分享:
分享到微信朋友圈
X
综述
酰胺质子转移成像在子宫内膜癌中的研究进展
曾莹婷 宁清灵 方斌 钟俭平 钟俊远

Cite this article as: ZENG Y T, NING Q L, FANG Bin, et al. Progress of amide proton transfer imaging in endometrial cancer[J]. Chin J Magn Reson Imaging, 2025, 16(5): 223-228.本文引用格式:曾莹婷, 宁清灵, 方斌, 等. 酰胺质子转移成像在子宫内膜癌中的研究进展[J]. 磁共振成像, 2025, 16(5): 223-228. DOI:10.12015/issn.1674-8034.2025.05.034.


[摘要] 酰胺质子转移(amide proton transfer, APT)成像是一种新型的化学交换饱和转移技术,通过探测组织中内源性蛋白质或多肽的酰胺质子-水质子交换速率,反映蛋白浓度以及微环境的变化。子宫内膜癌(endometrial carcinoma, EC)是女性生殖道常见的恶性肿瘤,其发病率逐年上升且逐渐年轻化。目前APT成像在EC鉴别诊断、病理特征评估、免疫组化指标及分子病理表达预测等方面发挥重要价值,但相关研究大多样本量有限,加上APT成像技术及数据处理的局限性,影响结果预测准确性。今后,多中心大样本、结合分子亚型、肿瘤基因组及多模态影像技术系统分析,持续改进图像质量、规范数据处理,将推动精准诊疗的发展。本文就APT技术原理及其在EC中的研究进行综述,期望能帮助影像医师更全面了解EC的APT成像表现及应用前景,为临床个性化诊疗提供客观的影像信息。
[Abstract] Amide proton transfer (APT) imaging is a novel chemical exchange saturation transfer technique that measures the exchange rate between amide protons of endogenous proteins or peptides and water protons in tissues, reflecting changes in protein concentration and the microenvironment. Endometrial carcinoma (EC) is a common malignant tumor of the female genital tract, with an incidence that is increasing year by year and becoming younger. Currently, APT imaging plays an important role in the differential diagnosis, pathological characteristics evaluation, immunohistochemical markers and molecular pathological expression prediction of endometrial cancer. However, most of the relevant studies have limited sample sizes, and the limitations of APT imaging technology and data processing affect the accuracy of the results. In the future, the implementation of multi-center large sample studies, combined with molecular subtypes, tumor genomics and multimodal imaging technology, and the improvement of image quality and standardization of data processing, will promote the development of precision diagnosis and treatment. This article reviews the technical principles of APT and its research in endometrial cancer. It is expected to help radiologists to have a more comprehensive understanding of the APT imaging manifestations and application prospects of endometrial cancer, and to provide objective information for clinical personalized diagnosis and treatment.
[关键词] 子宫内膜癌;淋巴脉管间隙侵犯;磁共振成像;酰胺质子转移成像;组织学分级;免疫组化
[Keywords] endometrial carcinoma;lymphovascular space invasion;magnetic resonance imaging;amide proton transfer imaging;histological grading;immunohistochemistry

曾莹婷    宁清灵    方斌    钟俭平    钟俊远 *  

赣州市人民医院影像科,赣州 341000

通信作者:钟俊远,E-mail: JunyuanZhong@126.com

作者贡献声明:钟俊远设计本研究的方案,对本文内容的重要方面进行了修改;曾莹婷起草和撰写本文,获取、分析和解释本研究的相关文献;宁清灵、方斌、钟俭平获取、分析本研究相关文献,对本文的部分重要内容进行了修改;宁清灵获得了赣州市科技计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究所有方面负责,确保本研究的准确性和诚信。


基金项目: 赣州市科技计划项目 GZ2024ZSF046
收稿日期:2025-01-07
接受日期:2025-05-08
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.05.034
本文引用格式:曾莹婷, 宁清灵, 方斌, 等. 酰胺质子转移成像在子宫内膜癌中的研究进展[J]. 磁共振成像, 2025, 16(5): 223-228. DOI:10.12015/issn.1674-8034.2025.05.034.

