分享:
分享到微信朋友圈
X
临床研究
基于心脏磁共振特征追踪技术评价冠心病患者左心室心肌纤维化对双心室功能的影响
泥鲁莹 张前 鲍长金 于蒙蒙 张迪 姜兴岳

Cite this article as: NI L Y, ZHANG Q, BAO C J, et al. Evaluation of the influence of left ventricular myocardial fibrosis on biventricular function in patients with coronary artery disease based on cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2025, 16(5): 149-156.本文引用格式:泥鲁莹, 张前, 鲍长金, 等. 基于心脏磁共振特征追踪技术评价冠心病患者左心室心肌纤维化对双心室功能的影响[J]. 磁共振成像, 2025, 16(5): 149-156. DOI:10.12015/issn.1674-8034.2025.05.023.


[摘要] 目的 基于心脏磁共振特征追踪(cardiac magnetic resonance feature tracking, CMR-FT)技术评价冠心病(coronary artery disease, CAD)患者左心室心肌纤维化对左、右心室功能的影响,并探讨双心室间的相互作用。材料与方法 回顾性分析2023年9月至2025年3月确诊为CAD的患者50例及健康受试者32名,后处理测量左、右心室常规心功能参数、整体应变参数,包括周向峰值应变(circumferential peak strain, PCS)、径向峰值应变(radial peak strain, PRS)、纵向峰值应变(longitudinal peak strain, PLS),以及左心室延迟强化百分比(late gadolinium enhancement percentage, %LGE)。根据%LGE中位数值,将CAD患者分为%LGE≥6%组和%LGE<6%组。采用单因素方差分析、非参数检验、卡方检验等统计方法比较对照组和不同患者组之间临床资料和CMR参数的差异。采用Spearman或Pearson相关系数分析右心室功能与左心室功能及心肌纤维化的相关性,并进一步进行多元线性回归分析。结果 与%LGE<6%组相比,%LGE≥6%组左心室整体PCS、PRS、PLS、射血分数(ejection fraction, EF)及右心室整体PLS均降低,而左心室舒张末期容积(end-diastolic volume, EDV)、舒张末期容积指数(end-diastolic volume index, EDVi)、收缩末期容积(end-systolic volume, ESV)、收缩末期容积指数(end-systolic volume index, ESVi)、左心室心肌质量(left ventricular mass, LVM)、左心室心肌质量指数(left ventricular mass index, LVMi)及%LGE均增高(P均<0.05)。相关性分析显示右心室整体PCS、PLS均与左心室整体PCS、PRS、PLS、EF呈正相关,与左心室EDVi、ESVi及%LGE呈负相关(r=-0.762~0.731,P均<0.05)。线性回归分析显示,右心室整体PCS与左心室整体PLS独立正相关(β=0.356,P=0.011),与左心室ESVi独立负相关(β=-0.362,P=0.010);右心室整体PLS与左心室整体PRS独立正相关(β=0.291,P=0.022),与%LGE独立负相关(β=-0.344,P=0.003)。结论 即使右心室常规心功能参数无明显改变,CAD患者在左心室心肌纤维化后左、右心室应变均受损。此外,右心室应变与左心室应变独立正相关,与左心室心肌纤维化程度独立负相关。CMR-FT能够为CAD患者心室功能损伤提供更早、更精准的信息,为早期治疗提供新的依据。
[Abstract] Objective To evaluate the influence of left ventricular myocardial fibrosis on left and right ventricular function in patients with coronary artery disease (CAD) based on cardiac magnetic resonance feature tracking (CMR-FT) technique, and to explore the biventricular interaction.Materials and Methods A total of 50 patients diagnosed with CAD and 32 healthy subjects from September 2023 to March 2025 were retrospectively analyzed. The left and right ventricle conventional cardiac function parameters, global strain parameters, including circumferential peak strain (PCS), radial peak strain (PRS) and longitudinal peak strain (PLS), and left ventricular late gadolinium enhancement percentage (%LGE) were measured after post-processing. According to the median value of %LGE, CAD patients were divided into %LGE ≥ 6% group and %LGE < 6% group. One-way analysis of variance, non-parametric test, Chi-square test and other statistical methods were used to compare the differences in clinical data and CMR parameters between the control group and different patient groups. Spearman or Pearson correlation coefficient was used to analyze the correlation between right ventricular function and left ventricular function as well as myocardial fibrosis, and multiple linear regression analysis was further performed.Results Compared with the %LGE < 6% group, left ventricle global PCS, PRS, PLS, ejection fraction (EF) and right ventricle global PLS were decreased, while left ventricular end-diastolic volume (EDV), end-diastolic volume index (EDVi), end-systolic volume (ESV), end-systolic volume index (ESVi), left ventricular mass (LVM), left ventricular mass index (LVMi) and %LGE were increased in the %LGE ≥ 6% group (all P < 0.05). Correlation analysis showed that right ventricle global PCS and PLS were positively correlated with left ventricular global PCS, PRS, PLS and EF, and negatively correlated with left ventricular EDVi, ESVi and %LGE (r = -0.762 to 0.731, all P < 0.05). Linear regression analysis showed that right ventricular global PCS was independently and positively correlated with left ventricular global PLS (β = 0.356, P = 0.011), and independently and negatively correlated with left ventricular ESVi (β = -0.362, P = 0.010); Right ventricular global PLS was independently and positively correlated with left ventricular global PRS (β = 0.291, P = 0.022), and independently and negatively correlated with %LGE (β = -0.344, P = 0.003).Conclusions Even though there are no significant changes in the conventional cardiac function parameters of the right ventricle, the left and right ventricular strains in CAD patients are impaired after left ventricular myocardial fibrosis. In addition, the right ventricular strain is independently and positively correlated with the left ventricular strain, and independently and negatively correlated with the degree of left ventricular myocardial fibrosis. CMR-FT can provide earlier and more accurate information for ventricular function impairment in CAD patients, and provide a new basis for early treatment.
[关键词] 特征追踪技术;应变;冠状动脉性心脏病;心室功能;磁共振成像
[Keywords] feature tracking;strain;coronary artery disease;ventricular function;magnetic resonance imaging

