分享:
分享到微信朋友圈
X
临床研究
颈椎屈伸位MRI评估颅颈交界区畸形颈延髓压迫及活动度的研究
方熊艺 曾维 蒲永良 杨海涛

Cite this article as: FANG X Y, ZENG W, PU Y L, et al. Study on the evaluation of cervical medullary compression and activity in craniovertebral junction malformation used dynamic flexion-extension cervical spine MRI[J]. Chin J Magn Reson Imaging, 2025, 16(6): 110-115, 121.本文引用格式:方熊艺, 曾维, 蒲永良, 等. 颈椎屈伸位MRI评估颅颈交界区畸形颈延髓压迫及活动度的研究[J]. 磁共振成像, 2025, 16(6): 110-115, 121. DOI:10.12015/issn.1674-8034.2025.06.016.


[摘要] 目的 探讨颈椎过伸过屈动态MRI评估成人单纯和复杂Chiari畸形颈延髓压迫及活动度的价值。材料与方法 回顾性收集2022年9月至2024年7月本院59例经临床及影像诊断的Chiari畸形患者的临床资料及术前颈椎CT图像与屈伸位MRI图像,根据有无合并颅底凹陷将Chiari畸形分为单纯Chiari畸形组(n=32)和复杂Chiari畸形组(n=27),30例无颅颈交界区畸形的受检者设为对照组。在颈椎动态MRI T2WI正中矢状面测量颈髓延髓角、颈髓空洞的长度,并计算颈髓延髓角的差值得到颈延髓活动度;于T1WI正中矢状面测量小脑扁桃体下疝长度。采用配对样本t检验分析各组内屈伸颈位颈髓延髓角的差异;采用单因素方差分析及图基法事后两两比较探讨三组间屈伸颈位颈髓延髓角及其差值的相关性;采用Mann-Whitney U检验比较单纯Chiari畸形、复杂Chiari畸形小脑扁桃体下疝长度和颈髓空洞长度的差异。结果 复杂Chiari畸形组在过伸过屈位MRI颈髓延髓角均较单纯Chiari畸形组和对照组减小,差异具有统计学意义(P<0.001);单纯Chiari畸形组与对照组间差异不具有统计学意义(P=0.323)。三组间过伸过屈位颈延髓活动度差异不具有统计学意义(P=0.699);单纯Chiari畸形组与复杂Chiari畸形组在小脑扁桃体下疝长度、颈髓空洞长度差异不具有统计学意义(P>0.05)。结论 复杂Chiari畸形颈延髓腹侧压迫程度更重,但对颈延髓活动度并无显著影响。
[Abstract] Objective To investigate the value of cervical medullary compression and activity in adults with simple and complex Chiari malformation by dynamic flexion-extension cervical spine MRI.Materials and Methods Retrospective collection of clinical data and preoperative cervical CT images and flexion and extension MRI images of 59 patients with Chiari malformation diagnosed clinically and radiologically in our hospital from September 2022 to July 2024. Based on the presence or absence of skull base depression, Chiari malformation was divided into a simple Chiari malformation group (n = 32) and a complex Chiari malformation group (n = 27), with 30 subjects without craniocervical junction malformation as the control group. Measure the cervical medullary angle (CMA) and length of syringomyelia in the mid sagittal plane of cervical dynamic MRI T2WI, and calculate the difference in CMA to obtain the range of cervical medullary activity. Measure the length of cerebellar tonsillar hernia in the mid sagittal plane on T1WI. Paired sample t-test was used to analyze the differences in the CMA of flexion and extension in each group. Using one-way ANOVA and Tukey's HSD pairwise comparison to explore the correlation between the CMA and its difference in flexion and extension positions among the three groups. Mann Whitney U test was used to compare the differences in cerebellar tonsillar hernia length and length of syringomyelia between simple Chiari malformation and complex Chiari malformation.Results The complex Chiari malformation group showed a significant reduction in the CMA on flexion and extension MRI compared to the simple Chiari malformation group and the control group, and the difference was statistically significant (P < 0.001). No statistically significant difference was found between the simple Chiari malformation group and the control group (P = 0.323). There was no statistically significant difference in the activity of the cervical medulla oblongata among the three groups (P = 0.699). No statistically significant differences in the length of cerebellar tonsillar hernia and length of syringomyelia between the simple Chiari malformation group and the complex Chiari malformation group (P> 0.05).Conclusions The complex Chiari malformation shows a greater degree of compression on the medulla oblongata, but no significant effect on the activity of the medulla oblongata.
[关键词] 颅颈交界区畸形;Chiari畸形;颈椎;动态磁共振成像;颈髓延髓角
[Keywords] craniovertebral junction malformation;Chiari malformation;cervical vertebra;dynamic magnetic resonance imaging;cervico medullary angle

