分享:
分享到微信朋友圈
X
临床研究
高分辨率豆纹动脉MRA与脑小血管病脑白质损伤的相关性研究
武鹏飞 吴飞云 苏春秋 侯静文 鲁珊珊

Cite this article as: WU P F, WU F Y, SU C Q, et al. Study on the correlation between high resolution MRA of lenticularis artery and white matter injury of cerebral small vascular disease[J]. Chin J Magn Reson Imaging, 2025, 16(6): 66-71, 77本文引用格式:武鹏飞, 吴飞云, 苏春秋, 等. 高分辨率豆纹动脉MRA与脑小血管病脑白质损伤的相关性研究[J]. 磁共振成像, 2025, 16(6): 66-71, 77. DOI:10.12015/issn.1674-8034.2025.06.010.


[摘要] 目的 探讨高分辨率压缩感知(compressed sensing, CS)TOF-MRA(time-of-flight magnetic resonance angiography, TOF-MRA)技术对脑豆纹动脉(lenticulostriate arteries, LSA)的成像效果,并分析LSA形态学特征与脑小血管病(cerebral small vessel disease, SVD)脑白质损伤的相关性。材料与方法 前瞻性纳入2023年4月至2024年2月间行3 T颅脑MRI检查的SVD患者,包括常规MRI序列和CS TOF-MRA序列,收集患者SVD相关危险因素。根据脑白质损伤的Fazekas分级将患者分为四组(分别为F0组、F1组、F2组、F3组)。基于CS TOF-MRA序列计算各组患者LSA总数目、总长度、最长长度及平均长度。采用随机区组方差分析及logistic回归分析,分析各LSA定量指标、临床指标与脑白质损伤程度之间的关系。结果 共纳入72例SVD患者,其中F0组15例,F1组25例,F2组15例,F3组17例。四组患者LSA总数目、总长度差异具有统计学意义(P均<0.05),而LSA最长长度和平均长度差异不具有统计学意义(P均>0.05)。进一步两两比较显示,LSA总数目:F0[(6.40±1.12)条]>F1[(5.24±1.09)条]>F2[(4.46±1.06)条]>F3[(3.76±1.25)条],差异具有统计学意义(P<0.05)。LSA总长度:F0[(21.05±4.20)cm]>F1[(17.20±5.69)cm]>F2[(13.59±4.22)cm] >F3 [(11.73±5.38)cm],差异具有统计学意义(P<0.05)。LSA最长长度,F0高于其他三组,但其他三组之间没有明显差异。LSA平均长度:F0[(3.29±0.34)cm]>F1[(3.22±0.56)cm]>F2[(2.99±0.39)cm]>F3[(2.98±0.62)]cm,差异不具有统计学意义(P>0.05)。logistic回归分析显示LSA总数目(OR=0.30,P<0.001)、LSA总长度(OR=0.85,P=0.048)、年龄(OR=1.09,P=0.002)、高血压(OR=3.36,P=0.009)与Fazekas分级独立相关。结论 高分辨率压缩感知TOF-MRA技术可有效评估豆纹动脉形态学特征,其中LSA总数目和总长度减少与脑小血管病患者白质损伤程度加重存在关联,而年龄和高血压是其独立危险因素。该技术为脑小血管病的早期诊断和风险评估提供了新的影像学手段。
[Abstract] Objective To explore the imaging effect of high-resolution compressed sensing (CS) TOF-MRA on lenticulostriate arteries (LSA), and the correlation between the morphological characteristics of LSA and white matter injury in cerebral small vessel disease (SVD).Materials and Methods Patients with SVD who underwent 3 T cranial MRI examination from April 2023 to February 2024 were prospectively included, including conventional MRI sequences and CS TOF-MRA sequences, and the SVD-related risk factors of the patients were collected, and SVD-related risk factors of the patients were collected. The patients were divided into four groups (F0, F1, F2, and F3 respectively) according to the Fazekas classification of white matter injury. The total number, total length, longest length and average length of LSAs in each group of patients were calculated based on the CS TOF-MRA sequence. Random block difference analysis and logistic regression analysis were used to analyze the relationship between each quantitative index of LSA, clinical index and the degree of white matter injury of the brain.Results A total of 72 patients with SVD were included, among which there were 15 cases in group F0, 25 cases in group F1, 15 cases in group F2, and 17 cases in group F3. There were statistically significant differences among the four groups of patients in terms of the total number and total length of LSAs (P < 0.05), while there were no statistically significant differences in the longest length and average length of LSAs (P > 0.05). Further pairwise comparisons showed that the total number of LSAs: F0 (6.40 ± 1.12) > F1 (5.24 ± 1.09) > F2 (4.46 ± 1.06) > F3 (3.76 ± 1.25), and the difference was statistically significant (P < 0.05). The total length of LSA: F0 (21.05 ± 4.20) cm > F1 (17.20 ± 5.69) cm > F2 (13.59 ± 4.22) cm > F3 (11.73 ± 5.38) cm, and the difference was statistically significant (P < 0.05). The longest length of LSA, F0 was higher than that of the other three groups, but there was no significant difference among the other three groups. The average length of LSA: F0 (3.29 ± 0.34) cm > F1 (3.22 ± 0.56) cm > F2 (2.99 ± 0.39) cm > F3 (2.98 ± 0.62) cm, and the difference was not statistically significant (P > 0.05). Logistic regression analysis showed the total number of LSAs (OR = 0.30, P < 0.001), total length of LSA (OR = 0.85, P = 0.048), age (OR = 1.09, P = 0.002), hypertension (OR = 3.36, P = 0.009) was independently correlated with the Fazekas classification.Conclusions High-resolution compressive sensing TOF-MRA technology can effectively evaluate the morphological characteristics of lentostriated arteries. Among them, the reduction in the total number and total length of LSAs is associated with the aggravation of white matter injury in patients with cerebral small vessel disease, while age and hypertension are independent risk factors. This technology provides a new imaging approach for the early diagnosis and risk assessment of cerebral small vessel diseases.
[关键词] 脑小血管病;脑白质损伤;豆纹动脉;压缩感知;磁共振成像;脑血管造影术
[Keywords] cerebral small vessel disease;white matter injury;lenticulostriate arteries;compressed sensing;magnetic resonance imaging;cerebral angiography