泥鲁莹 1, 2   张前 1, 2   鲍长金 1   于蒙蒙 1   张迪 1   姜兴岳 1, 2*  

1 滨州医学院附属医院放射科,滨州 256603

2 滨州医学院医学影像学院,烟台 264003

通信作者:姜兴岳,E-mail: xyjiang188@sina.com

作者贡献声明:姜兴岳设计本研究的方案,对稿件重要内容进行了修改;泥鲁莹起草和撰写稿件,获取、分析和解释本研究的数据;张前、鲍长金、于蒙蒙、张迪获取、分析及解释本研究的数据,并对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-01-26
接受日期:2025-05-09
中图分类号:R445.2  R541.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.023
本文引用格式:泥鲁莹, 张前, 鲍长金, 等. 基于心脏磁共振特征追踪技术评价冠心病患者左心室心肌纤维化对双心室功能的影响[J]. 磁共振成像, 2025, 16(5): 149-156. DOI:10.12015/issn.1674-8034.2025.05.023.

0 引言

       冠心病(coronary artery disease, CAD)患者在冠状动脉狭窄后会导致左心室心肌缺血、缺氧,心肌长期缺血、缺氧容易引成心肌纤维化,导致心室硬度增加和舒张充盈受损,左心室心肌纤维化增加了CAD患者发生心血管不良事件的风险[1, 2]。目前,左心室心肌纤维化对心脏功能影响的研究主要集中在患者左心室[3],发现左心室心肌纤维化会导致左心室结构和功能异常,但是对右心室的影响尚未得到广泛的研究。由于循环系统的连续性和左、右心室的整体性,包括共用的肌纤维、心包腔和室间隔,促使左、右心室相互依赖[4]。最近的研究表明,右心室功能障碍是CAD患者不良预后的重要指标[5, 6]。因此,综合评价CAD患者左心室心肌纤维化对左、右心室功能的影响具有重要意义。

       超声心动图是评价心室功能的常用临床和研究方法,然而,由于对操作员技能的主观依赖性、有限的空间分辨率和声窗不足而难以准确测量结果[7]。目前,心脏磁共振(cardiac magnetic resonance, CMR)成像已经被认为是准确评价心室结构、功能及心肌组织的“金标准”[8]。心脏磁共振特征追踪(cardiac magnetic resonance feature tracking, CMR-FT)技术能够敏感地评估心肌在各个方向上的变形情况,为检测早期亚临床心肌功能障碍提供了重要手段[9]。POLACIN等[10]研究使用CMR-FT发现左心室心肌纤维化的CAD患者左心室整体应变参数均受损,然而目前很少有研究基于CMR-FT的心肌应变参数分析CAD患者左心室心肌纤维化对右心室功能的影响。既往研究主要基于右心室射血分数(ejection fraction, EF)进行评价[11, 12],右心室EF的改变可能晚于右心室应变参数的改变。因此,本研究旨在使用CMR-FT技术评价CAD患者左心室心肌纤维化对左、右心室功能的影响,并探讨双心室之间的相互作用,从而进行早期干预,发挥早期综合管理的作用。