方熊艺 1, 2   曾维 1   蒲永良 1   杨海涛 1*  

1 重庆医科大学附属第一医院放射科,重庆 400016

2 四川省内江市第二人民医院放射科,内江 641000

通信作者:杨海涛,E-mail:frankyang119@126.com

作者贡献声明::杨海涛设计本研究的方案,对稿件重要内容进行了修改;方熊艺设计本研究的方案,起草和撰写稿件,获取、分析和解释本研究的数据,对稿件重要内容进行了修改;曾维、蒲永良获取和分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-03-22
接受日期:2025-06-05
中图分类号:R445.2  R682.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.06.016
本文引用格式:方熊艺, 曾维, 蒲永良, 等. 颈椎屈伸位MRI评估颅颈交界区畸形颈延髓压迫及活动度的研究[J]. 磁共振成像, 2025, 16(6): 110-115, 121. DOI:10.12015/issn.1674-8034.2025.06.016.

0 引言

       颅颈交界区(craniovertebral junction, CVJ)畸形多隐匿,呈慢性进展,患者多因症状加重就诊,此时脑干、颈髓多已发生损伤,甚至在外伤或不当活动时出现瘫痪、死亡[1]。Chiari畸形和颅底凹陷是CVJ最常见的畸形,Chiari畸形依据形态和解剖缺陷严重程度目前分为9种类型[2],据统计Chiari畸形患病率约0.1%~0.5%,女性占优势,且由于存在无症状患者患病率认为被严重低估[3, 4]。也有报道称Chiari畸形患者中约12%~35%合并颅底凹陷[5],合并颅底凹陷的Chiari畸形被称为复杂型Chiari畸形[6]。单纯Chiari畸形和复杂Chiari畸形的临床治疗方式差异巨大,主要在于是否存在CVJ不稳定,不当的手术方式可能对患者造成伤害,甚至导致二次手术,加重患者家庭及社会的负担。因此,早期识别Chiari畸形是否存在CVJ不稳定,对临床治疗方案的制订尤为重要。

       Chiari畸形临床诊断的主要依据是MRI检查发现小脑扁桃体下移,导致颈延髓受压及脑脊液循环阻塞;常规手术方式为后颅窝减压术,目的在于减轻颈延髓的压迫,恢复脑脊液循环,对于合并CVJ不稳定的患者,应在减压的基础上行融合内固定术,恢复CVJ的稳定性[7]。CVJ不稳定主要通过影像学测量指标判断寰枕关节、寰枢关节的异常活动,测量参数较多如寰枕关节的深度、曲率以及寰枢外侧关节倾斜角、寰齿间距等,测量相对复杂,多为静态研究,这些影像学测量参数还可能随患者体位而发生改变,据此结果用于识别Chiari畸形患者CVJ是否稳定及制订临床治疗方案有局限性[8],可能导致对CVJ稳定性的评估出现偏差,进而影响临床治疗方案。因此,探索一种简便易行、结果可靠的筛查方法用于识别CVJ的稳定性具有重要的临床意义。颈髓延髓角(cervico medullary angle, CMA)作为颈延髓受压的客观指标,已用于指导Chiari畸形的临床治疗方案,测量相对简便,但既往报道多基于常规静态MRI,得到的CMA仅代表一个体位下颈延髓受压情况,据此CMA值用于评估Chiari畸形颈延髓的真实压迫存在缺陷,因其未考虑颈椎屈伸活动的影响[9],而本研究通过动态观察可弥补这一缺陷。因此,本研究基于颈椎过伸过屈位动态MRI评估单纯Chiari畸形及复杂Chiari畸形的颈延髓压迫及活动度情况,以期为临床评价疾病严重程度和治疗方案选择提供帮助。

1 材料与方法

1.1 研究对象

       回顾性收集重庆医科大学附属第一医院自2022年9月至2024年7月经临床及影像诊断的59例Chiari畸形患者的临床病历资料及术前颈椎CT图像与屈伸位MRI图像,依据纳排标准,以其中32例单纯Chiari畸形为单纯Chiari畸形组,27例合并颅底凹陷的Chiari畸形为复杂Chiari畸形组,选取同一时间段行颈椎屈伸位MRI检查结果示无CVJ畸形的30例患者为对照组。

       单纯Chiari畸形组纳入标准:(1)符合Chiari畸形的诊断标准[10],MRI检查结果显示小脑扁桃体尖端至枕骨大孔下缘距离≥5 mm;(2)年龄≥18岁,排除骨化不全的年轻患者[11]。复杂Chiari畸形组纳入标准:(1)符合Chiari畸形的诊断标准;(2)符合颅底凹陷的诊断标准[12],CT检查结果显示枢椎齿状突尖超过腭枕线(硬腭后缘到枕骨大孔后缘之间的连线)>3 mm;(3)年龄≥18岁。对照组纳入标准:(1)颈椎动态MRI检查结果示无CVJ畸形;(2)年龄≥18岁。三组共同排除标准:(1)有颅内占位性病变等导致的获得性Chiari畸形;(2)有颅骨破坏以及后颅窝手术史等影响相应区域的观察和测量的患者。