0 引言

       子宫内膜癌(endometrial carcinoma, EC)是女性生殖道常见的恶性肿瘤,在女性恶性肿瘤中新发病例数排名第四,死亡数排名第五,其发病率和死亡率均较前有所上升,特别是在年轻人群中[1]。相较于2009版的EC FIGO分期,2023年版的FIGO分期在病理学类型、组织学分级、子宫肌层浸润深度、淋巴脉管间隙侵犯(lymphovascular space invasion, LVSI)和分子分型等方面做出了许多补充,对患者的治疗及预后评估提供了更精确的指导[2]。处于不同分期状态的EC患者治疗方式和预后大不相同,术前主要通过磁共振成像(magnetic resonance imaging, MRI)以及组织活检进行评估[3, 4]。然而,使用MRI常规T1WI及T2WI获得的信息有限,且容易受到多种因素干扰,比如绝经妇女子宫肌层变薄或因子宫腺肌病等因素导致结合带显示不清时,常规T2WI对EC病变范围的判断容易产生偏差。组织活检是一种有创操作,依赖操作者经验及取样部位准确性。因此,找到一种无创、有效的技术来补充现有的方法是非常有意义的。

       酰胺质子转移(amide proton transfer, APT)成像是一种基于化学交换饱和转移(chemical exchange saturation transfer, CEST)成像的分子成像技术[5, 6],通过促进组织中内源性蛋白质或多肽酰胺质子向水质子的不对称磁化转移,探测酰胺质子-水质子交换速率,反映蛋白浓度以及微环境的变化。APT成像在临床实践中得到广泛关注,已成功应用于中枢神经系统[7]、头颈[8]、乳腺[9]、肺[10]、前列腺[11]、直肠肿瘤[12]等方面。在女性生殖系统中,APT成像展示出对有囊性成分的卵巢良恶性肿瘤鉴别诊断能力[13],对宫颈癌诊断和预后各个方面均有潜在价值[14, 15, 16],应用于EC的研究也日渐增多。目前,APT成像在EC鉴别诊断、组织学分级及病理分型评估、免疫组化指标及分子病理表达预测等方面发挥重要价值,但受限于样本量、图像质量及数据规范化处理等因素,尚未达到各项研究同质化。本文旨在通过回顾分析APT成像在EC中应用的相关文献,为临床诊疗提供客观的影像学信息。

1 APT技术原理及病理学基础

       特定频率的射频脉冲多次辐射饱和蛋白质多肽链中的酰胺质子,可以将磁化强度转移到不饱和水质子,当射频时间足够长,质子交换速率足够快,转移次数足够多,这一过程将导致自由水信号下降[17]。CEST成像技术通常使用z谱来评估,水质子的共振频率是0 ppm,采用一种非对称分析方法,探测水质子饱和前后的信号变化来间接获得信号值。使用不对称磁化转移比(asymmetry of magnetization transfer ratio, MTRasym)代表不同质子群的信号强度,酰胺质子的共振频率是3.5 ppm,利用△MTRasym(3.5 ppm)数值量化APT信号强度强弱[18]

       有研究表明,APT信号的高低与蛋白质浓度及内部环境中pH的变化有关,二者占比分别约为66%及34%[19]。当细胞增殖活跃、蛋白质合成增多、细胞坏死增加,丰富的游离蛋白生成可导致较高的MTRasym(3.5 ppm)。此外,肿瘤内微血管密度增加,导致未成熟毛细血管网生成增多,随之引起血液灌注增加,也可能是APT信号增高的原因[20]。肿瘤细胞由于耗氧率的增加导致细胞内缺氧,还会逆转细胞膜上的pH梯度,与正常细胞相比呈弱碱性,而酰胺质子与水质子的交换过程是由碱催化的[19],因此肿瘤细胞APT值较高。综上,APT技术可以从分子水平反映蛋白质和多肽含量及所处环境中pH的变化。

       APT图像质量仍是目前限制其临床广泛运用的一个瓶颈,我们需要通过优化成像序列、提升图像质量和严格质控,来确保成像结果的准确性和可靠性。APT成像的关键点在于通过饱和酰胺质子与自由水的化学交换,来检测信号变化。然而所检测的信号强度通常只有水信号的百分之几,因此,必须解决一些关键技术问题,包括运动伪影和磁场(B0和B1+)不均匀性的校正[21]。我们可以通过运动校正方法以及B0和B1+不均匀性校正技术,来提高图像质量。另外在饱和脉冲上需要调整强度和持续时间,确保充分饱和酰胺质子。确保在偏移频率范围内(±3.5 ppm)扫描,以覆盖酰胺质子共振频率;用快速梯度回波或自旋回波序列,确保高信噪比和分辨率。制定并遵循标准化成像协议,确保结果一致性;定期校准设备,扫描标准样品或模型,评估图像质量;使用标准化软件处理数据,确保结果可重复性。

2 APT在EC中的应用

2.1 对EC与子宫其他病变的鉴别诊断

       EC最常见的病理类型是子宫内膜样腺癌(endometrioid endometrial adenocarcinoma, EEA),超过50%的患者在早期就被发现,通常可以手术干预,病情控制良好[22]。APT成像在子宫体良恶性疾病的鉴别诊断中发挥重要作用。一项纳入99例患者(111个病变)的研究[23]表明,子宫内膜腺癌的APT值(2.9%±0.1%)显著高于平滑肌瘤(1.9%±0.1%)、子宫腺肌瘤(2.2%±0.1%)和正常子宫肌层(1.9%±0.1%),鉴别子宫内膜腺癌与平滑肌瘤、子宫腺肌病和子宫肌层的APT可行阈值分别为2.4%、2.7%和2.4%。