1 材料与方法

1.1 研究对象

       回顾性分析2023年9月至2025年3月间在滨州医学院附属医院行CMR检查的50例CAD患者,纳入标准:(1)符合2024年欧洲心脏病学会发布的CAD诊断指南标准[13],经冠状动脉造影或CTA证实为CAD患者,心绞痛或缺血症状患者;(2)有心肌梗死病史者;(3)CMR指标显示存在缺血性分布。排除标准:(1)先天性心脏病、瓣膜病、心肌病及严重心律不齐等心血管疾病史;(2)严重肝肾疾病、恶性肿瘤、甲亢等影响心脏功能的疾病。同时在医院体检人群中收集年龄和性别匹配的32名健康受试者资料(对照组)。对照组纳入标准:(1)无高血压及各种异常临床症状;(2)无心血管疾病史及家族史;(3)心电图、超声心动图及CMR检查无异常。排除标准:(1)CMR图像质量不能满足后处理要求;(2)CMR数据不完整。本研究遵守《赫尔辛基宣言》,经滨州医学院附属医院科研伦理委员会批准,免除受试者知情同意,批准文号:[2024]伦审字(KYLL-271)号。

1.2 图像采集

       采用Philips Ingenia 1.5 T磁共振扫描仪(Netherlands, Philips Healthcare)以及18通道相控体部线圈,并联合心电门控和呼吸门控。扫描序列包括CMR电影及对比剂延迟强化(late gadolinium enhancement, LGE)。电影序列采用平衡稳态自由进动序列于呼气末获得短轴、二腔心、三腔心和四腔心层面图像,扫描参数:层厚8.00 mm,TR 3.30 ms,TE 1.64 ms,翻转角60°,FOV 300 mm×300 mm。LGE序列采用相位敏感反转恢复序列,仅在CAD患者静脉注射钆对比剂(中国,北京北陆药业股份有限公司)10~15 min后采集,剂量为0.2 mmol/kg,注射速度为4 mL/s,采集层面与电影序列一致,扫描参数:层厚8.00 mm,TR 5.2 ms,TE 2.6 ms,翻转角15°,FOV 300 mm×300 mm。

1.3 图像分析

1.3.1 常规心功能分析

       使用Segment v4.1.0.1 R14284b(Medviso, segment.heiberg.se)对整体左心室和右心室功能进行定量评估[14]。在短轴电影图像上自动勾画舒张末期和收缩末期左心室心内膜、心外膜及右心室心内膜轮廓,将乳头肌和小梁从心肌中排除,但纳入心室容积分析。软件自动计算心功能参数,包括左、右心室EF、每搏输出量(stroke volume, SV)、舒张末期容积(end-diastolic volume, EDV)、收缩末期容积(end-systolic volume, ESV)及左心室心肌质量(left ventricular mass, LVM)。此外,通过结合体表面积(body surface area, BSA)进一步校正得到每搏输出量指数(stroke volume index, SVi)、舒张末期容积指数(end-diastolic volume index, EDVi)、收缩末期容积指数(end-systolic volume index, ESVi)及左心室心肌质量指数(left ventricular mass index, LVMi)。

1.3.2 心肌应变分析

       在strain模块中,对短轴、二腔心、三腔心和四腔心电影图像进行心肌应变分析(图1)。软件半自动勾画舒张末期左心室心内膜、心外膜及右心室心内膜轮廓,获得左、右心室整体周向峰值应变(circumferential peak strain, PCS)、径向峰值应变(radial peak strain, PRS)、纵向峰值应变(longitudinal peak strain, PLS)、周向峰值收缩期应变率(circumferential peak systolic strain rate, PCSR-S)、径向峰值收缩期应变率(radial peak systolic strain rate, PRSR-S)、纵向峰值收缩期应变率(longitudinal peak systolic strain rate, PLSR-S)、周向峰值舒张期应变率(circumferential peak diastolic strain rate, PCSR-D)、径向峰值舒张期应变率(radial peak diastolic strain rate, PRSR-D)、纵向峰值舒张期应变率(longitudinal peak diastolic strain rate, PLSR-D)。

图1  双心室心肌应变示意图。1A~1H:在由基底部到心尖部的短轴电影图像上勾画舒张末期左心室心内膜(红线)、心外膜(绿线)及右心室心内膜(紫线)轮廓获取周向及径向应变参数;1I~1K:在四、二、三腔心电影图像上勾画舒张末期左心室心肌(红线)及右心室心内膜(紫线)轮廓获取纵向应变参数。
Fig. 1  Biventricular myocardial strain diagram. 1A-1H: The contours of the left ventricular endocardium (red line), epicardium (green line), and the right ventricular endocardium (purple line) are drawn in the end-diastole phase on the short-axis cine images from the base to the apex to obtain circumferential and radial strain parameters; 1I-1K: The contours of the left ventricular myocardium (red line) and the right ventricular endocardium (purple line) are drawn in the end-diastole phase on the four-, two-, and three-chamber cine images to obtain longitudinal strain parameters.