       本研究遵守《赫尔辛基宣言》,获得重庆医科大学附属第一医院伦理委员会批准,免除受试者知情同意,批准文号为:2024-461-01。进行数据处理及从PACS系统下载图像时,去除患者信息。

1.2 MRI检查设备及方法

       采用1.5 T场强联影uMR 660和1.5 T场强GE HDXT MRI系统,使用8通道脊柱线圈。所有患者均行矢状位快速自旋回波序列(fast spin echo, FSE)T2WI成像、FSE T1WI成像、短时反转恢复序列(short tau inversion recovery, STIR)成像,扫描参数分别如下:

       联影:FSE T2WI(TR 2000 ms,TE 98 ms,FOV 240 mm×240 mm,层厚3.0 mm,层间距10 mm,层数11,扫描时间60 s);FSE T1WI(TR 522 ms,TE 8.7 ms,FOV 240 mm×240 mm,层厚3.0 mm,层间距10 mm,层数11,扫描时间60 s);STIR(TR 2079 ms,TE 52.8 ms,FOV 240 mm×240 mm,层厚3.0 mm,层间距10 mm,层数11,扫描时间88 s)。GE:FSE T2WI(TR 2000 ms,TE 120 ms,FOV 220 mm×220 mm,层厚3.0 mm,层间距6 mm,层数9,扫描时间60 s);FSE T1WI(TR 460 ms,TE 11.6 ms,FOV 220 mm×220 mm,层厚3.0 mm,层间距6 mm,层数9,扫描时间60 s);STIR(TR 2800 ms,TE 48 ms,FOV 220 mm×220 mm,层厚3.0 mm,层间距6 mm,层数9,扫描时间2 min)。

       过伸过屈检查方法:患者取仰卧位,扫描过屈位时将预制为30°的楔形垫置于枕后,下颌尖尽量靠近前胸壁,获得过屈位图像;取预制为15°的楔形垫置于患者颈肩部,头部尽量向后悬垂,从而扫描过伸位,扫描过程中若患者感到不适即停止扫描。

1.3 MRI图像评估与测量

       CMA测量方法参考以前研究[13],在T2WI图像的正中矢状面进行测量,沿寰椎前结节上缘做一切线,取该层面脊髓的中点定为P0,沿脑桥下缘做一条切线,取该层面脑干的中点定为P1,沿枢椎下缘做一切线,取该层面颈髓的中点定为P2,三点连线的夹角为中心轴线CMA(图1A)。小脑扁桃体下疝长度的测量方法[14]为在T1WI图像上测量小脑扁桃体最低点至枕骨大孔下缘的距离(图1B);脊髓空洞的长度测量定义为同层面颈椎椎体数[15]图1C),由于部分胸段脊髓空洞未在扫描范围内,因此当脊髓空洞超过7个颈椎时定义颈髓空洞的长度为≥7个。分别在颈椎过伸过屈位T2WI图像的正中矢状面测量单纯Chiari畸形和复杂Chiari畸形患者的CMA,颈延髓活动度为过伸位CMA减去过屈位CMA所得的差值。

       所有操作均在PHILIPS Vue PACS系统上进行,利用其功能键测量角度及长度,使用的量角器精度为0.01°,长度测量精度为0.1 mm。为了提高测量方法的准确性,上述测量由两位具有5年骨肌影像诊断经验的放射科主治医师分别对所选患者的CMA、小脑扁桃体下疝长度及颈髓空洞长度测量两次,取平均值,如测量结果出现分歧则以第三位具有10年骨肌影像诊断经验的放射科主任医师再次测量为准。

图1  影像参数测量示意图。1A:颈髓延髓角为正中矢状面T2WI上寰椎前结节上缘与脊髓垂直平面脊髓中点(P0)、脑桥下缘与脑干垂直平面脑干中点(P1)、枢椎下缘终板与脊髓垂直平面脊髓中点(P2)连线的夹角;1B:小脑扁桃体下疝长度为小脑扁桃体最低点(C)至斜坡下缘(A)与枕骨下缘(B)连线的垂直距离,即CD长度;1C:颈髓空洞长度为椎体终板平面颈髓空洞上缘(E)与下缘(F)连线范围内涵盖的颈椎椎体数,即EF为6个椎体。
Fig. 1  Schematic diagram of image parameter measurement. 1A: The cervical medullary angle is the angle between the upper edge of the anterior tubercle of the atlas on T2WI and the midpoint of the spinal cord in the vertical plane (P0), the lower edge of the brainstem and the midpoint of the brainstem in the vertical plane (P1), and the end plate of the lower edge of the axis and the midpoint of the spinal cord in the vertical plane (P2); 1B: The length of cerebellar tonsillar hernia is the vertical distance from the lowest point of the cerebellar tonsil (C) to the line connecting the lower edge of the slope (A) and the lower edge of the occipital bone (B), which is the CD length; 1C: The length of the cervical canal cavity is the number of cervical vertebrae covered within the range of the line connecting the upper edge (E) and lower edge (F) of the cervical canal cavity on the plane of the vertebral endplate, i.e. EF is 6 vertebrae.

