分享:
分享到微信朋友圈
X
临床研究
基于放疗前增强T1WI影像组学分数预测胶质母细胞瘤长期不良预后风险
王飞 全冠民 袁涛

Cite this article as: WANG F, QUAN G M, YUAN T. The radioscore based on pre-radiotherapy MRI for predicting poor outcome risk in long-term follow-up of glioblastoma patients[J]. Chin J Magn Reson Imaging, 2025, 16(6): 78-84, 92.本文引用格式:王飞, 全冠民, 袁涛. 基于放疗前增强T1WI影像组学分数预测胶质母细胞瘤长期不良预后风险[J]. 磁共振成像, 2025, 16(6): 78-84, 92. DOI:10.12015/issn.1674-8034.2025.06.012.


[摘要] 目的 探讨放疗前增强T1WI(contrast enhanced T1WI, CE-T1WI)的影像组学分数在预测胶质母细胞瘤(glioblastoma, GBM)不良预后中的价值。材料与方法 回顾性分析76例GBM放疗前MRI与临床资料,将所有病例以7∶3的比例分为训练组和验证组,基于训练组构建模型,于验证组行效能验证。在CE-T1WI图像上提取影像组学特征。总生存期(overall survival, OS)小于等于中位值(OS=380天)定义为预后不良,大于中位值为预后良好,以此分为两组,各38例;比较预后不良组与预后良好组间临床、常规MRI及影像组学指标的差异。单因素和多因素回归分析筛选指标,构建基于临床因素、常规MR特点以及影像组学预测模型,采用受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)比较不同模型对OS较短受试者的预测效能。结果 预后不良组年龄较大(P=0.025)、无进展生存期(progression-free survival, PFS)较短(P<0.001)、随访期内存活率较低(P<0.001)、残腔壁强化趋向于粗线或结节状(P=0.018)、液体衰减反转恢复序列(fluid attenuated inversion recovery, FLAIR)高信号正交值增长率(hyperintense orthogonal growth rate of FLAIR, rFLAIR)(P=0.024)及增强扫描强化正交值增长率(relative contrast enhancement, rCE)(P=0.002)较大。多因素分析显示,残腔壁粗线或结节状强化[风险比(hazard ratio, HR)=2.127]为GBM患者PFS较短的独立预测因素;年龄较大(HR=1.046)及残腔壁粗线状或结节状强化(HR=2.105)为OS较短的独立预测因素,影像组学分数对于OS较短的单因素和多因素分析HR值分别为2.392(P=0.003)和1.129(P=0.054)。训练组及验证组中,综合模型预测OS较短的AUC分别为0.822、0.841,表明包含影像组学分数的综合模型对不良预后有预测意义。结论 基于放疗前CE-T1WI的影像组学分数可作为预测GBM不良预后的影像生物学指标,且有助于改善常规MR+临床模型的预测效能。
[Abstract] Objective To explore the value of radioscores which based on radiomics features extracted from pre-radiotherapy contrast enhanced T1WI (CE-T1WI) on the prediction of poor survival prognosis in long-term follow-up for glioblastoma (GBM) patients.Materials and Methods We retrospectively analyzed the pre-radiotherpy MRI and clinical data of 76 patients with GBM. Then we divided all cases into a training group and a validation group in a 7∶3 ratio, construct a model based on the training group, and conduct efficacy validation in the validation group. The radiomics features were extracted on CE-T1WI images. The overall survival (OS) was defined as poor prognosis if it was less than or equal to the median value (OS = 380 days), and good prognosis if it was greater than the median value. The patients were divided into two groups, with 38 cases in each groups. We compared the difference of clinical, conventional MRI and radiomics variables between poor and good prognosis groups. Univariate and multivariate analyses were employed to select the risk factors. Then the prognosis predictive models based on clinical factors, conventional MRI findings, radiomics factors were established separately. We compared area under the curve (AUC) of receiver operating characteristic (ROC) curve for subjects with shorter OS evaluated with different models.Results Compared to the patients with good prognosis, the patients with poor prognosis (OS ≤ 380 days) were older (P = 0.025), had shorter progression-free survival (PFS) (P < 0.001), had lower survival during follow-up (P < 0.001), tended to have coarse linear or nodular residual cavity wall enhancement (P = 0.018), had higher fluid attenuated inversion recovery (FLAIR) hyperintense orthogonal growth rate (rFLAIR) (P = 0.024) and growth rate orthogonal value of enhancement lesions (rCE) (P = 0.002). Multivariate analysis showed that coarse linear or nodular enhancement of residual cavity wall [hazard ratio (HR) = 2.127] were the independent risk predictors of shorter PFS of patients with GBM. Whereas, older age (HR = 1.046) and coarse linear or nodular enhancement in residual cavity wall (HR = 2.105) were independent risk predictors of shorter OS. In univariate and multivariate analyses, the HR values of radioscore for shorter OS were 2.392 (P = 0.003) and 1.129 (P = 0.054) separately. The AUCs of combination models in the training cohort and validation cohorts were 0.822 and 0.841 respectively, which indicated that the combined model including radioscores had predictive significance for poor prognosis.Conclusions The radioscore extracted from pre-radiotherpy MRI could be used as a predictive factor of poor survival of GBM patients. This radiomics feature could improve the predictive efficacy of the model which included conventional and clinical variables.
[关键词] 胶质母细胞瘤;磁共振成像;影像组学;对比增强;预后;进展
[Keywords] glioblastoma;magnetic resonance imaging;radiomics;contrast enhancement;prognosis;prediction