1.3.3 心肌纤维化的测量

       由两名具有10年以上心血管疾病诊断经验的主任医师和主治医师采用双盲法评估LGE图像,根据高于远端正常心肌平均信号强度5倍标准差的阈值,对LGE图像进行半定量评估。在短轴LGE图像上勾画左心室心内膜和心外膜(不包括乳头肌和小梁),软件自动计算左心室延迟强化百分比(LGE percentage, %LGE),见式(1)[15]

       为了进行比较,将CAD患者分为高于和低于%LGE中位数的两组,即%LGE≥6%组和%LGE<6%组。

1.4 一致性分析

       在CAD患者及对照组中随机选取20例受试者,由两名具有10年以上心血管疾病诊断经验的主任医师和主治医师独立进行左、右心室应变分析,两名医师对患者信息均不知情,其中一名医师一个月后再次分析,分别评价观察者间和观察者内的一致性。

1.5 统计学方法

       采用SPSS 27.0软件进行统计学分析。采用Shapiro-Wilk检验以评价计量资料的正态性。正态分布数据以均数±标准差表示,通过独立样本t检验或单因素方差分析比较组间差异。非正态分布数据以中位数(上下四分位数)表示,通过Mann-Whitney U或Kruskal-Wallis检验比较组间差异。计数资料以频数(百分比)表示,通过卡方检验或Fisher确切概率法比较组间差异。采用Spearman或Pearson相关系数分析右心室应变与左心室功能及心肌纤维化参数的相关性。选取P<0.05的变量进一步纳入多元逐步线性回归模型。采用组内相关系数(intra-class correlation coefficient, ICC)分析心肌应变参数测量的一致性。P<0.05表示差异具有统计学意义。

2 结果

2.1 一般资料

       CAD患者与对照组间年龄差异无统计学意义(P均>0.05)。CAD患者BSA低于对照组,心率高于对照组(P均<0.05)。与%LGE<6%组相比,%LGE≥6%组心率和N末端B型利钠肽原增高,且两组间性别、多支血管、糖尿病差异均有统计学意义(P均<0.05),详见表1

表1  3组基本临床资料
Tab. 1  Basic clinical data among 3 groups

2.2 CMR基本参数

       与对照组相比,CAD患者LVEF降低,LVEDVi、LVESV、LVESVi、LVMi均增高(P均<0.05)。与%LGE<6%组相比,%LGE≥6%组LVEF降低,LVEDV、LVEDVi、LVESV、LVESVi、LVM、LVMi、%LGE均增高(P均<0.05),而两组间右心室常规心功能参数差异无统计学意义(P均>0.05),详见表2

表2  3组CMR常规心功能及心肌纤维化参数
Tab. 2  Conventional cardiac function and myocardial fibrosis parameters of CMR among 3 groups

2.3 CMR应变参数

       对于左心室,与对照组和%LGE<6%组相比,%LGE≥6%组左心室整体PCS、PRS、PLS、PCSR-S、PRSR-S、PLSR-S、PCSR-D、PRSR-D、PLSR-D均减低(P均<0.05),并且从对照组到%LGE<6%组再到%LGE≥6%组,左心室整体PCS、PRS、PLS、PCSR-S、PLSR-S、PCSR-D、PRSR-D、PLSR-D依次减低(P均<0.05)。对于右心室,与对照组和%LGE<6%组相比,%LGE≥6%组右心室整体PLS、PCSR-D均减低(P均<0.05),并且%LGE≥6%组右心室整体PLSR-S低于%LGE<6%组(P=0.041)(表3图2)。