武鹏飞    吴飞云    苏春秋    侯静文    鲁珊珊 *  

南京医科大学第一附属医院放射科,南京 210029

通信作者:鲁珊珊,E-mail:shanshanlu@njmu.edu.cn

作者贡献声明::鲁珊珊设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目资助;武鹏飞起草和撰写稿件,获取、分析和解释本研究的数据;吴飞云、苏春秋、侯静文获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82171907
收稿日期:2025-03-12
接受日期:2025-06-10
中图分类号:R445.2  R743 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.06.010
本文引用格式:武鹏飞, 吴飞云, 苏春秋, 等. 高分辨率豆纹动脉MRA与脑小血管病脑白质损伤的相关性研究[J]. 磁共振成像, 2025, 16(6): 66-71, 77. DOI:10.12015/issn.1674-8034.2025.06.010.

0 引言

       脑小血管疾病(cerebral small vessel disease, SVD)是多种病理因素导致的,颅内小血管病变引起的,一系列与脑实质血管性损伤相关的病理、影像和临床症状的综合征[1]。脑白质高信号是较为常见的SVD特征性影像学表现之一,表现为侧脑室旁和深部白质的斑点状高信号,随着病程的进展可融合成片[2, 3]

       豆纹动脉(lenticulostriate arteries, LSA)发自于大脑中动脉,是颅内重要的穿支小动脉,它向大脑基底神经节及其附近脑区供血[4]。在高血压、高血脂等病理状态下,LSA较易形成斑块阻塞血管,引发SVD[5, 6]。LSA可视化对于理解SVD的病理机制,评估病情严重程度、判断病程和制订治疗方案至关重要,然而由于穿支动脉的直径小,LSA成像仍极具挑战[7]。数字减影血管造影(digital subtraction angiography, DSA)和时间飞跃磁共振血管成像(time-of-flight magnetic resonance angiography, TOF-MRA)是目前临床上较为常用的评估脑血管的影像学检查[8]。DSA被认为是观察LSA的金标准,但其操作烦琐、有创伤,有电离辐射,对比剂有潜在的肾毒性,因而具有一定的局限性[9]。MRA具有无创、无电离辐射、无对比剂,但是在临床扫描时间和最高磁体场强的限制下,其分辨率不够,对于显示LSA等细小的穿支血管还有一定的困难[10]。既往研究表明,在超高场7 T MRI下,时间飞跃磁共振血管造影(time-of-flight magnetic resonance angiography, TOF-MRA)具有优越的空间分辨力和血管组织对比度,可清晰显示LSA[11]。然而目前7 T超高场的普及率较低,大大限制了其临床应用。近年来,压缩感知(compressed sensing, CS)技术快速发展,我们既往研究发现:CS技术可以显著缩短TOF-MRA扫描时间,获得高分辨率图像的同时提高血管边缘锐利度,有利于细小血管的显示[8, 12, 13]。但目前尚未见其在LSA成像中的应用。为了弥补该领域的空白,本研究纳入不同Fazekas分级的SVD脑白质损伤患者,采用高分辨CS TOF-MRA技术对LSA血管数目和长度进行量化评估,旨在明确LSA形态学特征与脑白质病变的关系,为理解SVD病理学机制及其诊断提供影像学依据,同时验证3 T平台对SVD患者LSA成像的可行性,促进高分辨CS TOF-MRA技术的推广应用。