       许多Ⅰ期EC病灶较为局限,与临床常见的子宫体良性病变鉴别困难。子宫内膜息肉(endometrial polyp, EP)与EC均可表现为阴道不规则流血,且MRI常规影像表现相似,但二者手术及治疗方式完全不同,许多学者联合APT及不同的MRI功能成像很好地对这两种疾病进行鉴别。马长军等[24]利用APT联合mDixon-Quant序列探讨这两种疾病的鉴别,发现早期EC的APT值(3.03%±1.03%)及R2*值(21.73±8.19 Hz)大于EP [APT值:(2.02%±0.53%),R2*值:(16.72±3.82)Hz],差异均具有统计学意义,二者联合诊断效能得到提升。TIAN等[25]使用APT联合弥散峰度成像(diffusion kurtosis imaging, DKI)鉴别二者,研究表明APT和DKI均能有效地区分EC和EP,但两种方法联合使用提高了鉴别能力,联合使用后AUC值可达0.976。MENG等[26]联合使用APT及体素内不相干运动(intra-voxel incoherent motion, IVIM)对二者进行鉴别,结果也是两种功能序列联合使用后展示出较高的鉴别诊断性能。EC患者相对EP患者有较高的APT值,可能与EC细胞代谢活跃、蛋白合成增加,且通常伴有坏死等因素相关。

       联合运用多种功能序列鉴别EC与其他子宫良性病变对比单独使用APT成像序列,展示出更高的诊断效能。此外,育龄期女性在月经周期不同阶段APT值会有相应变化,分泌期高于增殖期及月经期,反映了子宫结构的周期性生理变化[27]。APT成像技术在鉴别EC与子宫体其他良性病变发挥重要作用,但应考虑APT值随着月经周期的变化。

2.2 对EC病理特征的评估

       APT成像可用于评估EC的组织学分级、病理类型及LVSI状态。TAKAYAMA等[28]首先对APT成像应用于EEA组织学分级进行尝试,结果显示3级EEA的APT值显著高于1级,APT值与EEA的组织学分级呈正相关。一项联合APT成像及多模态弥散加权成像(diffusion weighted imaging, DWI)的研究[29],同样显示出APT成像在EC组织学分级中的作用,较高的MTRasym(3.5 ppm)和较低的D值提示更高级别的EC。

       Ⅰ型EC与雌激素相关,患者一般较年轻,包括高分化和中分化的EC,占总数的80%~90%;而Ⅱ型癌与雌激素无关,包括一些侵袭性较强的组织学类型,如浆液性癌和透明细胞癌;将EC按此进行分类对于确定治疗策略具有重要临床意义。OCHIAI等[30]研究中发现,最大MTRasym在Ⅱ型癌中明显高于Ⅰ型癌,平均MTRasym在二者中没有明显差异,这可能与Ⅱ型癌有更明显的核异型性、更显著的有丝分裂和细胞增殖有关,而最大MTRasym可以表示局部细胞密度最高或代谢最活跃的区域。APT及DKI在鉴别EC不同临床类型、组织学分级中具有重要作用,MTRasym(3.5 ppm)和Kappa值在Ⅱ型癌和高级别组中较高[31],MTRasym(3.5 ppm)和平均峰度(mean kurtosis, MK)值在非腺癌、高级别组中显著升高[32],MK和MTRasym(3.5 ppm)呈中度正相关。APT联合DKI序列[32],APT联合DWI序列[33]及APT联合T2 mapping序列[34]均可有效评估EC术前风险,APT联合不同功能成像后诊断效能明显提升。准确的术前风险分层,有利于患者的治疗选择和预后预测,非低风险组有着较高的组织学分级,组织中游离蛋白和肽的含量增加,组织结构更紧密、水分子弥散更明显,表现为APT值升高、ADC值降低。

       当肿瘤不断向组织深部浸润生长,甚至突破邻近血管壁或毛细淋巴管壁进入脉管系统,形成LVSI。LVSI会增加EC患者淋巴结转移、远处转移及肿瘤复发的风险,是降低患者生存率的独立危险因素,可影响EC患者的临床决策[35, 36]。2023年版的EC FIGO分期中[2],纳入了对LVSI状态的评估,在一定程度上反映了肿瘤的侵袭性。APT成像也可用于无创预测EC的LVSI状态,结果诊断性能较好。JIN等[32]对72例EC患者进行研究显示LVSI阳性组中的MTRasym(3.5 ppm)高于阴性组。田士峰等[37]进行的一项联合APT及DKI评估EC LVSI的研究中,有LVSI的EC患者APT、MK值均高于无LVSI者,二者联合评估LVSI的AUC为0.852。其原因可能是LVSI阳性的EC患者血浆中血管内皮生长因子和血管生成素-2的水平较高[38],可诱导EC肿瘤血管生长,同时促使更多蛋白质从血管渗出,因而在肿瘤局部区域蛋白质的浓度增加,APT值升高。高级别、高风险EC表现为更高的APT值,术前风险分层将有助于制订最适合患者的治疗方案。