图2  %LGE≥6%组、%LGE<6%组和正常对照组的双心室应变特征典型代表。2A~2E:%LGE≥6%组,一例39岁男性CAD患者的双心室应变曲线;2F~2J:%LGE<6%组,一例45岁男性CAD患者的双心室应变曲线;2K~2O:一例50岁男性正常对照者的双心室应变曲线。可见%LGE≥6%组左心室整体PCS、PRS、PLS及右心室整体PLS均低于%LGE<6%组和对照组,而右心室整体PCS组间差异不显著。%LGE:左心室延迟强化百分比;CAD:冠心病;PCS:周向峰值应变;PRS:径向峰值应变;PLS:纵向峰值应变。
Fig. 2  Typical biventricular strain characteristics in the %LGE ≥ 6% group, %LGE < 6% group and normal control group. 2A-2E: The biventricular strain curves of a 39-year-old male CAD patient in the %LGE ≥ 6% group. 2F-2J: The biventricular strain curves of a 45-year-old male CAD patient in the %LGE < 6% group. 2K-2O: The biventricular strain curves of a 50-year-old male normal control subject. It can be seen that the left ventricular global PCS, PRS, PLS and right ventricular global PLS in the %LGE ≥ 6% group are lower than those in the %LGE < 6% group and normal control group, but there is no significant difference in right ventricular global PCS among the groups. %LGE: left ventricular late gadolinium enhancement percentage; CAD: coronary artery disease; PCS: circumferential peak strain; PRS: radial peak strain; PLS: longitudinal peak strain.
表3  3组CMR应变参数
Tab. 3  CMR strain parameters among 3 groups

2.4 相关性分析

       在CAD患者中,右心室整体PCS、PLS均与左心室整体PCS、PRS、PLS、LVEF呈正相关,与LVEDVi、LVESVi及%LGE呈负相关(r=-0.762~0.731,P均<0.05),且右心室整体PLS与LVMi也呈负相关(r=-0.526,P<0.001)(表4)。纳入性别和上述有统计学意义的变量,进一步进行多元线性回归分析。由于既往研究发现右冠状动脉病变可能与右心室功能相关[16],因此也被纳入分析中。结果中显示,右心室整体PCS与左心室整体PLS独立正相关(β=0.356,P=0.011),与LVESVi独立负相关(β=-0.362,P=0.010);右心室整体PLS与左心室整体PRS独立正相关(β=0.291,P=0.022),与%LGE独立负相关(β=-0.344,P=0.003)(表5)。

表4  CAD患者右心室应变与左心室功能及心肌纤维化参数的相关性分析
Tab. 4  Correlation analysis of right strain with left ventricular function and myocardial fibrosis parameters in CAD patients
表5  CAD患者右心室应变的多元线性回归分析
Tab. 5  Multiple linear regression analysis of right ventricular strain in CAD patients

2.5 一致性分析

       左、右心室应变参数的观察者内ICC值为0.886~0.980,观察者间ICC值为0.895~0.986,一致性均较好,详见表6

表6  心肌应变参数一致性分析
Tab. 6  Consistency analysis of myocardial strain parameters

3 讨论

       本研究应用CMR-FT技术评价CAD患者左心室心肌纤维化对左、右心室功能的影响,并进一步探讨了右心室功能与左心室功能及心肌纤维化的关系。主要研究发现,CAD患者左心室心肌纤维化增加,左心室常规心功能参数及周向、径向、纵向三个方向应变参数均减低。右心室常规心功能参数未见明显差异,但右心室纵向应变参数减低。此外,研究发现右心室应变与左心室应变独立正相关,与左心室心肌纤维化独立负相关,这将有利于早期发现CAD患者的心室功能改变,预防不良心血管事件的发生。

3.1 左心室心肌纤维化对CAD患者左心室功能的影响

       本研究显示,CAD患者左心室整体周向、径向、纵向三个方向应变均低于对照组,表明CAD患者左心室的整体应力均受损,这与既往研究结果一致[17]。进一步研究结果显示,与对照组和%LGE<6%组患者相比,%LGE≥6%组CAD患者左心室常规心功能参数及周向、径向、纵向的峰值应变、收缩和舒张应变率均减低,提示CAD患者左心室心肌纤维化增加,左心室僵硬度增加,顺应性降低,导致左心室的收缩、舒张功能受损更明显,与既往研究结果一致[10]。左心室心肌由三层构成,内层的纵向走行心肌,中层的周向走行心肌,外层的斜向走行心肌,左心室心肌纤维化同时向内层、中层及外层心肌渗透[18],因此CAD患者左心室心肌纤维化增加,各方向应变值均减低。REINDL等[19]研究指出CMR-FT测定的左心室心肌应变能够预测心肌梗死后左心室不良重构,并且独立于LVEF和梗死严重程度。此外,几项研究表明了左心室心肌应变参数是CAD患者的重要预后指标[20, 21, 22]。因此,随着CMR技术的不断发展,CMR-FT技术可以作为早期敏感检测各种疾病左心室功能障碍的指标。