1 材料与方法

1.1 研究对象

       于2023年4月至2024年2月间,前瞻性收集在江苏省人民医院就诊的SVD患者。纳入标准:(1)年龄≥30岁;(2)存在一个及以上的SVD危险因素;(3)T2WI和FLAIR图像上脑白质高信号Fazekas分级0~3级;(4)完成了高分辨率CS TOF-MRA检查。排除标准:(1)颅内外动脉狭窄率≥50%;(2)既往严重脑疾病,如脑出血、脑梗死、颅内感染、脑肿瘤等;(3)非动脉粥样硬化性血管病,如烟雾病、血管炎等;(4)其他原因如中毒、免疫、炎症、代谢及感染等导致的脑白质高信号;(5)图像质量差,影响后续分析。本研究设计遵守《赫尔辛基宣言》,并获得了江苏省人民医院伦理委员会的批准(批准文号:2023-SRFA-216),所有受试者均签署了知情同意书。

1.2 临床资料的收集及评估

       所有患者在MRI扫描前均进行了临床评估和筛选,符合SVD的临床特征。收集患者的临床资料信息包括:性别、年龄、SVD危险因素(高血压、糖尿病、高血脂、吸烟史)。

1.3 扫描方法

       采用德国西门子生产的3.0 T Vida MR扫描系统、32通道头颈联合线圈进行扫描。扫描体位为:患者仰卧位,头先进,以瞳间线中心为定位中心。常规头颅MRI平扫序列包括:矢状位T1加权成像(T1-weighted imaging, T1WI)、轴位T2加权成像(T2-weighted imaging, T2WI)、T1加权成像、弥散加权成像(diffusion weighted imaging, DWI)和液体衰减反转恢复序列(fluid-attenuated inversion recovery, FLAIR),其中重要序列的扫描参数如下。

       FLAIR:TR 8000 ms,TE 109 ms,翻转角150°,层厚5 mm,矩阵230×230;CS TOF-MRA:FOV 220 mm×220 mm,TR 21 ms,TE 3.49 ms,翻转角18°,层厚0.6 mm,矩阵368×334,重建体素大小0.4 mm×0.4 mm×0.4 mm。根据我们既往研究结果[14],将CS加速因子设置为2(CS2),采集时间为5 min 5 s,重建时间为12 s。

1.4 图像分析

       将所有图像传输至德国Siemens后处理工作站Syngo.via(VB40B_HF07)进行后处理和分析。

       (1)脑白质高信号病变(white matter hyper-intensity of presumed vascular origin, WMH)的分级评估[3]。基于头颅T2-FLAIR序列图像,采用Fazekas评分量表,对脑室旁和深部白质高信号病变进行分级,F0级为无病变;F1级为斑点样病变;F2级为斑块样病变(斑点部分融合);F3级为斑片样病变(病变大片融合)。F0、F1、F2、F3组分别表示对应的不同Fazekas分级。评估由两位工作10年和12年神经影像学副主任医师分别独立完成,意见不统一时,由两位医师讨论后取得统一。

       (2)LSA的定量分析。在Siemens后处理工作站上,由一位工作8年的神经影像主治医师通过多平面重构(multi-planar reformatting, MPR)将CS-TOF图像重构为冠状面,然后进行最大密度投影(maximum intensity projection, MIP)以最大限度地显示LSA。该名神经影像医师在不知道脑白质Fazekas分级的情况下,仅阅读CS-TOF序列的数据,对LSA进行统计和测量,共进行两次测量,测量时间间隔大于1个月。LSA的统计和测量指标如下:

       ①LSA的总数目(N)及总长度(Lt):统计大脑中动脉M1段长度大于5 mm的LSA,对起源于同一分支的LSA在测量数目时按1条计算,在测量长度时以分支中最长的显示长度为准。②LSA最长长度(Ll)、LSA总长度(Lt)和LSA平均长度(La):利用软件的曲面重建技术先对CS-TOF MRA数据进行曲面重建,然后对LSA分支进行长度的测量,并计算所有显示出的LSA的总长度和平均长度。

1.5 统计学方法

       采用SPSS24.0(IBM SPSS Statistics 24.0)软件进行统计学分析。对分类资料和连续变量资料的一致性评价分别采用Kappa检验、组内相关系数(intra-class correlation coefficient, ICC),<0.40为一致性较差;0.40~0.75为一致性中等;>0.75为一致性较好。采用Shapiro-Wilk检验分析计量资料是否符合正态分布,符合正态分布的即用均数±标准差表示,不符合用中位数(上下四分位数)表示;计数资料用频数及百分比表示。采用单因素方差检验,对不同Fazekas分级下LSA显示数目、最长显示长度、总长度、平均长度、各临床危险因素进行总体分析,采用成对比较法进行组间两两比较,以P<0.05为差异有统计学意义。采用多因素logistic回归分析,探讨LSA定量指标是否与Fazekas分级独立相关,并对性别、年龄、高血压、糖尿病、高脂血症、吸烟进行校正。所有统计学检验均为双侧检验,P<0.05为差异具有统计学意义。

