避免患者选择偏移;再者,本研究基于病灶水平建立的影像组学模型,明显扩大了研究样本量,但未进行全脑水平分析及未考虑病灶的脑区分布情况,可能影响模型的诊断效能,在临床应用上存在一定的局限性,未来将训练脑炎异常信号分割模型,同时提取病灶位置信息,简化人工操作,建立患者水平分类模型,提高临床可解释性;此外,由于样本量有限,没有对继发AE的HSE患者进行单独分类,且未对AE患者进行亚组分析。进一步收集多中心数据,扩大样本量,细化研究分类将为脑炎提供更精准的诊断。

4 结论

       总之,本研究建立的基于多模态平扫MRI的影像组学模型能够较为准确地鉴别AE和HSE病灶。单纯基于平扫MRI的模型为临床、实验室检查不全、无法进行有创性腰椎穿刺检查的患者提供了诊断依据,指导临床医生早期制订针对性诊疗方案,改善患者预后。

[1]
REN H T, FAN S Y, ZHAO Y H, et al. The changing spectrum of antibody-mediated encephalitis in China[J/OL]. J Neuroimmunol, 2021, 361: 577753 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/34739913/. DOI: 10.1016/j.jneuroim.2021.577753.
[2]
PIRET J, BOIVIN G. Immunomodulatory strategies in herpes simplex virus encephalitis[J/OL]. Clin Microbiol Rev, 2020, 33(2): e00105-19 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/32051176/. DOI: 10.1128/CMR.00105-19.
[3]
ZHANG L H, ZHANG L J, LI F J, et al. When herpes simplex virus encephalitis meets antiviral innate immunity[J/OL]. Front Immunol, 2023, 14: 1118236 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36742325/. DOI: 10.3389/fimmu.2023.1118236.
[4]
ALI F, WIJDICKS E F. Treatment of movement disorder emergencies in autoimmune encephalitis in the neurosciences ICU[J]. Neurocrit Care, 2020, 32(1): 286-294. DOI: 10.1007/s12028-019-00875-5.
[5]
刘盼盼, 何谦益, 李悦, 等. ICU抗N-甲基-D天冬氨酸受体脑炎患者临床特征及其预后的影响因素[J]. 实用心脑肺血管病杂志, 2023, 31(11): 35-39. DOI: 10.12114/j.issn.1008-5971.2023.00.267.
LIU P P, HE Q Y, LI Y, et al. Clinical characteristics of patients with anti-N-methyl-D-aspartate receptor encephalitis in ICU and the influencing factors of their prognosis[J]. Pract J Card Cereb Pneumal Vasc Dis, 2023, 31(11): 35-39. DOI: 10.12114/j.issn.1008-5971.2023.00.267.
[6]
DUBEY D, TOLEDANO M, MCKEON A. Clinical presentation of autoimmune and viral encephalitides[J]. Curr Opin Crit Care, 2018, 24(2): 80-90. DOI: 10.1097/MCC.0000000000000483.
[7]
SONNEVILLE R, JAQUET P, VELLIEUX G, et al. Intensive care management of patients with viral encephalitis[J]. Rev Neurol (Paris), 2022, 178(1/2): 48-56. DOI: 10.1016/j.neurol.2021.12.002.
[8]
VARLEY J A, STRIPPEL C, HANDEL A, et al. Autoimmune encephalitis: recent clinical and biological advances[J]. J Neurol, 2023, 270(8): 4118-4131. DOI: 10.1007/s00415-023-11685-3.
[9]
KUMAR R. Understanding and managing acute encephalitis[J/OL]. F1000Res, 2020, 9: F1000FacultyRev-F1000FacultyR60 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/32047620/. DOI: 10.12688/f1000research.20634.1.
[10]
MICHAEL B D, BRICIO-MORENO L, SORENSEN E W, et al. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood-brain barrier permeability in viral encephalitis[J/OL]. Cell Rep, 2020, 32(11): 108150 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/32937134/. DOI: 10.1016/j.celrep.2020.108150.
[11]
VENKATESAN A. Immune-mediated encephalitis for the infectious disease specialist[J]. Curr Opin Infect Dis, 2019, 32(3): 251-258. DOI: 10.1097/QCO.0000000000000546.
[12]
MARINAS J E, MATVEYCHUK D, MCCOMBE J A, et al. Paraneoplastic and autoimmune encephalitis: Alterations of mood and emotion[J/OL]. Handb Clin Neurol, 2021, 183: 221-234 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/34389119/. DOI: 10.1016/B978-0-12-822290-4.00010-4.
[13]
FERREIRA J H F, DISSEROL C C D, DE FREITAS DIAS B, et al. Recent advances in autoimmune encephalitis[J]. Arq Neuropsiquiatr, 2024, 82(12): 1-13. DOI: 10.1055/s-0044-1793933.
[14]