3.2 左心室心肌纤维化对CAD患者右心室功能的影响

       绝大多数研究仅强调CAD患者左心室心肌纤维化导致左心室功能障碍,最近的几项研究表明,右心室功能障碍也可能是左心室心肌纤维化的继发性后果,并与更严重的死亡风险有关[23, 24]。本研究发现,%LGE≥6%组CAD患者右心室纵向应变参数减低,RVEF尚正常,说明CMR-FT可以敏感识别CAD患者的右心室亚临床功能障碍,在RVEF发生改变前发现右心室功能异常。此外,本研究发现%LGE仅与右心室纵向应变独立相关,提示CAD患者左心室心肌纤维化导致的右心室功能损伤可能主要是纵向心肌运动功能受损。右心室心肌由心内膜下的纵向心肌细胞和心外膜下的周向心肌细胞构成,其中纵向心肌细胞占主导地位,纵向心肌收缩约占右心室收缩作用的75%,周向心肌约占25%[25],这可能是CAD患者左心室心肌纤维化主要影响右心室纵向心肌应变的原因。并且,右心室纵向应变是各种心血管疾病死亡率及心力衰竭的独立预测因子[26, 27, 28]。因此,我们推测CAD患者左心室心肌纤维化可能会导致右心室功能受损,CMR-FT技术测量的心肌应变参数,尤其是纵向应变,是早期检测右心室功能障碍的敏感指标。

3.3 左、右心室相互作用

       本研究结果显示,在CAD患者中,右心室整体PCS、PLS均与左心室功能参数存在相关性,且右心室整体PCS与左心室整体PLS和LVESVi独立相关,右心室整体PLS与左心室整体PRS独立相关,这与以往研究结果一致[29],提示左、右心室相互依赖可能是右心室功能障碍的潜在原因。犬的动物实验表明[30],右心室约20%~40%的输出量是左心室的收缩作用产生的。共用的室间隔可能也在左、右心室相互依赖中发挥着作用,室间隔是右心室的“发动机”,室间隔的扭转有助于右心室收缩和舒张[31]。ZHAO等[11]研究发现左心室和室间隔的收缩功能均是右心室功能障碍的独立预测因素。因此,笔者推测CAD患者左心室心肌纤维化导致右心室功能受损的原因有:(1)由于左心室心肌纤维化增加,左心室收缩功能下降,尺寸增加,左心室输出减少,进而改变舒张期右心室充盈;(2)左心室心肌纤维化导致室间隔运动僵硬,直接干扰右心室充盈。既往研究还发现CAD患者合并右冠状动脉狭窄与右心室功能损伤相关,右冠状动脉病变可导致右心室缺血梗死,进而影响右心室功能[16]。但在本研究中未观察到相关性,推测可能与样本量有限有关,未来还需增加样本量进一步深入分析。总之,CMR-FT技术在早期评估左、右心室功能中均具有较高的准确性和敏感性,对检测CAD患者早期心室功能障碍具有重要意义,有助于改善CAD患者的预后。

3.4 本研究的局限性

       本研究的局限性:(1)本研究为单中心研究,样本量较少,且%LGE≥6%组男性例数较多,导致结果可能存在选择性偏倚,未来需要通过大样本量的多中心研究进行更深入的验证和分析;(2)本研究由于技术限制仅对右心室的周向和纵向应变进行分析,未对径向应变进行评估,需要在后续研究中进行探讨;(3)由于右心室室壁较薄和复杂解剖结构,不同软件自动勾画右心室心肌轮廓可能会有误差;(4)未进行预后随访,右心室应变参数的预后价值仍有待研究,这将为预防和改善右心室功能障碍提供重要信息。

4 结论

       尽管CAD患者左心室心肌纤维化后右心室常规心功能参数无改变,但左、右心室应变均已经受损,且右心室功能受损与左心室功能及心肌纤维化有关。CMR-FT技术可以早期、敏感地识别出左、右心室功能异常,在监测CAD患者左、右心室功能障碍方面具有重要价值。