王飞    全冠民    袁涛 *  

河北医科大学第二医院影像科,石家庄 050000

通信作者:袁涛,E-mail:yuantao1976@hebmu.edu.cn

作者贡献声明::袁涛设计本研究的方案,对稿件的重要内容进行了修改;王飞起草和撰写稿件,获取、分析本研究的数据;全冠民参与设计了本研究的方案,对稿件的重要内容进行了修改,获取、解释本研究的数据;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-03-03
接受日期:2025-05-13
中图分类号:R445.2  R739.41 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.06.012
本文引用格式:王飞, 全冠民, 袁涛. 基于放疗前增强T1WI影像组学分数预测胶质母细胞瘤长期不良预后风险[J]. 磁共振成像, 2025, 16(6): 78-84, 92. DOI:10.12015/issn.1674-8034.2025.06.012.

0 引言

       胶质母细胞瘤(glioblastoma, GBM)是最常见的原发恶性脑肿瘤[1]。目前常规采用美国国立癌症网络指南推荐的手术切除、术后同步放化疗[2],但即使经标准治疗,GBM预后仍较差[3]。早期评估预后、积极施行挽救性治疗可能有助于延长GBM患者生存[4],术后放疗前评估为其重要评估节点[5]。GBM术后评估包括临床病理学及影像学指标[6]。病理学检查需活检或再次手术,难以常规进行;临床指标包括年龄、卡式功能状态评分(Karnofsky Performance Scale, KPS)等,特异性欠佳[7]。磁共振成像(magnetic resonance imaging, MRI)检查仍是术后评估的主要手段,但单纯形态学指标如异常信号和强化的正交值或面积、形态难以反映肿瘤整体特征,且常规MRI的判别受观察者水平影响较大[8]。MR功能序列包括磁共振波谱成像(magnetic resonance spectroscopy, MRS)、弥散加权成像(diffusion weighted imaging, DWI)及磁共振灌注成像(perfusion weighted imaging, PWI)[9, 10, 11],可在一定程度上改善评估效能,但效能仍然有限,主要原因是操作者依赖性较强、技术相对复杂、一致性欠佳[12]。影像组学是一种新兴的图像解析方法,从医学影像中提取与肿瘤潜在病理生理学相关而肉眼不可辨别的影像特征,客观性较好[13, 14],已用于胶质瘤研究。目前多数胶质瘤预后预测的影像组学研究基于术前影像资料[15],术后研究较少,原因是术后继发改变导致局部病变复杂化,感兴趣区(region of interest, ROI)勾画困难[16]。但基于术前图像的评估无法反映术后继发改变与新增病变对患者预后的影响,放疗前属于术后较早阶段,该时期影像可显示术后相关改变,因此提出基于术后放疗前MR影像提取特征以预测预后。本研究旨在探讨基于放疗前增强T1WI(contrast enhanced T1WI, CE-T1WI)序列的影像组学分数在GBM患者预后评估中的价值,以及对改善临床+常规MRI模型的预后评估能力的作用。为早期评估GBM预后提供新方法,促进GBM个性化与精细化诊疗,从而改善GBM患者预后,延长GBM患者生存时间。

1 材料与方法

1.1 一般资料

       回顾性分析2019年1月至2021年12月于河北医科大学第二医院连续就诊的GBM病例资料。纳入标准:(1)年龄≥18岁[17];(2)根据2021版世界卫生组织(World Health Organization, WHO)中枢神经系统肿瘤分类,回顾分析整合病理诊断为GBM;(3)根据指南行全切及术后标准放化疗[2];(4)具有放疗前、放疗结束后、放疗后1年内或至进展时的随访MRI资料。排除标准:(1)随访资料不足或失访、或随访不足12个月;(2)MRI图像质量差,无法测量正交值、评估强化形态以及勾画ROI;(3)放疗前MRI CE-T1WI未见强化灶。本研究遵守《赫尔辛基宣言》,经河北医科大学第二医院伦理委员会批准,免除受试者知情同意,批准文号:2024-R077。