2.3 对EC免疫组化指标的预测

       人表皮生长因子受体-2(human epidermal growth factor receptor-2, HER-2)是一种酪氨酸激酶受体,在调节细胞生长、存活和增殖的信号通路中发挥重要的作用,可通过基因扩增和蛋白过表达来刺激肿瘤的发生、侵袭和转移。一项关于曲妥珠单抗对HER-2过表达子宫浆液性癌的疗效研究发现,其表现为安全有效的[39]。识别HER-2表达状态,对HER-2阳性的EC患者行靶向治疗,对改善预后具有重要意义[40]。一项多模态MRI评估EC患者中HER-2基因表达的研究[41],联合APT、DKI及T2 mapping成像诊断HER-2表达效果良好,AUC达0.860,APT值是评估EC患者中HER-2表达的独立预测因子,HER-2阳性组的APT值高于阴性组。田士峰等[42]使用APT成像及脂肪定量测量技术评估EC HER-2基因表达,结果显示HER-2表达阳性组的APT值大于阴性组,AUC为0.755,截断值为2.475%。

       Ki-67的增殖状态通过Ki-67指数进行评估,是一种侵袭性标志,反映了肿瘤组织中的增殖活性,与组织学分级呈正相关,可用于预测EC的临床复发和预后[43]。LI等[44]研究了I型EC的Ki-67指数与APT成像的相关性,结果显示Ki-67低增殖组(<30%)的APT值为2.5%±0.2%,显著低于高增殖组(APT值为3.1%±0.1%),AUC为0.768。I型EC的APT值与Ki-67指数呈中度正相关(r=0.583)。在先前的研究中,MTRasym(3.5 ppm)与Ki-67指数也呈现正相关趋势[29, 31],Ki-67表达水平越高,EC细胞密度越大,分化程度越低,而APT值的增加与细胞代谢增快及核异型性增加等有关。

2.4 对EC分子病理表达的预测

       P53是一种DNA序列特异性转录因子,可调节众多靶基因,其产物介导许多肿瘤抑制的生物学过程。野生型P53维持正常的免疫稳态,调节微环境成分并发挥抗肿瘤作用。P53突变通过转录调节和分泌各种促肿瘤因子,扰乱正常的免疫平衡,介导肿瘤进展和转移[45]。有研究表明,在P53突变的EC患者中,辅助放化疗可提高5年无复发率和5年总生存率[46]。因而,识别出EC中的P53突变型,患者将获益于补充治疗。TIAN等[47]对14例P53突变型和33例P53野生型EC病例展开回顾性研究,探究多模态MRI在两者鉴别中的作用,结果发现P53突变型的APT和R2*值高于野生型,而表观弥散系数(apparent diffusion coefficient, ADC)值更低,反映了APT成像在EC患者术前评估P53基因突变状态中具有一定的临床应用价值。

       微卫星不稳定性(microsatellite instability, MSI)是由错配修复(mismatch repair, MMR)基因缺陷引起的不可纠正的碱基错配,导致基因突变累积,并最终致肿瘤的发生。MMR基因的突变可引起遗传性非息肉病性结直肠癌或Lynch综合征,hMSH6基因是有Lynch综合征的EC患者最常见的MMR突变型[48]。MSI高构成了一种MMR缺陷表型,存在于20%~30%的EC患者中,并导致高突变负荷的发生[49]。检测EC患者的MSI状态可以帮助筛查Lynch综合征,评估疾病进展,为患者的个体化精确治疗提供依据。

       目前临床上主要采用聚合酶链反应和免疫组织化学方法检测MSI状态,然而这些方法都需经过组织提取且耗费时间长,APT成像可作为临床评估EC患者MSI状态的一种无创且有效的方法。在一项对35例图像质量良好的EEA患者进行MRI评估的研究中[50],25.7%的EEA患者表现为MMR缺陷,MMR缺陷组的APT值(3.2%±0.3%)显著高于MMR高效组(2.8%±0.5%)。MA等[51]利用APT结合IVIM成像评估EC患者的MSI,同样发现MSI组的APT值显著高于微卫星稳定组,APT值是评估MSI状态的独立预测因素。具有MSI状态的EC患者通常与较高的肿瘤分级、较深的肌层浸润有关,程序性细胞死亡蛋白-1(programmed death-1, PD-1)及其配体(PD-L1)抑制剂免疫疗法在表达MSI的EC人群中有良好的应用前景[48],临床疗效显著。