[1]
THIENE G. Ischaemic myocardial fibrosis is the villain of sudden coronary death[J]. Eur Heart J, 2022, 43(47): 4931-4932. DOI: 10.1093/eurheartj/ehac571.
[2]
ZEGARD A, OKAFOR O, DE BONO J, et al. Myocardial fibrosis as a predictor of sudden death in patients with coronary artery disease[J]. J Am Coll Cardiol, 2021, 77(1): 29-41. DOI: 10.1016/j.jacc.2020.10.046.
[3]
CALVIERI C, RIVA A, STURLA F, et al. Left ventricular adverse remodeling in ischemic heart disease: emerging cardiac magnetic resonance imaging biomarkers[J/OL]. J Clin Med, 2023, 12(1): 334 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/36615133/. DOI: 10.3390/jcm12010334.
[4]
SANZ J, SÁNCHEZ-QUINTANA D, BOSSONE E, et al. Anatomy, function, and dysfunction of the right ventricle JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(12): 1463-1482. DOI: 10.1016/j.jacc.2018.12.076.
[5]
GORGIS S, GUPTA K, LEMOR A, et al. Impact of right ventricular dysfunction on outcomes in acute myocardial infarction and cardiogenic shock: insights from the national cardiogenic shock initiative[J]. J Card Fail, 2024, 30(10): 1275-1284. DOI: 10.1016/j.cardfail.2024.07.015.
[6]
SABE M A, SABE S A, KUSUNOSE K, et al. Predictors and prognostic significance of right ventricular ejection fraction in patients with ischemic cardiomyopathy[J]. Circulation, 2016, 134(9): 656-665. DOI: 10.1161/CIRCULATIONAHA.116.022339.
[7]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/27561421/. DOI: 10.1186/s12968-016-0269-7.
[8]
THOMAS K E, FOTAKI A, BOTNAR R M, et al. Imaging methods: magnetic resonance imaging[J/OL]. Circ Cardiovasc Imaging, 2023, 16(1): e014068 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/36649450/. DOI: 10.1161/circimaging.122.014068.
[9]
GAO Y F, LI B X, MA Y H, et al. Myocardial mechanical function measured by cardiovascular magnetic resonance in patients with heart failure[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101111 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/39433255/. DOI: 10.1016/j.jocmr.2024.101111.
[10]
POLACIN M, KAROLYI M, EBERHARD M, et al. Segmental strain analysis for the detection of chronic ischemic scars in non-contrast cardiac MRI cine images[J/OL]. Sci Rep, 2021, 11(1): 12376 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/34117271/. DOI: 10.1038/s41598-021-90283-7.
[11]
ZHAO Y N, CUI J N, ZHANG X H, et al. Right ventricular function and determining factors of dysfunction in ST-segment-elevation myocardial infarction: a cross-sectional study with cardiac magnetic resonance imaging (MRI)[J]. Quant Imaging Med Surg, 2024, 14(9): 6895-6907. DOI: 10.21037/qims-23-1804.
[12]
LIANG S C, CHEN S, BAI Y L, et al. Interventricular septum involvement is related to right ventricular dysfunction in anterior STEMI patients without right ventricular infarction: a cardiovascular magnetic resonance study[J]. Int J Cardiovasc Imaging, 2024, 40(8): 1755-1765. DOI: 10.1007/s10554-024-03166-z.
[13]
VRINTS C, ANDREOTTI F, KOSKINAS K C, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes[J]. Eur Heart J, 2024, 45(36): 3415-3537. DOI: 10.1093/eurheartj/ehae177.
[14]
ÅKESSON J, OSTENFELD E, CARLSSON M, et al. Deep learning can yield clinically useful right ventricular segmentations faster than fully manual analysis[J/OL]. Sci Rep, 2023, 13(1): 1216 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/36681759/. DOI: 10.1038/s41598-023-28348-y.
[15]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[16]
毛荔, 乔英艳, 李晓美, 等. RT-3DE联合Autostrain RV技术评价冠心病合并右冠状动脉狭窄患者右心室功能[J]. 中国动脉硬化杂志, 2024, 32(2): 133-140. DOI: 10.20039/j.cnki.1007-3949.2024.02.006.
MAO L, QIAO Y Y, LI X M, et al. Evaluation of right ventricular function in patients with coronary heart disease involving the right coronary artery stenosis by RT-3DE combined with autostrain RV[J]. Chin J Arterioscler, 2024, 32(2): 133-140. DOI: 10.20039/j.cnki.1007-3949.2024.02.006.
[17]
多国帅, 刘婷, 戴旭. 心脏磁共振组织追踪技术评估冠心病心肌梗死的诊断价值[J]. 磁共振成像, 2018, 9(5): 346-353. DOI: 10.12015/issn.1674-8034.2018.05.005.