       从河北医科大学第二医院信息系统收集以下信息:细胞增殖抗原标记物(Ki-67 labeling index, Ki-67)、异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)基因表型、O6-甲基鸟嘌呤-DNA甲基转移酶(oxygen 6-methylguanine-DNA methyltransferase, MGMT)甲基化状态、手术治疗、放疗、进展及末次随访的日期、类固醇激素使用情况、年龄、性别、术后KPS评分、死亡日期。

       根据神经肿瘤治疗反应(response assessment in neuro-oncology, RANO)标准评估肿瘤进展[18]。无进展生存期(progression-free-survival, PFS)为从手术治疗的时间到随访发现进展的时间间隔,若末次随访未进展,则定义为从手术治疗到末次随访的时间间隔[19]。总生存期(overall survival, OS)定义为从手术治疗之日到死亡日期的时间间隔,若最后一次随访仍存活,则定义为从手术治疗到末次随访的时间间隔[20]。OS小于中位值为预后不良,大于中位值为预后良好[21],将患者分为预后不良组(OS≤380天)与预后良好组(OS>380天)。

1.2 MR检查

       MRI检查时间点:术后72 h内、放疗前、放疗结束时及结束后6个月,此后每隔1~3月复查1次,直至研究截止日期(2022年12月31日)或患者死亡。MRI扫描使用3.0 T MR仪(Philips, Achieva, Philips Medical Systems Netherland B.V., Netherland)及8通道头线圈。检查序列包括平扫T1WI、T2WI、液体衰减反转恢复序列(fluid attenuated inversion recovery, FLAIR)和CE-T1WI。轴位T1WI参数:层厚6.5 mm,层间距1.3 mm,FOV 230 mm×220 mm,TR 2000 ms,TE 20 ms,矩阵288×211;轴位T2WI参数:层厚6.5 mm,层间距1.3 mm,FOV 230 mm×220 mm,TR 1518 ms,TE 80 ms,矩阵328×264;轴位FLAIR参数:层厚6.5 mm,层间距1.3 mm,FOV 230 mm×220 mm,TR 9000 ms,TE 140 ms、T1 2600 ms,矩阵232×181;CE-T1WI参数:TR 6.7 ms,TE 3.3 ms,矩阵184×196,层厚1.2 mm。CE-T1WI扫描参数:TR 6.7 ms,TE 3.3 ms,矩阵184×196,层厚1.2 mm。对比剂为二乙三胺五醋酸钆(拜耳先灵,德国),浓度为9.38 g(Gd)/20 mL,剂量为0.2 mL/kg,流率3 mL/s。

1.3 常规MR影像分析

       残腔壁强化形态分为:细线状强化,强化最大厚度<3 mm;粗线状强化,强化最大厚度为3~5 mm。结节状强化,强化呈结节且>5 mm[22]。分别测量放疗定位及放疗后首次复查CE-T1WI强化区域及FLAIR水肿区域的正交值,计算正交值增量[18],测量方法如下:(以CE-T1WI强化区域为例)选择肿瘤强化最明显且范围最大的轴位层面,测量最长直径和与其垂直的最长直径,两者需精确垂直,且避开坏死、出血或非强化的囊性区域,仅测量实性强化部分。常规MR征象分别由具有5年影像诊断经验的主治医师和20年影像诊断经验的副主任医师双盲阅片评价,并进行一致性评估,排除图像模糊及无可测量异常信号区的病例[15, 22],如出现分歧,则咨询另一名30年影像诊断经验的主任医师确定。正交值增量由具有5年影像诊断经验的主治医师和20年影像诊断经验的副主任医师分别进行测算,并评估两位医师测量结果的一致性[23]

1.4 ROI勾画及影像组学特征提取

       应用商用影像组学分析网站(https://www.home-for-researchers.com/)进行影像组学分析。使用开源软件3D Slicer v4.11(https://www.slicer.org)在CE-T1WI图像上勾画强化区(图1),提取组学特征,包括形态学特征、一阶特征、灰度游程矩阵(grey level run-length matrix, GLRLM)、灰度共生矩阵(gray level co-occurrence matrix, GLCM)、灰度依赖矩阵(gray leveldependent matrix, GLDM)、灰度区域矩阵(gray level size zone matrix, GLSZM)、邻域灰度差矩阵(neighbouring gray tone difference matrix, NGTDM)。使用最小绝对值收敛和选择算子(least absolute shrinkage and selection operator, LASSO)算法进行降维处理,采用logistic回归分析获得每个影像特征的系数和截距,将这些特征与其对应系数相乘,累计乘积,再加上截距,即得到影像组学分数。病例以7∶3比例分为训练组和验证组,基于训练组构建模型,于验证组行效能验证。效能评估指标为受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)、敏感度、特异度、准确度[24]。特征提取及模型构建流程如图2