3 小结与展望

       APT成像相关研究大多为单中心研究且样本量有限,缺乏多元化的数据支持,开展多中心、大样本的临床研究有利于验证数据可靠性。APT成像本身存在一些局限性,包括空间分辨率低、扫描时间长等。B0的不均匀性可影响体内水共振的位置,导致APT成像的复杂性,加上病灶ROI勾画的差异、月经周期影响等均可致APT值测量的潜在不准确性[52]

       在三维平面勾画感兴趣区会减少主观因素的影响,制定一个统一的人工感兴趣区勾画标准,有利于各项研究的同质化。使用快速成像方法缩短成像时间、减少饱和频率偏移数,可以减少运动伪影。人工智能的运用,也将在图像质量优化及数据分析中提供帮助。许多因体积较小、伪影较大而被排除在研究之外的1级EEA,将有可能纳入到研究中,得到更加准确的诊断阈值。

       APT成像在鉴别EC及子宫其他病变、EC病理特征评估、免疫组化指标及分子病理表达预测等方面发挥重要作用。但目前APT成像对LVSI的评估多局限于阴性或阳性,未来需要前瞻性研究进一步确定LVSI状态是否可以细化(如局灶性或弥漫性)并标准化后指导EC的临床管理。将来还可以与一些其他病理类型的子宫良恶性病变鉴别,预测其他的免疫组化指标及分子亚型,最大限度发挥APT成像的价值。同时结合分子机制研究及影像组学方法,进一步提高影像学指标在不同EC亚型鉴别诊断中的作用。APT成像预测MSI状态表现出一定的潜力,未来需要结合肿瘤基因组系统分析,对MSI进行更加深入的研究,为明确治疗方案提供新思路。随着多模态影像技术的发展,未来研究可以进一步挖掘APT成像联合不同功能序列诊断效能之间的差异,得到最优组合。

       综上,APT成像在EC中应用广泛,展示出重要的价值,并具有很大的潜力。随着优化扫描流程、提高图像质量、规范数据处理,期待APT成像技术在临床推广,为个体化精确治疗提供影像依据。