ABBATEMARCO J R, YAN C, KUNCHOK A, et al. Antibody-mediated autoimmune encephalitis: a practical approach[J]. Cleve Clin J Med, 2021, 88(8): 459-471. DOI: 10.3949/ccjm.88a.20122.
[15]
KIM K T. Lumbar puncture: considerations, procedure, and complications[J]. Encephalitis, 2022, 2(4): 93-97. DOI: 10.47936/encephalitis.2022.00045.
[16]
HARTUNG T J, BARTELS F, KUCHLING J, et al. MRI findings in autoimmune encephalitis[J]. Rev Neurol (Paris), 2024, 180(9): 895-907. DOI: 10.1016/j.neurol.2024.08.006.
[17]
TOMASZEWSKI M R, GILLIES R J. The biological meaning of radiomic features[J]. Radiology, 2021, 298(3): 505-516. DOI: 10.1148/radiol.2021202553.
[18]
PASCHALI M, CHEN Z H, BLANKEMEIER L, et al. Foundation models in radiology: what, how, why, and why not[J/OL]. Radiology, 2025, 314(2): e240597 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39903075/. DOI: 10.1148/radiol.240597.
[19]
BOUTET A, HAILE S S, YANG A Z, et al. Assessing the emergence and evolution of artificial intelligence and machine learning research in neuroradiology[J]. AJNR Am J Neuroradiol, 2024, 45(9): 1269-1275. DOI: 10.3174/ajnr.A8252.
[20]
KHALILI N, KAZEROONI A F, FAMILIAR A, et al. Radiomics for characterization of the glioma immune microenvironment[J/OL]. NPJ Precis Oncol, 2023, 7(1): 59 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37337080/. DOI: 10.1038/s41698-023-00413-9.
[21]
KALASAUSKAS D, KOSTERHON M, KERIC N, et al. Beyond glioma: the utility of radiomic analysis for non-glial intracranial tumors[J/OL]. Cancers (Basel), 2022, 14(3): 836 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35159103/. DOI: 10.3390/cancers14030836.
[22]
JANG K, RUSSO C, DI IEVA A. Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis[J]. Neuroradiology, 2020, 62(7): 771-790. DOI: 10.1007/s00234-020-02403-1.
[23]
KAPADIA R K, TYLER K L, PASTULA D M. Encephalitis in adults caused by herpes simplex virus[J/OL]. CMAJ, 2020, 192(32): E919 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/32778604/. DOI: 10.1503/cmaj.191636.
[24]
LUO Y, MÖHN N, SKRIPULETZ T, et al. Differentiation of viral and autoimmune central nervous system inflammation by kynurenine pathway[J]. Ann Clin Transl Neurol, 2021, 8(12): 2228-2234. DOI: 10.1002/acn3.51383.
[25]
GRANILLO A, LE MARÉCHAL M, DIAZ-ARIAS L, et al. Development and validation of a risk score to differentiate viral and autoimmune encephalitis in adults[J/OL]. Clin Infect Dis, 2023, 76(3): e1294-e1301 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36053949/. DOI: 10.1093/cid/ciac711.
[26]
TAN Y M, LIU M, HE L C. Clinical and MRI differential analysis of autoimmune encephalitis and viral encephalitis[J]. J Taibah Univ Med Sci, 2022, 18(2): 271-278. DOI: 10.1016/j.jtumed.2022.09.016.
[27]
XIANG Y Y, ZENG C, LIU B Y, et al. Deep learning-enabled identification of autoimmune encephalitis on 3D multi-sequence MRI[J]. J Magn Reson Imaging, 2022, 55(4): 1082-1092. DOI: 10.1002/jmri.27909.
[28]
MA X X, ZHANG L W, HUANG D H, et al. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis[J]. J Magn Reson Imaging, 2019, 49(4): 1113-1121. DOI: 10.1002/jmri.26287.
[29]
REINERT L S, RASHIDI A S, TRAN D N, et al. Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production[J/OL]. J Clin Invest, 2021, 131(1): e136824 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/32990676/. DOI: 10.1172/JCI136824.

上一篇 基于多模态MRI的栖息地局部熵值预测成人型弥漫性胶质瘤IDH分子状态的相关性研究
下一篇 弥散峰度成像联合常规MRI在甲状腺良恶性结节鉴别诊断中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2