1.4 统计学分析

       采用SPSS 27.0软件进行统计学分析,以P<0.05表示差异具有统计学意义。对于服从正态分布的计量资料以均数±标准差表示,不服从正态分布则使用中位数(上下四分位数)表示,计数资料以频数(百分比)表示。各组内比较使用配对样本t检验;三组间比较采用单因素方差分析,并使用图基法进行事后组间两两比较,若方差不齐,先进行威尔奇单因素方差分析,若结果具有统计学意义,则采用盖姆斯-霍威尔多重比较检验进行事后比较;对于不服从正态分布的两组间比较使用Mann-Whitney U检验;采用组内相关系数(intra-class correlation coefficient, ICC)比较屈伸位CMA、小脑扁桃体下疝长度、颈髓空洞长度在两个测量者之间的一致性,当ICC>0.75表示一致性良好,0.40~0.75表示一致性一般,<0.40表示一致性差。

2 结果

2.1 一般资料

       纳入的89例颈椎屈伸位MRI检查病例中,单纯Chiari畸形组32例,其中男5例,女27例,年龄(52.4±10.6)岁,均行后颅窝减压术,术后患者症状改善;复杂Chiari畸形组27例,其中男2例,女25例,年龄(51.3±14.6)岁,本组患者中16例在后颅窝减压术的同时行CVJ融合内固定术,术后患者症状明显改善,4例因家庭原因未手术,余7例行单纯减压术;无CVJ畸形对照组30例,其中男14例,女16例,年龄(47.9±13.5)岁。对单纯Chiari畸形组和复杂Chiari畸形组的年龄、性别、临床症状分别进行比较,差异均不具有统计学意义(P>0.05),两组对手术方式、预后的比较差异具有统计学意义(P<0.05)(表1)。

表1  患者一般资料比较
Tab. 1  Comparison of general information of patients

2.2 三组CMA测量结果、颈延髓活动度及各组内、组间比较

       所测量的屈伸位CMA值在两个测量者之间的一致性均良好(ICC:0.932~0.993)(表2),表明该研究数据的稳定性和可靠性较高。

       单纯Chiari畸形、复杂Chiari畸形伸颈位及屈颈位CMA测量示例见图2,三组的CMA测量结果均符合正态分布。三组在过伸过屈位CMA的组间比较差异具有统计学意义(复杂Chiari畸形组<单纯Chiari畸形组<对照组,P<0.001),复杂Chiari畸形组颈延髓腹侧受压程度最重,复杂Chiari畸形组与单纯Chiari畸形组及对照组比较差异均具有统计学意义(P<0.001),单纯Chiari畸形组与对照组差异不具有统计学意义(P=0.323),三组在颈延髓活动度的比较差异不具有统计学意义(P=0.699)(表3);三组在过伸过屈位CMA的组内比较差异具有统计学意义(P<0.001),屈颈位CMA<伸颈位CMA(表4)。

图2  单纯Chiari畸形、复杂Chiari畸形伸颈位及屈颈位颈髓延髓角测量示例。2A~2C:男,57岁,Chiari畸形不伴颅底凹陷;2A:过伸位颈髓延髓角172.89°;2B:过屈位颈髓延髓角165.48°;2C:CT图像显示无颅底凹陷。2D~2F 女,50岁,Chiari畸形伴颅底凹陷;2D:过伸位颈髓延髓角164.68°;2E:过屈位颈髓延髓角157.62°;2F:CT图像显示存在颅底凹陷,枢椎齿状突尖超过腭枕线约4.5 mm。
Fig. 2  Example of measurement of cervical medullary angle in simple Chiari malformation, complex Chiari malformation in extension and flexion positions. 2A-2C: Male, 57 years old, Chiari malformation without basilar invagination; 2A: Cervical medulla angle in hyperextension position 172.89 ° ; 2B: Cervical medullary angle in flexion position 165.48° ; 2C: CT image shows without basilar invagination. 2D-2F: Female, 50 years old, Chiari malformation with basilar invagination; 2D: Cervical medulla angle in hyperextension 164.68 °; 2E: Cervical medullary angle in flexion position 157.62° ; 2F: CT image shows basilar invagination, the apex of the odontoid process of the axis exceeds the velar occipital line by about 4.5 mm.
表2  两位不同研究者获取的屈伸位颈髓延髓角参数及其一致性分析
Tab. 2  Cervical medullary angle parameters obtained from two different researchers in flexion and extension positions and their consistency analysis
表3  三组过伸过屈位颈髓延髓角及其差值的组间比较
Tab. 3  Inter group comparison of cervical medullary angles and their differences in three groups in the extended and flexed position
表4  三组过伸过屈位颈髓延髓角的组内比较
Tab. 4  Intra group comparison of cervical medullary angle in three groups in the extended and flexed position