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
BEREK J S, MATIAS-GUIU X, CREUTZBERG C, et al. FIGO staging of endometrial cancer: 2023[J/OL]. J Gynecol Oncol, 2023, 34(5): e85 [2025-03-17]. https://obgyn.onlinelibrary.wiley.com/doi/full/10.1002/ijgo.14923. DOI: 10.3802/jgo.2023.34.e85.
[3]
RESTAINO S, PAGLIETTI C, ARCIERI M, et al. Management of patients diagnosed with endometrial cancer: comparison of guidelines[J/OL]. Cancers (Basel), 2023, 15(4): 1091 [2025-01-15]. https://www.mdpi.com/2072-6694/15/4/1091. DOI: 10.3390/cancers15041091.
[4]
ZHANG L, LIU L. Evaluation of multi-parameter MRI in preoperative staging of endometrial carcinoma[J/OL]. Eur J Radiol Open, 2024, 12: 100559 [2025-01-07]. https://www.sciencedirect.com/science/article/pii/S2352047724000145. DOI: 10.1016/j.ejro.2024.100559.
[5]
ZHOU J Y, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[6]
SUN C, ZHAO Y, ZU Z L. Validation of the presence of fast exchanging amine CEST effect at low saturation powers and its influence on the quantification of APT[J]. Magn Reson Med, 2023, 90(4): 1502-1517. DOI: 10.1002/mrm.29742.
[7]
DE ALMEIDA G B, PASCUZZO R, MAMBRIN F, et al. The role of amide proton transfer (APT)-weighted imaging in glioma: assessment of tumor grading, molecular profile and survival in different tumor components[J/OL]. Cancers (Basel), 2024, 16(17): 3014 [2025-01-15]. https://www.mdpi.com/2072-6694/16/17/3014. DOI: 10.3390/cancers16173014.
[8]
XIANG Y, ZHANG Q J, CHEN X, et al. Synthetic MRI and amide proton transfer-weighted MRI for differentiating between benign and malignant sinonasal lesions[J]. Eur Radiol, 2024, 34(10): 6820-6830. DOI: 10.1007/s00330-024-10696-6.
[9]
SHAN H, KE T, BAO S, et al. Evaluation of functional magnetic resonance APT and DKI imaging for breast cancer[J/OL]. Cancer Cell Int, 2024, 24(1): 401 [2025-01-15]. https://link.springer.com/article/10.1186/s12935-024-03587-9. DOI: 10.1186/s12935-024-03587-9.
[10]
OHNO Y, YUI M, YAMAMOTO K, et al. Chemical exchange saturation transfer MRI: capability for predicting therapeutic effect of chemoradiotherapy on non-small cell lung cancer patients[J]. J Magn Reson Imaging, 2023, 58(1): 174-186. DOI: 10.1002/jmri.28691.
[11]
YE Y Q, GONG Z J, SONG Y L, et al. Added value of amide proton transfer-weighted magnetic resonance imaging to Prostate Imaging Reporting and Data System version 2.1 in differentiating clinically significant prostate cancer[J]. Quant Imaging Med Surg, 2024, 14(12): 9036-9048. DOI: 10.21037/qims-24-1121.
[12]
CHEN W C, LIU G Q, CHEN J L, et al. Whole-tumor amide proton transfer-weighted imaging histogram analysis to predict pathological extramural venous invasion in rectal adenocarcinoma: a preliminary study[J]. Eur Radiol, 2023, 33(7): 5159-5171. DOI: 10.1007/s00330-023-09418-1.
[13]
YU Y B, SONG X L, ZENG Z, et al. Amide proton transfer weighted MRI in differential diagnosis of ovarian masses with cystic components: a preliminary study[J]. Magn Reson Imaging, 2023, 103: 216-223. DOI: 10.1016/j.mri.2023.07.014.
[14]
XU C, ZHANG X Y, WU X C, et al. The value of amide proton transfer imaging combined with serum CA125 levels in predicting lymph vascular invasion in cervical cancer before surgery[J]. Acta Radiol, 2024, 65(9): 1039-1045. DOI: 10.1177/02841851241273939.
[15]
张倩瑜, 刘架伸, 田士峰, 等. 酰胺质子转移成像与动态对比增强MRI评估宫颈癌神经侵犯的价值[J]. 磁共振成像, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imag, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
[16]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.
[17]
孔雅晴, 曲倩倩, 明蕾, 等. 酰胺质子转移成像在泌尿生殖系统疾病中的研究进展[J]. 磁共振成像, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
KONG Y Q, QU Q Q, MING L, et al. Research progress of amidine proton transfer imaging in genitourinary system disease[J]. Chin J Magn Reson Imag, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
[18]
林月, 李春媚, 陈敏. 酰胺质子转移成像的应用进展[J]. 放射学实践, 2018, 33(5): 525-528. DOI: 10.13609/j.cnki.1000-0313.2018.05.018.
LIN Y, LI C M, CHEN M. Application progress of amide proton transfer imaging[J]. Radiol Pract, 2018, 33(5): 525-528. DOI: 10.13609/j.cnki.1000-0313.2018.05.018.
[19]
RAY K J, SIMARD M A, LARKIN J R, et al. Tumor pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging[J]. Cancer Res, 2019, 79(7): 1343-1352. DOI: 10.1158/0008-5472.CAN-18-2168.