图1  CE-T1WI轴位图像上的ROI勾画。1A~1C为原图像,1A为细线状强化,1B为粗线状强化,1C为结节状强化;1D~1F为对应含ROI的图像,绿色区域为ROI(黄箭)。CE-T1WI:增强T1WI,ROI:感兴趣区。
Fig. 1  ROI on the CE-T1WI axis image. 1A-1C show the original images. 1A represents fine line like enhancement; 1B represents thick line like enhancement, and 1C represents nodule like enhancement. 1D-1F show the corresponding images with ROI; The green area is the ROI (yellow arrow). CE-T1WI: contrast enhanced T1WI; ROI: region of interest.
图2  研究流程图。2A:组学特征提取流程图;2B:模型构建流程图。CE-T1WI:增强T1WI。
Fig. 2  Research flowcharts. 2A: A flowchart for radiomics feature extraction; 2B: A flowchart for model construction. CE-T1WI: contrast enhanced T1WI.

1.5 统计学分析

       采用SPSS 27.0软件(SPSS Inc, Chicago, IL, USA)进行统计学分析。计量资料[年龄、KPS评分、CE-T1WI强化区域的正交值增量(rCE正交值)、FLAIR水肿区域的正交值增量(rFLAIR正交值)]表示为均值±标准差或中位数(上下四分位数),采用t检验或Mann-Whitney U检验比较。计数资料(性别、肿瘤强化形态、MGMT甲基化状态)采用卡方检验比较。应用Kaplan-Meier生存曲线评估PFS及OS,log-rank检验进行单因素生存分析;Cox比例风险模型进行多因素生存分析,以95%置信区间(confidence interval, CI)的风险比(hazard ratio, HR)表示。采用ROC曲线评估模型预测预后的效能。采用组内相关系数(intra-class correlation coefficient, ICC)评价观察者间的一致性,ICC>0.75认为一致性良好。

2 结果

2.1 一般资料及组学特征

       研究期间收集到154例GBM,排除78 例:未全切3例、未完成放化疗3例、图像质量较差30例、影像资料不完整10例、失访11例、放疗前进展2例、增强灶较小19例。最终76例GBM患者纳入研究,预后良好组与预后不良组各38例,一般资料见表1

       两组间比较以下指标差异有统计学意义(P均<0.05):年龄、残腔壁强化形态、rFLAIR正交值、rCE正交值、PFS、OS、研究截止时存活状态;而两组间其他指标(性别、术后KPS评分、Ki-67、IDH与MGMT甲基化状态)差异无统计学意义(P均>0.05)。

       经降维并筛选后得到与预后相关的6种影像组学特征,见表2

表1  基于预后分组的放疗前GBM基线表
Tab. 1  Baseline table of GBM before radiotherapy based on prognostic group—
表2  与预后相关的影像组学特征
Tab. 2  Prognosis-related radiomics features

2.2 预后不良与良好组比较

       临床指标:预后良好组与预后不良组之间性别(P=0.817)、术后KPS评分(P=0.335)、Ki-67(P=0.814)、MGMT甲基化状态(P=0.161)差异无统计学意义。预后良好组与预后不良组之间年龄(P=0.025)、PFS(P<0.001)、OS(P<0.001)、病例存活情况(P<0.001)差异有统计学意义;预后不良组确诊年龄较大、PFS及OS较短、病例存活较少。

       MRI指标:两组间残腔壁强化形态(P=0.018)、rFLAIR正交值(P=0.024)及rCE正交值(P=0.002)差异有统计学意义。预后不良组残腔壁强化形态更趋向于粗线状及结节状、rFLAIR正交值较大、rCE正交值较大(表1图3图4)。图3图4分别为预后不良与预后良好组的典型病例。

       两位影像学医师评估各指标的一致性良好,ICC值分别为:残腔壁强化形态0.932(95% CI:0.921~0.988),测量rFLAIR正交值为0.909(95% CI:0.844~0.962),测量rCE正交值为0.905(95% CI:0.868~0.982);3D Slicer勾画ROI提取特征为0.896(95% CI:0.794~0.996)。平均勾画时间为540 s/例。

图3  预后不良组,女,46岁,右侧顶枕部胶质母细胞瘤。3A:放疗定位FLAIR;3B:放疗定位CE-T1WI;3C:末次复查FLAIR;3D:末次复查CE-T1WI。随访时间为183天,PFS为183天,OS为245天。FLAIR:液体衰减反转恢复序列;CE-T1WI:增强T1WI;PFS:无进展生存期;OS:总生存期。
Fig. 3  Poor prognosis group, 46 years old female, right parieto-occipital glioblastoma. 3A: The radiotherapy localization of FLAIR; 3B: Radiotherapy localization of CE-T1WI; 3C: The FLAIR of last re-examination; 3D: The CE-T1WI of last re-examination. The duration of follow-up is 183 days; PFS is 183 days; OS is 245 days. FLAIR: fluid attenuated inversion recovery; CE-T1WI: contrast-enhanced T1WI; PFS: progression-free survival; OS: overall survival.
图4  预后良好组,男,45岁,右侧额部胶质母细胞瘤。4A:放疗定位FLAIR;4B:放疗定位CE-T1WI;4C:末次复查FLAIR;4D:末次复查CE-T1WI。末次复查时间为447天,PFS为447天,OS为447天。FLAIR:液体衰减反转恢复序列;CE-T1WI:增强T1WI;PFS:无进展生存期;OS:总生存期。
Fig. 4  Good prognosis group, 45 years old male, right frontal glioblastoma. 4A: Radiotherapy localization FLAIR; 4B: Radiotherapy localization of CE-T1WI; 4C: Last review of FLAIR; 4D: Last review of CE-T1WI. The last review is 447 days; PFS is 447 days; OS is 447 days. FLAIR: fluid attenuated inversion recovery; CE-T1WI: contrast-enhanced T1WI; PFS: progression-free survival; OS: overall survival.