2 结果

2.1 临床一般资料

       前瞻性入组了85例,排除13例,其中陈旧性脑梗,3例,MMD,4例,图像质量不佳 6例。最终纳入72例,其中男45例,女27例,年龄31~85(68±12)岁。

       Fazekas分级结果包括F0(n=15)、F1(n=25)、F2(n=15)、F3(n=17),两名神经影像医师对Fazekas分级评分具有较好的一致性(Kappa值为0.801)。

       四组患者的临床基本资料和危险因素比较结果详见表1,四组患者在性别、糖尿病、高血脂、吸烟方面的差异不具有统计学意义(P>0.05),而在年龄、高血压因素方面的差异具有统计学意义(P<0.05)(表1)。

表1  四组患者的基本资料
Tab. 1  Basic data of the four groups

2.2 SVD危险因素对LSA的影响

       SVD危险因素对LSA影响的分析结果详见表2, 3, 4, 5。高血压组患者的LSA总数目为(4.66±1.41)条、总长度为(14.95±6.27)cm,均小于非高血压组[LSA总数目(5.43±1.30)条、总长度(17.43±5.25)cm],且差异具有统计学意义(P<0.05)。吸烟组患者的LSA总数目为(4.52±1.36)条,小于非吸烟组[LSA总数目(5.34±1.36)条](P<0.05)。其余危险因素的组间LSA定量指标差异均不具有统计学意义(P>0.05)。

表2  高血压因素对LSA的影响
Tab. 2  The influence of hypertension factors on LSA
表3  高血脂因素对LSA的影响
Tab. 3  The influence of hyperlipidemia factors on LSA
表4  高血糖因素对LSA的影响
Tab. 4  The influence of hyperglycemic factors on LSA
表5  吸烟因素对LSA的影响
Tab. 5  The influence of smoking factors on LSA

2.3 LSA定量指标与Fazekas分级之间的关系

       神经影像医师间隔两次对LSA总数目、总长度、最长长度及平均长度的评估均具有较好的一致性(ICC值0.753~0.883,P<0.05,表6)。不同Fazekas分级的LSA定量指标对比结果详见表78。代表性病例见图1。随着Fazekas分级的提高,LSA的显示总数目呈现递减的结果[F0(6.40±1.12)cm>F1(5.24±1.09)cm>F2(4.46±1.06)cm>F3(3.76±1.25)cm],进一步两两比较结果显示:除F2和F3之间差异不具有统计学意义(P>0.05),其余各组之间差异均具有统计学意义(P<0.05)。

       随着Fazekas分级的提高,LSA的总长度呈现递减趋势,F0(21.05±4.20)cm>F1(17.20±5.69)cm>F2(13.59±4.22)cm>F3(11.73±5.38)cm,进一步两两比较结果显示:各组之间差异均具有统计学意义(P<0.05)。

       LSA最长长度:F0级LSA的最长长度高于其他各组,F1、F2、F3之间最长长度没有明显差距。两两比较结果显示:F0与F2、F0与F3之间差异具有统计学意义(P<0.05),其余各组之间差异均不具有统计学意义(P>0.05)。

       LSA平均长度:F0级(3.29±0.34)cm与F1级(3.22±0.56)cm的LSA平均长度相当,高于F2级(2.99±0.39)cm、F3级(2.98±0.62)cm,但差异不具有统计学意义(P>0.05)。

       进一步logistic回归分析显示:LSA总数目(P<0.001)、LSA总长度(P=0.048)、年龄(P=0.002)、高血压(P=0.009)与Fazekas分级独立相关(表9)。

图1  不同患者各Fazekas分级(0~3级)T2 FLAIR序列及其对应的CS TOF-MRA重建图像。1A(女,45岁)、1B(男,65岁)、1C(女,68岁)、1D(男,75岁)分别诊断为Fazekas分级0、1、2、3级脑白质损伤的T2 FLAIR序列图像,图1E、1F、1G、1H分别为对应的CS TOF-MRA重建的LSA显示情况,随着Fazekas分级的提高,LSA显示的总数目、总长度均明显减少,分支远端显示能力逐步下降。T2 FLAIR:T2加权液体衰减反转恢复序列;CS TOF-MRA:压缩感知时间飞跃磁共振血管成像;LSA:脑豆纹动脉。
Fig. 1  T2 FLAIR sequences of Fazekas grades (grades 0~3) and their corresponding CS TOF-MRA reconstructed images for different patients. 1A (female, 45 years old), 1B (male, 65 years old), 1C (female, 68 years old), and 1D (male, 75 years old) are T2 FLAIR sequence images diagnosed as Fazekas grade 0, 1, 2, and 3 white matter injury, respectively; figures 1E, 1F, 1G, and 1H respectively show the corresponding LSAs reconstructed by CS TOF-MRA. With the increase of Fazekas grade, the total number and length of LSAs displayed decreased significantly, and the display capability of remote branches gradually decreased. T2 FLAIR: T2-weighted fluid attenuation inversion recovery sequence; CS TOF-MRA: compressed sensing time-of-flight magnetic resonance angiography; LSA: lenticulostriate arteries.
表6  同一名医生间隔两次评价的一致性检验
Tab. 6  Consistency test of the same doctor evaluated twice at intervals
表7  LSA定量指标与Fazekas分级之间的关系
Tab. 7  The relationship between LSA quantitative indicators and Fazekas classification
表8  不同Fazekas分级患者LSA的两两比较
Tab. 8  Pairwise comparison of LSA of patients with different Fazekas grades
表9  不同Fazekas分级患者多因素logistic回归分析
Tab. 9  Multivariate logistic regression analysis of patients with different Fazekas grades