2.3 单纯Chiari畸形组和复杂Chiari畸形组小脑扁桃体下疝长度和颈髓空洞长度比较

       复杂Chiari畸形组小脑扁桃体下疝长度9.00(7.00,10.50)mm,颈髓空洞长度5.00(1.50,7.00);单纯Chiari畸形组小脑扁桃体下疝长度8.75(7.00,10.00)mm,颈髓空洞长度5.00(1.75,7.00),复杂Chiari畸形组与单纯Chiari畸形组在下疝长度的比较差异不具有统计学意义(Z=-0.344,P=0.731)、在颈髓空洞长度的比较差异不具有统计学意义(Z=-0.550,P=0.828)。

3 讨论

       本研究基于颈椎过伸过屈位动态MRI测量的CMA作为参考,综合分析了单纯Chiari畸形、复杂Chiari畸形及无CVJ畸形患者的CMA、颈延髓活动范围、小脑扁桃体下疝长度及颈髓空洞长度的差异,结果表明复杂Chiari畸形颈延髓腹侧受压程度更重,但对颈延髓活动度并无显著影响。这表明颈椎屈伸位MRI可动态显示Chiari畸形颈延髓压迫程度及活动度,用于Chiari畸形合并颅底凹陷时CVJ结构的观察和评估,为临床对Chiari畸形的诊疗提供指导。

3.1 颈椎动态MRI评估CVJ不稳定

       CVJ包括枕骨、寰椎、枢椎及相邻的附属结构,作为脊柱中活动性最强的部分,其独特的骨骼结构和韧带附着保证了寰枕、寰枢关节活动的稳定性,这些结构的病理改变可导致CVJ不稳定[16],多见于CVJ发育畸形,主要通过影像学检查并借助相应的骨性标志及指示线评估CVJ异常,如本次研究中的小脑扁桃体下疝的长度、枢椎齿状突尖端至腭枕线的距离、CMA等。CVJ最常见的畸形为Chiari畸形和颅底凹陷,其发病机制目前尚未研究透彻,多数表现为脑干、脊髓及神经受累症状[17],本研究中59例Chiari畸形患者有38例(64.41%)出现上肢麻木、肌力减退症状。

       MRI是诊断Chiari畸形及脊髓压迫的首选检查方法[18]。既往关于Chiari畸形诊疗指标多基于静态MRI测量获得,基于动态MRI的报道较少;本研究利用颈椎过伸过屈位MRI能更好地反映Chiari畸形患者颈延髓的动态压迫。国外相关指南[19]也指出,除静态MRI外,还应包括X线动态摄影+动态CT扫描及三维重建以尽早识别Chiari畸形患者CVJ的稳定性,对于合并CVJ不稳定Chiari畸形应采取CVJ后路融合固定术。ZHOU等[20]、HUANG等[21]利用动态CT证实不同类型的颅底凹陷均存在CVJ不稳定,说明本研究中合并颅底凹陷的复杂Chiari畸形组应存在CVJ不稳定(27/59,45.76%)。已有研究报道颈椎动态MRI的安全性得到广泛认同[16, 22],比静态MRI能发现更多的脊髓压迫,特别是在脊髓型颈椎病[23]的早期发现、平山病[24]的诊断中具有不可替代的位置,提供更有价值的临床信息[25],甚至在一定程度上能替代颈椎动力位X线[26]

3.2 不同类型Chiari畸形颈椎动态MRI测量参数的比较分析

       CMA为上段颈髓与延髓腹侧线或中心轴线的夹角,能直观反映颈延髓压迫情况。本研究发现CMA在复杂Chiari畸形、单纯Chiari畸形和对照组中呈依次减小的趋势,复杂Chiari畸形组比单纯Chiari畸形组和对照组CMA均减小,差异具有统计学意义(P<0.001),说明复杂Chiari畸形组颈延髓腹侧受压程度更重,更容易出现损伤。本研究通过测量获得了复杂Chiari畸形组颈延髓受压及活动范围的定量指标,当Chiari畸形患者屈颈位CMA<(150.95°±9.14°)或伸颈位CMA<(155.87°±8.88°)时,说明颈延髓腹侧已出现受压。颅底凹陷畸形时枢椎齿状突向后上移位,上移的齿状突尖会挤压颈延髓腹侧,导致CMA减小更明显。专家共识[1]中提到脑干与颈髓长轴的夹角≤150°时存在脑干脊髓受压,与本次复杂Chiari畸形组颈延髓受压指标基本一致;而且本研究考虑了颈椎屈伸活动的影响,结果显示伸颈位时CMA<155°提示颈延髓存在受压可能对当前的参考值有一定补充作用。