[20]
WANG F, XIANG Y S, WU P, et al. Evaluation of amide proton transfer imaging for bladder cancer histopathologic features: A comparative study with diffusion- weighted imaging[J/OL]. Eur J Radiol, 2023, 159: 110664 [2025-01-15]. https://pubmed.ncbi.nlm.nih.gov/36574743/. DOI: 10.1016/j.ejrad.2022.110664.
[21]
SIMEGN G L, SUN P Z, ZHOU J Y, et al. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review[J/OL]. NMR Biomed, 2025, 38(1): e5294 [2025-01-15]. https://pubmed.ncbi.nlm.nih.gov/39532518/. DOI: 10.1002/nbm.5294.
[22]
DOBRZYCKA B, TERLIKOWSKA K M, KOWALCZUK O, et al. Prognosis of stage I endometrial cancer according to the FIGO 2023 classification taking into account molecular changes[J/OL]. Cancers (Basel), 2024, 16(2): 390 [2025-01-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10813919/. DOI: 10.3390/cancers16020390.
[23]
LI Y, LIN C Y, QI Y F, et al. Non-invasive differentiation of endometrial adenocarcinoma from benign lesions in the uterus by utilization of amide proton transfer-weighted MRI[J]. Mol Imaging Biol, 2021, 23(3): 446-455. DOI: 10.1007/s11307-020-01565-x.
[24]
马长军, 刘爱连, 田士峰, 等. 初探APTw联合mDixon-Quant序列鉴别Ⅰ期子宫内膜癌与子宫内膜息肉的价值[J]. 临床放射学杂志, 2022, 41(2): 372-376. DOI: 10.13437/j.cnki.jcr.2022.02.007.
MA C J, LIU A L, TIAN S F, et al. Preliminary study on the application value of APTw combined with mDixon-quant sequence in differentiating early endometrial carcinoma from endometrial polyp[J]. J Clin Radiol, 2022, 41(2): 372-376. DOI: 10.13437/j.cnki.jcr.2022.02.007.
[25]
TIAN S F, CHEN A L, LI Y, et al. The combined application of amide proton transfer imaging and diffusion kurtosis imaging for differentiating stage Ia endometrial carcinoma and endometrial polyps[J]. Magn Reson Imaging, 2023, 99: 67-72. DOI: 10.1016/j.mri.2022.12.026.
[26]
MENG X, TIAN S F, ZHANG Q H, et al. Improved differentiation between stage Ⅰ-Ⅱ endometrial carcinoma and endometrial polyp with combination of APTw and IVIM MR imaging[J]. Magn Reson Imaging, 2023, 102: 43-48. DOI: 10.1016/j.mri.2023.04.001.
[27]
ZHANG S Y, SUN H Z, LI B B, et al. Variation of amide proton transfer signal intensity and apparent diffusion coefficient values among phases of the menstrual cycle in the normal uterus: A preliminary study[J]. Magn Reson Imaging, 2019, 63: 21-28. DOI: 10.1016/j.mri.2019.07.007.
[28]
TAKAYAMA Y, NISHIE A, TOGAO O, et al. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: association with histologic grade[J]. Radiology, 2018, 286(3): 909-917. DOI: 10.1148/radiol.2017170349.
[29]
FU F F, MENG N, HUANG Z, et al. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2022, 12(2): 1311-1323. DOI: 10.21037/qims-21-189.
[30]
OCHIAI R, MUKUDA N, YUNAGA H, et al. Amide proton transfer imaging in differentiation of type Ⅱ and type I endometrial carcinoma: A pilot study[J]. Jpn J Radiol, 2022, 40(2): 184-191. DOI: 10.1007/s11604-021-01197-3.
[31]
MENG N, WANG X J, SUN J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[32]
JIN X X, YAN R F, LI Z, et al. Evaluation of amide proton transfer-weighted imaging for risk factors in stage I endometrial cancer: a comparison with diffusion-weighted imaging and diffusion kurtosis imaging[J/OL]. Front Oncol, 2022, 12: 876120 [2025-01-07]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.876120/full. DOI: 10.3389/fonc.2022.876120.
[33]
MENG N, FANG T, FENG P Y, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684.
[34]
马长军, 刘爱连, 田士峰, 等. 酰胺质子转移加权成像联合T2 mapping序列对子宫内膜癌术前风险评估的价值初探[J]. 磁共振成像, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
MA C J, LIU A L, TIAN S F, et al. Preliminary study of APT combined with T2 mapping sequence in preoperative risk assessment of endometrial carcinoma[J]. Chin J Magn Reson Imag, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
[35]
RUSCELLI M, MALOBERTI T, CORRADINI A G, et al. Prognostic impact of pathologic features in molecular subgroups of endometrial carcinoma[J/OL]. J Pers Med, 2023, 13(5): 723 [2025-01-07]. https://www.mdpi.com/2075-4426/13/5/723. DOI: 10.3390/jpm13050723.
[36]
YARANDI F, SHIRALI E, AKHAVAN S, et al. The impact of lymphovascular space invasion on survival in early stage low-grade endometrioid endometrial cancer[J/OL]. Eur J Med Res, 2023, 28(1): 118 [2025-01-07]. https://link.springer.com/article/10.1186/s40001-023-01084-9. DOI: 10.1186/s40001-023-01084-9.