3 讨论

       本研究采用CS技术,首次在3 T MRI平台实现0.4 mm³各向同性的高分辨率LSA成像,并明确了LSA定量参数与脑白质病变Fazekas分级的关系。研究结果表明,随着Fazekas分级的递增,LSA可视化数目、总长度均呈现显著下降趋势,且LSA远端分支的显示情况呈进行性下降。多因素logistic分析发现,年龄、高血压、LSA总数目与总长度与Fazekas分级独立相关。基于常规3 T MRI平台的LSA定量特征,为SVD诊断提供了可能的影像学标志物。这一技术也为3.0 T MRI环境下临床开展LSA相关疾病的诊断与研究提供了潜在的新方法。

3.1 LSA定量结果与脑白质病变Fazekas分级之间的关系

       豆纹动脉是基底神经节区的主要供血动脉,LSA病变与SVD的发生及发展过程密切相关[15, 16, 17]。目前,7 T TOF-MRA是显示此类穿支动脉最先进的成像技术。然而,7 T超高场强MRI系统应用的局限性阻碍了其临床的广泛普及[18, 19, 20]。常规3 T TOF-MRA主要用于大动脉成像和评估,对于微小血管成像分辨率不足,信噪比较差。既往研究提出了一种新的基于压缩感知的TOF-MRA,可以快速清晰的显示LSA,并在健康志愿者中取得了实际效果[14, 19]。由于LSA非常微小,很少有研究确定LSA数量、长度等与SVD脑白质病变之间的关系。有研究人员发现,LSA的狭窄是一种脂质化或纤维蛋白样坏死,液体渗漏到血管壁可能进一步导致LSA闭塞,梗死区域内或周围的LSA会减少[21, 22, 23, 24]。此外,同侧颈内动脉或大脑中动脉斑块引起的脑灌注减少和小动脉硬化也可能导致LSA分支远端不完全显示,从而影响LSA长度的显示。有研究报道基底节梗死患者的LSA数量明显低于正常对照组[25, 26, 27]。与他们的研究一致,本研究发现,随着SVD患者Fazekas分级的提高,LSA在显示数量和总长度上呈现递减的趋势,高度提示LSA狭窄及闭塞可能是直接原因。LSA总数目、总长度,均能反映不同脑白质损伤的程度,而最长长度仅在Fazekas 0级与2、3级之间存在差异,LSA平均长度则无法反映出不同脑白质损伤间的差异,这可能是由于LSA闭塞更多发生在分支近端。LSA的可视化将有助于我们进一步理解SVD患者脑白质病变病理机制、严重程度,为脑白质病变预防和治疗策略提供参考依据[27, 28]

3.2 高血压因素对SVD脑白质损伤的影响

       高血压被认为是SVD发生发展过程中最明确且最重要的危险因素[29]。本研究结果显示,高血压组与非高血压组的LSA形态学特征存在显著差异,高血压患者可见的LSA总数目明显减少。这一发现与既往研究[29, 30]一致,支持高血压是SVD的重要危险因素。关于LSA减少的机制,对于这一发现有几种可能的解释。首先,高血压可通过血管肥大、内皮细胞失调和动脉粥样硬化等方式导致LSA血管狭窄,小动脉结构的改变扰乱了微循环,导致血管阻力增大,微血管的血流量减少[31, 32]。这一解释与高血压相关视网膜动脉狭窄的病理及影像学证据一致,由于视网膜与脑微血管具有相似的调节机制,既往研究已证实视网膜动脉直径与高血压的发生发展密切相关[27]。其次,LSA血管的绝对数量可能会减少,因为已知高血压会诱导微血管稀疏,减少小动脉和毛细血管的数量[33]。此外,其他潜在影响因素,如颅内压或脑血流干扰因素,也可能影响MRA信号强度,但本研究未对此进行深入探讨。与既往研究[33, 34]相比,本研究未发现LSA减少与急性腔隙性梗死的直接关联,这可能受限于样本量或随访时间。但LSA数量减少可能反映慢性微循环障碍,这与白质高信号和认知衰退的病理机制[35, 36, 37]相符。本研究的必然性在于,高血压确实会导致微血管结构和功能改变,这一结论已被广泛证实;偶然性则体现在个体差异(如血压控制水平、病程长短)可能导致部分患者LSA保留较好。这些发现的意义在于LSA成像可以为理解与高血压有关的微血管病变的机制提供重要见解,对LSA通畅程度的评估可为风险分级和治疗效果提供重要信息。对高血压患者小血管数量和长度的持续监测将有助于预测腔隙性梗死的风险[38, 39]