2.3 生存分析

       单因素回归分析:残腔壁粗线或结节状强化(HR=1.935)及rFLAIR正交值较大(HR=1.012)为PFS不良的危险因素;年龄较大(HR=1.057)及残腔壁粗线或结节状强化(HR=2.052)、影像组学分数较大(HR=2.392)为OS不良的危险因素。

       多因素回归分析:残腔壁粗线或结节状强化(HR=2.127)为PFS较短的独立预测因素;年龄较大(HR=1.046)及残腔壁强化形态趋向于粗线状或结节状(HR=2.105)为GBM患者OS较短的独立预测因素(表3)。

       影像组学分数计算危险概率:以约登指数最大时的危险概率(0.51)为截断点分为高危及低危;验证组GBM患者基于影像组学模型的Kaplan-Meier曲线分析结果见图5。单因素和多因素分析显示,影像组学分数对于OS较短的HR值分别为2.392(P=0.003)和1.129(P=0.054),考虑由于样本量较小,多因素分析中,影像组学分数对OS较短的预测结果可能呈现假阴性。

图5  影像组学指标评估验证组GBM放疗前的Kaplan-Meier曲线。GBM:胶质母细胞瘤。
Fig. 5  Kaplan-Meier curves of radiomics indexes to evaluate GBM before radiotherapy in the training group and the validation group. GBM: glioblastoma.
表3  放疗前GBM患者PFS及OS预后的单因素及多因素分析
Tab. 3  Univariate and multivariate analyses of PFS and OS prognosis in GBM patients before radiotherapy

2.4 生存评估效能

       采用多因素分析P<0.05的指标构建生存预测模型:临床模型包括年龄;常规MR模型包括残腔壁强化形态;CE-T1WI组学特征模型包括从CE-T1WI图像上提取的组学特征,综合模型包括年龄、残腔壁强化形态及从CE-T1WI图像上提取的组学特征。ROC分析显示(图6),预测GBM较短OS的AUC值如下。训练组:临床模型为0.642、常规MR模型为0.645、CE-T1WI组学特征0.803、临床模型+常规MR模型为0.734;验证组:临床模型为0.620、常规MR模型为0.723、CE-T1WI组学特征0.765、临床+常规MR模型为0.807。两组综合模型预测OS较短的效能较其他模型均有所提高,其中训练组AUC达0.822,准确度达76.6%;验证组AUC为0.841,准确度达82.6%(表4)。不同指标预测不良预后(OS较短)的诺模图见图7

图6  不同模型预测预后的受试者工作特征曲线。
Fig. 6  The receiver operating characteristi curves show prediction of different models.
图7  胶质母细胞瘤预后预测的诺模图。
Fig. 7  Nomogram for glioblastoma prognostic prediction.
表4  不同模型预测不良OS的ROC分析
Tab. 4  ROC curve analyses of poor OS performance of combinations of various variables

3 讨论

       本研究采用3D Slicer进行GBM术后放疗前CE-T1WI图像半自动分割,首次探讨基于这种分割提取的影像组学信息评估GBM不良预后的价值。结果显示,基于放疗前CE-T1WI的影像组学分数可作为预测GBM不良预后的影像生物学指标;此外,残腔壁粗线或结节状强化、年龄较大为GBM预后不良的独立预测因素;综合术后放疗前影像组学分数与MRI形态学特征及临床指标可改善GBM不良预后的预测效能。综上所述,本研究证实了基于放疗前CE-T1WI图像分割的可行性和有效性,为进一步探索早期预测GBM治疗后不良预后提供了新方法,不仅为判断GBM术后早期进展提供了有价值的参考指标,同时,可以甄别出需要早期进一步治疗的患者,为干预治疗或密切复查提供了有力的支持。