       本次颈椎动态MRI研究结果示三组在过伸过屈位CMA的组内比较差异均具有统计学意义(P<0.001),说明颈椎屈伸活动会明显影响颈延髓形态,导致测量的CMA值不同,与金天宇等[9]、吕宝华等[13]报道的CMA范围基本一致。既往研究报道[27]当腹侧线CMA<135°时需行后路寰枢关节融合术,本研究发现颈椎的屈伸活动会影响CMA值(伸颈位>屈颈位),差异具有统计学意义(P<0.001),因此颈椎屈伸活动范围会导致CMA值出现偏差,基于静态体位测量的参考值对临床治疗方案的制订可能有局限性。

3.3 Chiari畸形患者颈延髓活动度、小脑扁桃体下疝长度、脊髓空洞长度的分析

       本研究结果显示,三组在过伸过屈位CMA活动度的比较差异不具有统计学意义(P=0.699),说明在过伸过屈体位下颈延髓活动度相似,相对固定,但Chiari畸形患者枕骨大孔区空间更小,因此可能更容易出现压迫损伤;WAN等[28]认为存在复杂畸形和CVJ不稳定会促进疾病进展,应尽早手术治疗,与共识中Chiari畸形伴明显临床症状患者的治疗原则一致[19, 29]。单纯Chiari畸形组和复杂Chiari畸形组的小脑扁桃体下疝长度和颈髓空洞长度差异不具有统计学意义(P>0.05),小脑扁桃体下疝的程度与脊髓空洞的关系尚不明确,其下疝程度对Chiari畸形的影响尚需进一步探讨,HEFFEZ等[30]也认为小脑扁桃体下疝程度与患者的临床症状无直接关系。

3.4 本研究的局限性

       (1)本研究属于回顾性研究,部分测量依赖医师主观判断,可能对结果造成偏差;今后引入多中心数据或使用更加客观的标准评价体系,以降低主观因素的影响。(2)本研究样本量较小,未考虑性别、年龄的差异性,Chiari畸形的年龄、性别分布不均匀,这可能导致统计结果与实际情况存在一些偏差;后续研究需要扩大样本量,优化Chiari畸形分布比例,从而降低结果误差。(3)CVJ畸形仅纳入了最常见的Chiari畸形和颅底凹陷,未考虑合并的其他畸形的影响,如寰枕融合、寰枢关节脱位等,这可能对结果造成偏差;今后需要纳入其他CVJ畸形,从而减少结果误差。(4)本研究仅对患者治疗方式进行了追踪,未进行临床症状的详细评估及长期随访,这也可能对结果造成偏差;后续研究应将临床症状及长期预后情况纳入评估,从而减小误差。

4 结论

       综上,颈椎屈伸位MRI可动态显示Chiari畸形颈延髓压迫程度及活动度,复杂Chiari畸形颈延髓腹侧压迫程度更重,但对颈延髓活动度并无显著影响,颈椎屈伸动态MRI可用于Chiari畸形CVJ结构稳定性的观察和评估,为临床诊疗提供额外的补充信息和指导。