3.3 局限性

       目前研究还存在以下局限性。首先,样本量较小,可能减少了对组间差异的识别,未来需要继续扩充样本并开展随访研究,进一步探讨LSA形态学指标在SVD患者疾病负荷及预后评估中的价值。其次,主要是基于MIP成像进行了LSA形态学测量,可能会导致测量人员依赖性偏差及可靠性低,后续有待继续丰富LSA测量指标,如曲率等,并进行三维可视化。再次,虽然研究中已经采用了0.4 mm×0.4 mm×0.4 mm的空间分辨力,但部分LSA远端分支可能依然显示不清,因此可能对部分患者的LSA长度存在低估。最后,本研究的横断面设计无法确定LSA减少与脑白质损伤的时序关系,未来将采用多时点纵向设计进一步评估两者之间的关系。

4 结论

       综上所述,高分辨率压缩感知TOF-MRA技术可有效评估豆纹动脉形态学特征,其中LSA总数目和总长度减少与脑小血管病患者白质损伤程度加重存在关联,而年龄和高血压是其独立危险因素。该技术为脑小血管病的早期诊断和风险评估提供了新的影像学手段。

[1]
任思勰, 姚海波, 张园园, 等. 豆纹动脉和脑小血管病相关特征与豆纹动脉区域梗死亚型的关系研究[J]. 重庆医学, 2023, 52(16): 2453-2458. DOI: 10.3969/j.issn.1671-8348.2023.16.010.
REN S X, YAO H B, ZHANG Y Y, et al. Study on the relationship between the characteristics of lenticulostriate artery and cerebral small vascular disease and the subtypes of infarct in lenticulostriate artery[J]. Chongqing Med, 2023, 52(16): 2453-2458. DOI: 10.3969/j.issn.1671-8348.2023.16.010.
[2]
TOZER D J, PFLANZ C P, MARKUS H S. Reproducibility of regional structural and functional MRI networks in cerebral small vessel disease compared to age matched and stroke-free controls[J/OL]. Cereb Circ Cogn Behav, 2023, 4: 100167 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37397269/. DOI: 10.1016/j.cccb.2023.100167.
[3]
WARDLAW J M, SMITH E E, BIESSELS G J, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[4]
WARDLAW J M, SMITH C, DICHGANS M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. DOI: 10.1016/S1474-4422(19)30079-1.
[5]
TAKASE K I, MURAI H, TASAKI R, et al. Initial MRI findings predict progressive lacunar infarction in the territory of the lenticulostriate artery[J]. Eur Neurol, 2011, 65(6): 355-360. DOI: 10.1159/000327980.
[6]
刘霞, 张雪莲, 刘巧玲. 血压变异性对老年高血压合并脑小血管病患者认知功能的影响[J]. 中国临床保健杂志, 2023, 26(5): 642-646. DOI: 10.3969/J.issn.1672-6790.2023.05.014.
LIU X, ZHANG X L, LIU Q L. The effect of blood pressure variability on cognitive function in elderly patients with hypertension complicated with cerebral small vessal disease[J]. Chin J Clin Healthc, 2023, 26(5): 642-646. DOI: 10.3969/J.issn.1672-6790.2023.05.014.
[7]
ZHANG Z H, FAN Z Y, KONG Q L, et al. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA[J]. Eur Radiol, 2019, 29(3): 1452-1459. DOI: 10.1007/s00330-018-5701-y.
[8]
ZHANG X, CAO Y Z, MU X H, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial Steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
[9]
TAKAHASHI S, GOMYO M, TSUCHIYA K, et al. Anatomical information of the lenticulostriate arteries on high-resolution 3D-TOF MRA at 3 T: comparison with 3D-DSA[J]. Surg Radiol Anat, 2023, 45(10): 1287-1293. DOI: 10.1007/s00276-023-03232-6.
[10]
BYKANOV A E, PITSKHELAURI D I, BATALOV A I, et al. Sensitivity of three-dimensional time-of-flight 3.0 ​T magnetic resonance angiography in visualizing the number and course of lenticulostriate arteries in patients with insular gliomas[J/OL]. Brain Spine, 2021, 2: 100856 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36248136/. DOI: 10.1016/j.bas.2021.100856.
[11]
WEI N, JING J, ZHUO Y, et al. Morphological characteristics of lenticulostriate arteries in a large age-span population: Results from 7T TOF-MRA[J/OL]. Front Neurol, 2022, 13: 944863 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35937056/. DOI: 10.3389/fneur.2022.944863.
[12]
REN S J, WU W, SU C Q, et al. High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization[J/OL]. BMC Med Imaging, 2022, 22(1): 64 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35387607/. DOI: 10.1186/s12880-022-00790-w.
[13]
李青, 苏春秋, 武鹏飞, 等. 高分辨率压缩感知TOF-MRA在烟雾病分期及出血相关血管评估中的临床价值[J]. 磁共振成像, 2023, 14(4): 29-33. DOI: 10.12015/issn.1674-8034.2023.04.006.
LI Q, SU C Q, WU P F, et al. Clinical value of high-resolution compressed sensing TOF-MRA in assessing Suzuki classification and the dilatation of hemorrhage related vascular in patients with moyamoya disease[J]. Chin J Magn Reson Imag, 2023, 14(4): 29-33. DOI: 10.12015/issn.1674-8034.2023.04.006.