3.1 基于CE-T1WI图像分割及其影像组学信息的预测价值

       本研究使用3D Slicer进行半自动分割ROI,先应用自动分割工具进行初步勾画,而后手动修正。既往对比半自动分割方法与手动分割方法的研究显示,半自动分割方法(ICC为0.856)优于手动方法(ICC为0.776)[25],本研究采用3D Slicer进行半自动分割平均耗时为540 s/例,ICC为0.896,提示3D Slicer进行半自动分割ROI具有良好的可行性和一致性。

       本研究资料显示,基于放疗前CE-T1WI图像提取的组学特征对于GBM患者预后评估效能优于常规MRI形态分析。目前临床上胶质瘤治疗后评估的常用方法为RANO标准,其中CE-T1WI为最重要的成像序列,肿瘤进展所致强化的病理学基础包括肿瘤细胞增殖、细胞外间隙增大、血脑屏障破坏、新生肿瘤血管[18];但仅根据强化难以预测早期进展,特别是强化范围增幅小于25%时,且形态分析难以评估强化内部的异质性,而影像组学有助于弥补这一不足[26],因此,本研究基于CE-T1WI进行影像组学研究。既往多数组学研究基于CE-T1WI图像,如GILLIES等[14]基于CE-T1WI的影像组学方法预测预后,但仅提取了纹理特征,而本研究还提取了其他多种组学特征如一阶直方图特征、形状特征等,有助于更好地反映病变异质性。除了残存肿瘤细胞浸润和增殖,GBM术后强化还与多种原因相关,如继发梗死、术后创伤或炎性反应、出血降解与吸收[27],而常规MRI形态和大小常难以反映强化的本质特征和异质性,因此,评估效能有限[28]。本研究也证实,基于RANO标准测量CE-T1WI强化区域及FLAIR高信号区域的正交值增量与预后无关,且常规MRI形态学指标预测预后效能低于影像组学,说明在GBM预后预测方面,影像组学提供了临床与常规影像以外的信息。

3.2 临床指标及常规MRI特点与GBM预后的关系

       除了影像组学特征,本研究同样显示,临床以及常规MR指标与GBM患者预后有关,但效能低于影像组学。既往研究已证实年龄与GBM患者预后相关[29],但本研究也显示,临床模型(年龄)预测OS不良预后的特异度较低,训练组仅0.462,说明年龄因素在GBM患者预后评估中的价值有限,而肿瘤本身的病变特征对预后影响更大[30]。常规MR指标中,残腔壁强化形态与患者预后相关,但残腔壁强化形态分类预测GBM预后的效能也稍低于影像组学模型,基于强化区域的影像组学特征能够更好地反映这种异质性[31],这一结果提示,对于仅根据CE-T1WI形态学特点评估困难的病例,有必要进一步进行影像组学分析提高判断准确度。

3.3 影像组学指标对于GBM术后预后预测的改善价值

       本研究进一步将影像组学与常规MR指标、临床指标相结合评估GBM预后,预测效能改善,且综合模型效能优于其他任何模型,说明影像组学指标与临床和常规影像学指标之间具有协同作用[32, 33]。但作者也注意到,单纯影像组学指标与“临床+常规MR”模型相比,预测效能接近,提示影像组学指标应作为综合指标之一,与临床、常规影像学指标结合才能发挥其最大效能[34]。本研究基于术后MRI提取特征进行研究,多数患者强化灶较小,提取的信息有限,且未能提取其他序列如FLAIR、DWI的影像特征,这可能是其效能仍需提高的原因。

3.4 本研究的局限性

       首先,本研究为单中心回顾性研究,虽进行了内部验证,保证了模型的拟合度,但仍需外部验证防止过度拟合;且纳入病例较少,尚需大宗病例研究验证,结果中显示影像组学特征在多因素分析中预测较短OS呈阴性结果,可能与此相关。其次,既往研究表明,基因信息与GBM预后相关,且增加基因信息可以进一步改善影像组学模型预测能力[35],本研究纳入病例均进行了IDH检测,但其他基因检测例数较少,未能进行综合基因检测与组学的评估。此外,本研究仅提取形态学成像序列的特征,功能成像序列并非本组病例检查的常规项目,未来研究应增加功能影像指标以进一步提高效能。

4 结论

       综上所述,基于放疗前CE-T1WI的影像组学分数可作为预测GBM不良预后的指标,且有助于提升临床及常规MR综合模型的预后预测效能;未来应当在CE-T1WI序列的基础上,补充如FLAIR、DWI及其他功能成像序列,并纳入多种相关基因信息,进行大宗病例研究,改善GBM术后放疗前评估效能。