[37]
田士峰, 孟醒, 朱雯, 等. 酰胺质子转移加权和扩散峰度成像评估子宫内膜癌淋巴血管间隙浸润[J]. 中国医学影像学杂志, 2023, 31(10): 1085-1089. DOI: 10.3969/j.issn.1005-5185.2023.10.016.
TIAN S F, MENG X, ZHU W, et al. Amide proton transfer weighted and diffusion kurtosis imaging in evaluating lymphovascular space invasion of endometrial carcinoma[J]. Chin J Med Imag, 2023, 31(10): 1085-1089. DOI: 10.3969/j.issn.1005-5185.2023.10.016.
[38]
ABBINK K, ZUSTERZEEL P L M, GEURTS-MOESPOT A, et al. Prognostic significance of VEGF and components of the plasminogen activator system in endometrial cancer[J]. J Cancer Res Clin Oncol, 2020, 146(7): 1725-1735. DOI: 10.1007/s00432-020-03225-7.
[39]
TYMON-ROSARIO J, SIEGEL E R, BELLONE S, et al. Trastuzumab tolerability in the treatment of advanced (stage Ⅲ-Ⅳ) or recurrent uterine serous carcinomas that overexpress HER2/neu[J]. Gynecol Oncol, 2021, 163(1): 93-99. DOI: 10.1016/j.ygyno.2021.07.033.
[40]
MCNAMARA B, GREENMAN M, PEBLEY N, et al. Antibody-drug conjugates (ADC) in HER2/neu-positive gynecologic tumors[J/OL]. Molecules, 2023, 28(21): 7389 [2025-01-07]. https://www.mdpi.com/1420-3049/28/21/7389. DOI: 10.3390/molecules28217389.
[41]
LI X, TIAN S, MA C, et al. Multimodal MRI for estimating her-2 gene expression in endometrial cancer[J/OL]. Bioengineering (Basel), 2023, 10(12): 1399 [2025-01-07]. https://www.mdpi.com/2306-5354/10/12/1399L. DOI: 10.3390/bioengineering10121399.
[42]
田士峰, 刘爱连, 任雪, 等. 酰胺质子转移加权成像及脂肪定量测量技术评估子宫内膜癌Her-2基因表达[J]. 磁共振成像, 2021, 12(11): 70-73. DOI: 10.12015/issn.1674-8034.2021.11.015.
TIAN S F, LIU A L, REN X, et al. Evaluation of Her-2 gene expression in endometrial carcinoma by amide proton transfer weighted and fat quantitative[J]. Chin J Magn Reson Imag, 2021, 12(11): 70-73. DOI: 10.12015/issn.1674-8034.2021.11.015.
[43]
GÜLSEREN V, KOCAER M, ÖZDEMIR İ A, et al. Do estrogen, progesterone, P53 and Ki67 receptor ratios determined from curettage materials in endometrioid-type endometrial carcinoma predict lymph node metastasis [J/OL]. Curr Probl Cancer, 2020, 44(1): 100498 [2025-01-07]. https://www.sciencedirect.com/science/article/abs/pii/S0147027219300273. DOI: 10.1016/j.currproblcancer.2019.07.003.
[44]
LI Y, LIN C Y, QI Y F, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006.
[45]
EFE G, RUSTGI A K, PRIVES C. p53 at the crossroads of tumor immunity[J]. Nat Cancer, 2024, 5(7): 983-995. DOI: 10.1038/s43018-024-00796-z.
[46]
LEÓN-CASTILLO A, DE BOER S M, POWELL M E, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy[J]. J Clin Oncol, 2020, 38(29): 3388-3397. DOI: 10.1200/JCO.20.00549.
[47]
TIAN S F, WANG Y, ZHU W, et al. The value of multimodal functional magnetic resonance imaging in differentiating p53abn from p53wt endometrial carcinoma[J]. Acta Radiol, 2023, 64(11): 2948-2956. DOI: 10.1177/02841851231198911.
[48]
马彬彬, 王辉. 微卫星不稳定性及其在子宫内膜癌中的研究进展[J]. 癌症进展, 2019, 17(12): 1385-1388. DOI: 10.11877/j.issn.1672-1535.2019.17.12.06.
MA B B, WANG H. Microsatellite instability and its research progress in endometrial cancer[J]. Oncol Prog, 2019, 17(12): 1385-1388. DOI: 10.11877/j.issn.1672-1535.2019.17.12.06.
[49]
BONNEVILLE R, KROOK M A, KAUTTO E A, et al. Landscape of microsatellite instability across 39 cancer types[J/OL]. JCO Precis Oncol, 2017, 2017: PO.17.00073 [2025-01-07]. https://pubmed.ncbi.nlm.nih.gov/29850653/. DOI: 10.1200/PO.17.00073.
[50]
LI Y, LIU X Y, WANG X Q, et al. Using amide proton transfer-weighted MRI to non-invasively differentiate mismatch repair deficient and proficient tumors in endometrioid endometrial adenocarcinoma[J/OL]. Insights Imaging, 2021, 12(1): 182 [2025-01-07]. https://link.springer.com/article/10.1186/s13244-021-01126-y. DOI: 10.1186/s13244-021-01126-y.
[51]
MA C J, TIAN S F, SONG Q L, et al. Amide proton transfer-weighted imaging combined with intravoxel incoherent motion for evaluating microsatellite instability in endometrial cancer[J]. J Magn Reson Imaging, 2023, 57(2): 493-505. DOI: 10.1002/jmri.28287.
[52]
SHENG L J, YUAN E Y, YUAN F, et al. Amide proton transfer-weighted imaging of the abdomen: Current progress and future directions[J]. Magn Reson Imaging, 2024, 107: 88-99. DOI: 10.1016/j.mri.2024.01.006.

上一篇 肝细胞癌血管包绕肿瘤团簇组织学和影像学研究进展
下一篇 磁共振波谱在血液系统疾病中的研究及应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2