[1]
中华医学会神经外科学分会, 中国医师协会神经外科医师分会. 中国颅颈交界区畸形诊疗专家共识[J]. 中华神经外科杂志, 2016, 32(7): 659-665. DOI: 10.3760/cma.j.issn.1001-2346.2016.07.003.
Chinese Neurosurgical Society, Chinese Congress of Neurological Surgeons. Expert consensus on diagnosis and treatment of craniocervical junction malformation in China[J]. Chin J Neurosurg, 2016, 32(7): 659-665. DOI: 10.3760/cma.j.issn.1001-2346.2016.07.003.
[2]
SAHUQUILLO J, MONCHO D, FERRÉ A, et al. A critical update of the classification of chiari and chiari-like malformations[J/OL]. J Clin Med, 2023, 12(14): 4626 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37510741/. DOI: 10.3390/jcm12144626.
[3]
RODRÍGUEZ-BLANQUE R, ALMAZÁN-SOTO C, PIQUERAS-SOLA B, et al. Chiari syndrome: advances in epidemiology and pathogenesis: a systematic review[J/OL]. J Clin Med, 2023, 12(20): 6694 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37892831/. DOI: 10.3390/jcm12206694.
[4]
MANCARELLA C, DELFINI R, LANDI A. Chiari malformations[J/OL]. Acta Neurochir Suppl, 2019, 125: 89-95 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/30610307/. DOI: 10.1007/978-3-319-62515-7_13.
[5]
李洋, 胡晓珺, 王聖茜, 等. 成人单纯Arnold-Chiari畸形颅颈交界区CT参数测量[J]. 中国神经精神疾病杂志, 2020, 46(1): 8-12. DOI: 10.3969/j.issn.1002-0152.2020.01.002.
LI Y, HU X J, WANG S X, et al. Study on CT parameters at craniocervical junction of the adult simple Arnold-Chiari malformation I[J]. Chin J Nerv Ment Dis, 2020, 46(1): 8-12. DOI: 10.3969/j.issn.1002-0152.2020.01.002.
[6]
BIANCHI F, MONTEDORO B, FRASSANITO P, et al. Chiari I malformation: management evolution and technical innovation[J]. Childs Nerv Syst, 2023, 39(10): 2757-2769. DOI: 10.1007/s00381-023-06051-7.
[7]
伊尔夏提·克力木, 木拉德·买尔旦, 牙克甫·阿不力孜, 等. Chiari畸形Ⅰ型与寰枢椎不稳关系的研究进展[J]. 中华骨科杂志, 2023, 43(7): 458-464. DOI: 10.3760/cma.j.cn121113-20210407-00285.
ERXAT K, MURADIL M, YAKUP A, et al. Research progress of Chiari malformation type I and atlantoaxial instability[J]. Chin J Orthop, 2023, 43(7): 458-464. DOI: 10.3760/cma.j.cn121113-20210407-00285.
[8]
SAMMAN M M AL, GARCIA M A, GARCÍA M, et al. Relationship of morphometrics and symptom severity in female type I chiari malformation patients with biological resilience[J]. Cerebellum, 2024, 23(3): 1146-1156. DOI: 10.1007/s12311-023-01627-0.
[9]
金天宇, 王佳璐, 张博彦, 等. 颅颈交界区骨性与神经畸形影像学评估参数的测量与应用[J]. 中华外科杂志, 2023, 61(11): 1024-1029. DOI: 10.3760/cma.j.cn112139-20230713-00007.
JIN T Y, WANG J L, ZHANG B Y, et al. The measurement and application of imaging evaluation parameters for cranio-cervical junction osseous and neural abnormalities: a review[J]. Chin J Surg, 2023, 61(11): 1024-1029. DOI: 10.3760/cma.j.cn112139-20230713-00007.
[10]
卢峰, 曾广明. Chiari畸形Ⅰ型患者后颅窝MRI特点研究[J]. 中华神经医学杂志, 2020, 19(12): 1253-1259. DOI: 10.3760/cma.j.cn115354-20200206-00060.
LU F, ZENG G M. MR imaging characteristics of posterior cranial Fossa in Chiari malformation type I patients[J]. Chin J Neuromed, 2020, 19(12): 1253-1259. DOI: 10.3760/cma.j.cn115354-20200206-00060.
[11]
SILVA O T DA, GHIZONI E, TEDESCHI H, et al. Role of dynamic computed tomography scans in patients with congenital craniovertebral junction malformations[J]. World J Orthop, 2017, 8(3): 271-277. DOI: 10.5312/wjo.v8.i3.271.
[12]
JOAQUIM A F, EVANGELISTA SANTOS BARCELOS A C, DANIEL J W, et al. Chamberlain's line violation in basilar invagination patients compared with normal subjects: a systematic literature review and meta-analysis[J/OL]. World Neurosurg, 2023, 173: e364-e370 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/36822399/. DOI: 10.1016/j.wneu.2023.02.057.
[14]
EISENBERG L, GIENAPP A J, EISENBERG A, et al. Effect of body mass index on chiari malformation 1 tonsil ectopia length in adults[J/OL]. World Neurosurg, 2023, 176: e380-e383 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37236309/. DOI: 10.1016/j.wneu.2023.05.066.
[15]
何中, 秦晓东, 殷睿, 等. Chiari畸形Ⅰ型伴脊柱侧凸患者影像学特征的自然史: 一项横断面研究[J]. 中华骨科杂志, 2020(4): 199-207. DOI: 10.3760/cma.j.issn.0253-2352.2020.04.002.
HE Z, QIN X D, YIN R, et al. The natural history of radiological presentations in Chiari malformation type Ⅰ with scoliosis: a cross-sectional study[J]. Chin J Orthop, 2020(4): 199-207. DOI: 10.3760/cma.j.issn.0253-2352.2020.04.002.
[16]
GRENIER-CHARTRAND F, TAVERNE M, JAMES S, et al. Mobility assessment using multi-positional MRI in children with cranio-vertebral junction anomalies[J/OL]. J Clin Med, 2023, 12(21): 6714 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37959181/. DOI: 10.3390/jcm12216714.