[14]
武鹏飞, 鲁珊珊, 李青, 等. 高分辨率压缩感知TOF-MRA技术对豆纹动脉成像的研究[J]. 南京医科大学学报(自然科学版), 2023, 43(9): 1291-1294, 1332. DOI: 10.7655/NYDXBNS20230917.
WU P F, LU S S, LI Q, et al. Study on high resolution compressed sensing TOF-MRA imaging of lentiform artery[J]. J Nanjing Med Univ Nat Sci, 2023, 43(9): 1291-1294, 1332. DOI: 10.7655/NYDXBNS20230917.
[15]
SUZUKI T, NATORI T, SASAKI M, et al. Evaluating recanalization of relevant lenticulostriate arteries in acute ischemic stroke using high-resolution MRA at 7T[J]. Int J Stroke, 2021, 16(9): 1039-1046. DOI: 10.1177/1747493019897868.
[16]
LIANG J Y, LIU Y Y, XU X S, et al. Cerebral perforating artery disease: characteristics on high-resolution magnetic resonance imaging[J]. Clin Neuroradiol, 2019, 29(3): 533-541. DOI: 10.1007/s00062-018-0682-4.
[17]
HU W T, WANG Y, XIE Z H, et al. Functional segregation-integration preference configures the cognitive decline against cerebral small vessel disease: an MRI study[J/OL]. CNS Neurosci Ther, 2024, 30(12): e70162 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39690801/. DOI: 10.1111/cns.70162.
[18]
GUAN M, LIN J, HUANG S, et al. High-degree middle cerebral artery stenosis: can advanced 3D DSA-MRI fusion imaging better illustrate plaques and perforators?[J]. Clin Neuroradiol, 2021, 31(1): 51-59. DOI: 10.1007/s00062-020-00927-w.
[19]
HUANG F L, GUO Y R, CHEN R C, et al. Visualization of the Lenticulostriate artery with 3-dimensional time-of-flight magnetic resonance angiography combined with the compressed sensing technique using a 3-T magnetic resonance imaging system[J/OL]. Magn Reson Imaging, 2023, 102: 38-42 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36608910/. DOI: 10.1016/j.mri.2022.12.028.
[20]
LI Z X, SUN D B, LING C, et al. Quantitative modeling of lenticulostriate arteries on 7-T TOF-MRA for cerebral small vessel disease[J/OL]. Eur Radiol Exp, 2024, 8(1): 126 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39499373/. DOI: 10.1186/s41747-024-00512-7.
[21]
李青, 鲁珊珊, 孙涛, 等. 压缩感知技术在头颅磁共振血管成像中的应用研究[J]. 中国医学装备, 2020, 17(2): 66-70. DOI: 10.3969/J.ISSN.1672-8270.2020.02.018.
LI Q, LU S S, SUN T, et al. The applied research on the CS technique in intracranial MRA[J]. China Med Equip, 2020, 17(2): 66-70. DOI: 10.3969/J.ISSN.1672-8270.2020.02.018.
[22]
HIRANO Y, FUJIMA N, KAMEDA H, et al. High resolution TOF-MRA using compressed sensing-based deep learning image reconstruction for the visualization of lenticulostriate arteries: a preliminary study[J/OL]. Magn Reson Med Sci, 2024 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39034144/. DOI: 10.2463/mrms.mp.2024-0025.
[23]
杜子伟, 赵登玲, 缪滢钰, 等. 高分辨率磁共振成像在豆纹动脉病变的研究进展[J]. 临床放射学杂志, 2021, 40(2): 392-396. DOI: 10.13437/j.cnki.jcr.2021.02.042.
DU Z W, ZHAO D L, MIAO Y Y, et al. Research progress of high-resolution magnetic resonance imaging in lentiform artery lesions[J]. J Clin Radiol, 2021, 40(2): 392-396. DOI: 10.13437/j.cnki.jcr.2021.02.042.
[24]
BAI X Y, FAN P P, LI Z Y, et al. Evaluating middle cerebral artery plaque characteristics and lenticulostriate artery morphology associated with subcortical infarctions at 7T MRI[J]. J Magn Reson Imag, 2024, 59(3): 1045-1055. DOI: 10.1002/jmri.28839.
[25]
OSUAFOR C N, RUA C, MACKINNON A D, et al. Visualisation of lenticulostriate arteries using contrast-enhanced time-of-flight magnetic resonance angiography at 7 Tesla[J/OL]. Sci Rep, 2022, 12(1): 20306 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36434036/. DOI: 10.1038/s41598-022-24832-z.
[26]
LEE C H, CHUNG J W, GUK H S, et al. Cerebral artery signal intensity gradient from Time-of-Flight Magnetic Resonance Angiography and clinical outcome in lenticulostriate infarction: a retrospective cohort study[J/OL]. Front Neurol, 2023, 14: 1220840 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37799283/. DOI: 10.3389/fneur.2023.1220840.