[1]
MILLER K D, OSTROM Q T, KRUCHKO C, et al. Brain and other central nervous system tumor statistics, 2021[J]. CA Cancer J Clin, 2021, 71(5): 381-406. DOI: 10.3322/caac.21693.
[2]
JIANG T, MAO Y, MA W B, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2016, 375(2): 263-273. DOI: 10.1016/j.canlet.2016.01.024.
[3]
BUTLER M, PRASAD S, SRIVASTAVA S K. Targeting glioblastoma tumor microenvironment[J/OL]. Adv Exp Med Biol, 2020, 1296: 1-9 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/34185283/. DOI: 10.1007/978-3-030-59038-3_1.
[4]
RODA D, VEIGA P, MELO J B, et al. Principles in the management of glioblastoma[J/OL]. Genes (Basel), 2024, 15(4): 501 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/38674436/. DOI: 10.3390/genes15040501.
[5]
BOOTH T C, LUIS A, BRAZIL L, et al. Glioblastoma post-operative imaging in neuro-oncology: current UK practice (GIN CUP study)[J]. Eur Radiol, 2021, 31(5): 2933-2943. DOI: 10.1007/s00330-020-07387-3.
[6]
NEIL Z D, PIERZCHAJLO N, BOYETT C, et al. Assessing metabolic markers in glioblastoma using machine learning: a systematic review[J]. Metabolites, 2023, 13(2): 161. DOI: 10.3390/metabo13020161.
[7]
LU Y P, PATEL M, NATARAJAN K, et al. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma[J/OL]. Magn Reson Imaging, 2020, 74: 161-170 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/32980505/. DOI: 10.1016/j.mri.2020.09.017.
[8]
SUH C H, KIM H S, JUNG S C, et al. Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis[J]. Eur Radiol, 2018, 28(6): 2628-2638. DOI: 10.1007/s00330-017-5262-5.
[9]
SHI Y X, LIU D L, KONG Z R, et al. Prognostic value of choline and other metabolites measured using 1H-magnetic resonance spectroscopy in gliomas: a meta-analysis and systemic review[J/OL]. Metabolites, 2022, 12(12): 1219 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/36557257/. DOI: 10.3390/metabo12121219.
[10]
梁倩, 张辉. MRI影像组学在脑胶质瘤中的研究进展[J]. 磁共振成像, 2024, 15(2): 192-197. DOI: 10.12015/issn.1674-8034.2024.02.031.
LIANG Q, ZHANG H. Research progression of MRI radiomics in glioma[J]. Chin J Magn Reson Imag, 2024, 15(2): 192-197. DOI: 10.12015/issn.1674-8034.2024.02.031.
[11]
BERGER A, TZARFATI G G, SERAFIMOVA M, et al. Clinical and prognostic implications of rim restriction following glioma surgery[J/OL]. Sci Rep, 2022, 12(1): 12874 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/35896589/. DOI: 10.1038/s41598-022-16717-y.
[12]
GUO J, FATHI KAZEROONI A, TOORENS E, et al. Integrating imaging and genomic data for the discovery of distinct glioblastoma subtypes: a joint learning approach[J/OL]. Sci Rep, 2024, 14(1): 4922 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/38418494/. DOI: 10.1038/s41598-024-55072-y.
[13]
FAN H Q, LUO Y L, GU F, et al. Artificial intelligence-based MRI radiomics and radiogenomics in glioma[J/OL]. Cancer Imaging, 2024, 24(1): 36 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/38486342/. DOI: 10.1186/s40644-024-00682-y.
[14]
GILLIES R J, SCHABATH M B. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29(12): 2556-2567. DOI: 10.1158/1055-9965.EPI-20-0075.
[15]
翟晓阳, 任进发, 程思佳, 等. 预测胶质瘤复发和术后生存期的MRI影像组学初步研究[J]. 磁共振成像, 2023, 14(12): 26-32. DOI: 10.12015/issn.1674-8034.2023.12.005.
ZHAI X Y, REN J F, CHENG S J, et al. A preliminary study on predicting glioblastoma recurrence and postoperative survival time through MRI imaging radiomics[J]. Chin J Magn Reson Imag, 2023, 14(12): 26-32. DOI: 10.12015/issn.1674-8034.2023.12.005.
[16]
POURSAEED R, MOHAMMADZADEH M, SAFAEI A A. Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review[J/OL]. BMC Cancer, 2024, 24(1): 1581 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/39731064/. DOI: 10.1186/s12885-024-13320-4.
[17]
GARRETT M D, YANAGIHARA T K, YEH R, et al. Monitoring radiation treatment effects in glioblastoma: flair volume as significant predictor of survival[J]. Tomography, 2017, 3(3): 131-137. DOI: 10.18383/j.tom.2017.00009.
[18]
WEN P Y, VAN DEN BENT M, YOUSSEF G, et al. RANO 2.0: update to the response assessment in neuro-oncology criteria for high- and low-grade gliomas in adults[J]. J Clin Oncol, 2023, 41(33): 5187-5199. DOI: 10.1200/JCO.23.01059.
[19]