DUO G S, LIU T, DAI X. Clinical evaluation of cardiac magnetic resonance tissue tracking technology for coronary heart disease patients with myocardial infarction[J]. Chin J Magn Reson Imag, 2018, 9(5): 346-353. DOI: 10.12015/issn.1674-8034.2018.05.005.
[18]
伍琪, 田鑫, 兰红琳. 基于心血管磁共振特征追踪技术的心肌应变在心脏疾病中的研究进展[J]. 中国CT和MRI杂志, 2024, 22(10): 174-176, 188. DOI: 10.3969/j.issn.1672-5131.2024.10.057.
WU Q, TIAN X, LAN H L. The research progress of myocardial strain derived from cardiovascular magnetic resonance feature tracking in cardiac diseases[J]. Chin J CT MRI, 2024, 22(10): 174-176, 188. DOI: 10.3969/j.issn.1672-5131.2024.10.057.
[19]
REINDL M, TILLER C, HOLZKNECHT M, et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction[J]. Clin Res Cardiol, 2021, 110(1): 61-71. DOI: 10.1007/s00392-020-01649-2.
[20]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[21]
HOLZKNECHT M, REINDL M, TILLER C, et al. Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: a comparative prognostic evaluation of left ventricular functional parameters[J]. Clin Res Cardiol, 2021, 110(10): 1599-1611. DOI: 10.1007/s00392-021-01855-6.
[22]
JANWETCHASIL P, YINDEENGAM A, KRITTAYAPHONG R. Prognostic value of global longitudinal strain in patients with preserved left ventricular systolic function: a cardiac magnetic resonance real-world study[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101057 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/38971500/. DOI: 10.1016/j.jocmr.2024.101057.
[23]
VILLAR-CALLE P, KOCHAV J D, VADAKETH K, et al. Tissue-based predictors of impaired right ventricular strain in coronary artery disease: a multicenter stress perfusion study[J/OL]. Circ Cardiovasc Imaging, 2024, 17(8): e016852 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/39163376/. DOI: 10.1161/CIRCIMAGING.124.016852.
[24]
KESKIN M, UZUN A O, HAYıROĞLU M İ, et al. The association of right ventricular dysfunction with in-hospital and 1-year outcomes in anterior myocardial infarction[J]. Int J Cardiovasc Imaging, 2019, 35(1): 77-85. DOI: 10.1007/s10554-018-1438-6.
[25]
SHEN L T, SHI K, YANG Z G, et al. The right ventricular dysfunction and ventricular interdependence in patients with T2DM and aortic regurgitation: an assessment using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 294 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/39118075/. DOI: 10.1186/s12933-024-02372-2.
[26]
李瑞, 黄钰迅, 陈梓娴, 等. 心脏磁共振特征追踪技术评估右室心肌应变的研究进展[J]. 磁共振成像, 2021, 12(10): 98-100, 104. DOI: 10.12015/issn.1674-8034.2021.10.025.
LI R, HUANG Y X, CHEN Z X, et al. Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imag, 2021, 12(10): 98-100, 104. DOI: 10.12015/issn.1674-8034.2021.10.025.
[27]
ESPERSEN C, SKAARUP K G, LASSEN M C H, et al. Right ventricular free wall and four-chamber longitudinal strain in relation to incident heart failure in the general population[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(3): 396-403. DOI: 10.1093/ehjci/jead281.
[28]
BARRETT C M, BAWASKAR P, HUGHES A, et al. Right ventricular function on cardiovascular magnetic resonance imaging and long-term outcomes in stable heart transplant recipients[J/OL]. Circ Cardiovasc Imaging, 2024, 17(4): e016415 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/38563143/. DOI: 10.1161/CIRCIMAGING.123.016415.
[29]
WEN X L, GAO Y, GUO Y K, et al. Assessing right ventricular peak strain in myocardial infarction patients with mitral regurgitation by cardiac magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2024, 14(4): 3018-3032. DOI: 10.21037/qims-23-1360.
[30]
YAMAGUCHI S, HARASAWA H, LI K S, et al. Comparative significance in systolic ventricular interaction[J]. Cardiovasc Res, 1991, 25(9): 774-783. DOI: 10.1093/cvr/25.9.774.
[31]
TRIPOSKIADIS F, XANTHOPOULOS A, BOUDOULAS K D, et al. The interventricular septum: structure, function, dysfunction, and diseases[J/OL]. J Clin Med, 2022, 11(11): 3227 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/35683618/. DOI: 10.3390/jcm11113227.

上一篇 心脏磁共振特征追踪技术对非扩张型左室心肌病的诊断价值研究
下一篇 动态对比增强磁共振结合瘤内瘤周影像组学在预测乳腺非肿块强化病灶良恶性中的价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2