[27]
KANG C K, PARK C A, PARK C W, et al. Lenticulostriate arteries in chronic stroke patients visualised by 7 T magnetic resonance angiography[J]. Int J Stroke, 2010, 5(5): 374-380. DOI: 10.1111/j.1747-4949.2010.00464.x.
[28]
GROCHOWSKI C, KRUKOW P, JONAK K, et al. The assessment of lenticulostriate arteries originating from middle cerebral artery using ultra high-field magnetic resonance time-of-flight angiography[J/OL]. J Clin Neurosci, 2019, 68: 262-265 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/31331750/. DOI: 10.1016/j.jocn.2019.07.003.
[29]
XIE W W, WANG C, LIU S, et al. Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal Ganglia: a retrospective study[J]. Eur Radiol, 2021, 31(8): 5629-5639. DOI: 10.1007/s00330-020-07642-7.
[30]
LIANG H Q, GU Y W, ZHANG H P, et al. 7-Tesla magnetic resonance imaging for monitoring microstructural changes in the lenticulostriate artery-neural complex in patients with hypertension[J]. Quant Imaging Med Surg, 2024, 14(12): 8308-8319. DOI: 10.21037/qims-24-869.
[31]
中国研究型医院学会脑小血管病专业委员会《中国脑小血管病诊治专家共识》编写组. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
Expert Consensus on Diagnosis and Treatment of small cerebral vascular Diseases in China, et al. Chinese consensus on diagnosis and therapy of cerebral small vessel disease 2021[J]. Chin J Stroke, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[32]
CHENG Z Y, YANG L F, LIANG C H, et al. Advancing cerebral small vessel disease diagnosis: Integrating quantitative susceptibility mapping with MRI-based radiomics[J/OL]. Hum Brain Mapp, 2024, 45(13): e70022 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39254181/. DOI: 10.1002/hbm.70022.
[33]
张煜堃, 常佩佩, 高冰冰, 等. 3.0T 3D高分辨率MR血管壁成像显示脑小血管病豆纹动脉改变[J]. 中国医学影像技术, 2023, 39(5): 665-669. DOI: 10.13929/j.issn.1003-3289.2023.05.005.
ZHANG Y K, CHANG P P, GAO B B, et al. 3.0T three-dimensional high resolution vessel wall MRI for displaying lenticulostriate artery changes of cerebral small vessel disease[J]. Chin J Med Imag Technol, 2023, 39(5): 665-669. DOI: 10.13929/j.issn.1003-3289.2023.05.005.
[34]
TANG J N, ZHAO T R, JOE E B, et al. Association of pulsatility of lenticulostriate arteries with cognitive decline in elderly adults: a 7T dual-VENC PC-MRI study[J/OL]. Alzheimers Dement, 2024, 20(S2): e093252 [2025-03-11]. https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.093252. DOI: 10.1002/alz.093252.
[35]
MA S J, SARABI M S, YAN L R, et al. Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 Tesla[J/OL]. Neuroimage, 2019, 199: 184-193 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/31158475/. DOI: 10.1016/j.neuroimage.2019.05.065.
[36]
ZHENG D L, LI X M, FU Y P. Risk factors of acute cerebral infarction in patients with primary hypertension[J]. Ir J Med Sci 1971, 2023, 192(5): 2441-2445. DOI: 10.1007/s11845-022-03206-4.
[37]
LIU Y, LI S, TIAN X, et al. More severe cerebral small vessel disease associated with poor leptomeningeal collaterals in symptomatic intracranial atherosclerotic stenosis[J]. J Cereb Blood Flow Metab, 2025, 45(4): 655-663. DOI: 10.1177/0271678x241292537.
[38]
CHEN Y C, LI Y H, LU J, et al. Correlation between the reduction in lenticulostriate arteries caused by hypertension and changes in brain metabolism detected with MRI[J]. AJR Am J Roentgenol, 2016, 206(2): 395-400. DOI: 10.2214/AJR.15.14514.
[39]
ZHANG Z, KONG Q L, ZHANG Y K, et al. Improved characterization of lenticulostriate arteries using compressed sensing time-of-flight at 7T[J]. Eur Radiol, 2023, 33(10): 6939-6947. DOI: 10.1007/s00330-023-09629-6.

上一篇 基于远程功能连接密度的额颞叶变性患者脑白质功能的研究
下一篇 基于磁共振成像的双侧痉挛型脑瘫儿童灰质形态学研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2