KIM B R, CHOI S H, YUN T J, et al. MR imaging analysis of non-measurable enhancing lesions newly appearing after concomitant chemoradiotherapy in glioblastoma patients for prognosis prediction[J/OL]. PLoS One, 2016, 11(11): e0166096 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/27835666/. DOI: 10.1371/journal.pone.0166096.
[20]
EISELE S C, WEN P Y, LEE E Q. Assessment of brain tumor response: RANO and its offspring[J/OL]. Curr Treat Options Oncol, 2016, 17(7): 35 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/27262709/. DOI: 10.1007/s11864-016-0413-5.
[21]
CHADDAD A, DANIEL P, DESROSIERS C, et al. Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time[J]. IEEE J Biomed Health Inform, 2019, 23(2): 795-804. DOI: 10.1109/JBHI.2018.2825027.
[22]
CHIANG G C, PISAPIA D J, LIECHTY B, et al. The prognostic value of MRI subventricular zone involvement and tumor genetics in lower grade gliomas[J]. J Neuroimaging, 2020, 30(6): 901-909. DOI: 10.1111/jon.12763.
[23]
CHABAN A, WASCHULZIK B, BERNHARDT D, et al. Amino acid PET vs. RANO MRI for prediction of overall survival in patients with recurrent high grade glioma under bevacizumab therapy[J]. Eur J Nucl Med Mol Imaging, 2024, 51(6): 1698-1702. DOI: 10.1007/s00259-024-06601-4.
[24]
KIM J Y, PARK J E, JO Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients[J]. Neuro Oncol, 2019, 21(3): 404-414. DOI: 10.1093/neuonc/noy133.
[25]
ZEPPA P, NEITZERT L, MAMMI M, et al. How reliable are volumetric techniques for high-grade gliomas? a comparison study of different available tools[J/OL]. Neurosurgery, 2020, 87(6): E672-E679 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/32629469/. DOI: 10.1093/neuros/nyaa282.
[26]
CHOI Y, JANG J, KIM B S, et al. Pretreatment MR-based radiomics in patients with glioblastoma: a systematic review and meta-analysis of prognostic endpoints[J/OL]. Eur J Radiol, 2023, 168: 111130 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/37827087/. DOI: 10.1016/j.ejrad.2023.111130.
[27]
KU M C, WAICZIES S, NIENDORF T, et al. Assessment of blood brain barrier leakage with gadolinium-enhanced MRI[J/OL]. Methods Mol Biol, 2018, 1718: 395-408 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/29341021/. DOI: 10.1007/978-1-4939-7531-0_23.
[28]
ALIZADEH M, BROOMAND LOMER N, AZAMI M, et al. Radiomics: the new promise for differentiating progression, recurrence, pseudoprogression, and radionecrosis in glioma and glioblastoma multiforme[J/OL]. Cancers (Basel), 2023, 15(18): 4429 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/37760399/. DOI: 10.3390/cancers15184429.
[29]
ZHUANG Y K, CHEN J W, MAI Z H, et al. Signature construction and disulfidptosis-related molecular cluster identification for better prediction of prognosis in glioma[J/OL]. J Mol Neurosci, 2024, 74(2): 38 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/38573391/. DOI: 10.1007/s12031-024-02216-4.
[30]
YOSHIMURA H, KAWAHARA D, SAITO A, et al. Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN[J]. Phys Eng Sci Med, 2024, 47(3): 1227-1243. DOI: 10.1007/s13246-024-01443-8.
[31]
HU M F, LI J G, LI Z Y, et al. Prediction of survival outcomes in patients with glioma using magnetic resonance imaging (MRI): a systematic review and meta-analysis[J/OL]. J Integr Neurosci, 2025, 24(1): 23389 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/38573391/. DOI: 10.31083/JIN23389.
[32]
BAPURAJ J R, WANG N, SRINIVASAN A, et al. Advanced imaging and computational techniques for the diagnostic and prognostic assessment of malignant gliomas[J]. Cancer J, 2021, 27(5): 344-352. DOI: 10.1097/PPO.0000000000000545.
[33]
STYLIARA E I, ASTRAKAS L G, ALEXIOU G, et al. Survival outcome prediction in glioblastoma: insights from MRI radiomics[J]. Curr Oncol, 2024, 31(4): 2233-2243. DOI: 10.3390/curroncol31040165.
[34]
WISNU WARDHANA D P, MALIAWAN S, MAHADEWA T G B, et al. Radiomic features as artificial intelligence prognostic models in glioblastoma: a systematic review and meta-analysis[J/OL]. Diagnostics (Basel), 2024, 14(21): 2354 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/39518322/. DOI: 10.3390/diagnostics14212354.
[35]
CHOI Y, NAM Y, JANG J, et al. Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models[J]. Eur Radiol, 2021, 31(4): 2084-2093. DOI: 10.1007/s00330-020-07335-1.

上一篇 基于磁共振成像的双侧痉挛型脑瘫儿童灰质形态学研究
下一篇 基于心脏磁共振探析扩张型心肌病左心房应变与左心室纤维化的相关性
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2