[17]
王浩玥, 葛朝明. 颅颈交界畸形伴经典型Dejerine综合征一例[J]. 磁共振成像, 2022, 13(8): 94-95, 100. DOI: 10.12015/issn.1674-8034.2022.08.019.
WANG H Y, GE Z M. Craniocervical junction malformation combined with classic Dejerine syndrome: One case report[J]. Chin J Magn Reson Imag, 2022, 13(8): 94-95, 100. DOI: 10.12015/issn.1674-8034.2022.08.019.
[18]
EISENBERG L, EISENBERG A, GIENAPP A J, et al. Cranial versus cervical spine magnetic resonance imaging in adult chiari malformation type I diagnostics: is there a difference in tonsil ectopia length?[J/OL]. World Neurosurg, 2023, 175: e243-e246 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/36940808/. DOI: 10.1016/j.wneu.2023.03.060.
[19]
CIARAMITARO P, MASSIMI L, BERTUCCIO A, et al. Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document[J]. Neurol Sci, 2022, 43(2): 1327-1342. DOI: 10.1007/s10072-021-05347-3.
[20]
ZHOU Q, SONG C, HUANG Q G, et al. Evaluating craniovertebral stability in chiari malformation coexisting with type II basilar invagination: an observational study based on kinematic computed tomography and its clinical application[J/OL]. World Neurosurg, 2022, 164: e724-e740 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/35595047/. DOI: 10.1016/j.wneu.2022.05.045.
[21]
HUANG Q G, YANG X Y, ZHENG D Y, et al. Exploring the pathogenesis of atlanto-occipital instability in chiari malformation with type II basilar invagination: a systematic morphological study[J]. Neurosurgery, 2023, 92(4): 837-853. DOI: 10.1227/neu.0000000000002284.
[22]
JHA S C, MIYAZAKI M, TSUMURA H. Kinetic change of spinal cord compression on flexion-extension magnetic resonance imaging in cervical spine[J/OL]. Clin Neurol Neurosurg, 2018, 174: 86-91 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/30219623/. DOI: 10.1016/j.clineuro.2018.09.017.
[23]
LIU A, QIU N H, ZHONG X R, et al. Dynamic evaluation of the cervical spine by kinematic MRI in patients with cervical spinal cord injury without fracture and dislocation[J/OL]. J Orthop Surg Res, 2023, 18(1): 249 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/36973814/. DOI: 10.1186/s13018-023-03745-1.
[24]
BÄCKER H C, BOCK J, TURNER P, et al. Juvenile muscular atrophy of the distal upper extremity (Hirayama syndrome): a systematic review[J]. Eur Spine J, 2022, 31(12): 3296-3307. DOI: 10.1007/s00586-022-07279-8.
[25]
ZHOU Z Q, LIN F G, ZHANG Y, et al. Correlation and reliability of cervical sagittal alignment parameters between plain radiographs and multipositional MRI images[J]. Spinal Cord, 2023, 61(5): 307-312. DOI: 10.1038/s41393-023-00895-1.
[26]
王晓琥, 廖俊城, 李智斐, 等. 动态MRI与动力位X线片在测量颈椎椎体间角度的对比分析[J]. 临床放射学杂志, 2020, 39(6): 1139-1143. DOI: 10.13437/j.cnki.jcr.2020.06.025.
WANG X H, LIAO J C, LI Z F, et al. Comparative analysis of dynamic MRI and dynamic position X-ray film in measuring the angle between cervical vertebrae[J]. J Clin Radiol, 2020, 39(6): 1139-1143. DOI: 10.13437/j.cnki.jcr.2020.06.025.
[27]
菅强, 段婉茹, 刘振磊, 等. 后路寰枢关节撑开融合技术治疗伴有脊髓空洞症的颅底凹陷合并寰枢椎脱位的疗效分析[J]. 中华神经外科杂志, 2023, 39(3): 226-231. DOI: 10.3760/cma.j.cn112050-20220502-00228.
JIAN Q, DUAN W R, LIU Z L, et al. Analysis of therapeutic effect of posterior atlantoaxial joint distraction and fusion technique in the treatment of basilar invagination-atlantoaxial dislocation complicated with syringomyelia[J]. Chin J Neurosurg, 2023, 39(3): 226-231. DOI: 10.3760/cma.j.cn112050-20220502-00228.
[28]
WAN M, ZONG R, TONG H Y, et al. A morphometric study of the atlanto-occipital joint in adult patients with Chiari malformation type I[J]. Br J Neurosurg, 2024, 38(1): 12-15. DOI: 10.1080/02688697.2020.1823940.
[29]
王蒙, 胡岩, 左玉超, 等. 儿童Chiari畸形1型的诊断与治疗: 国际专家共识(2021)解读[J]. 中华神经医学杂志, 2022, 21(8): 757-761. DOI: 10.3760/cma.j.cn115354-20220511-00318.
WANG M, HU Y, ZUO Y C, et al. Diagnosis and treatment of Chiari malformation type 1 in children: interpretation on international consensus document(2021)[J]. Chin J Neuromed, 2022, 21(8): 757-761. DOI: 10.3760/cma.j.cn115354-20220511-00318.
[30]
HEFFEZ D S, BRODERICK J, CONNOR M, et al. Is there a relationship between the extent of tonsillar ectopia and the severity of the clinical Chiari syndrome?[J]. Acta Neurochir (Wien), 2020, 162(7): 1531-1538. DOI: 10.1007/s00701-019-04171-1.

上一篇 MR影像组学列线图对胎盘植入性疾病的产前诊断及不良临床结局预测
下一篇 基于5.0 T磁共振T2加权液体衰减反转恢复序列对脑白质高信号评估的前瞻性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2