分享:
分享到微信朋友圈
X
综述
心脏磁共振成像在HER-2阳性乳腺癌患者曲妥珠单抗治疗相关心脏毒性中的应用研究进展
邓宇飞 徐茜 沈合松 张久权

Cite this article as: DENG Y F, XU Q, SHEN H S, et al. Research progress on magnetic resonance imaging of trastuzumab-induced cardiotoxicity in HER-2 positive breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(6): 171-175, 181.本文引用格式:邓宇飞, 徐茜, 沈合松, 等. 心脏磁共振成像在HER-2阳性乳腺癌患者曲妥珠单抗治疗相关心脏毒性中的应用研究进展[J]. 磁共振成像, 2025, 16(6): 171-175, 181. DOI:10.12015/issn.1674-8034.2025.06.026.


[摘要] 曲妥珠单抗是人类表皮生长因子受体-2(human epidermal growth factor receptor 2, HER-2)阳性乳腺癌患者靶向治疗的常见用药之一,其引发的心脏毒性是这类患者抗肿瘤治疗过程中的副作用,严重威胁患者健康。及时、准确地发现心脏毒性并进行干预治疗是防治心脏毒性的有效方法。心脏磁共振(cardiac magnetic resonance, CMR)作为一种非侵入式的成像技术,能够全面评估心脏结构、功能和组织特征,在心脏毒性基线风险分层和随访监测等方面具有应用潜力。本文就CMR在HER-2阳性乳腺癌患者曲妥珠单抗治疗相关心脏毒性中的应用研究进展进行综述,旨在为临床制订合理、有效的心脏毒性基线风险评估、随访监测方案提供参考。
[Abstract] Trastuzumab is a commonly used drug for targeted therapy in human epidermal growth factor receptor 2 (HER-2) positive breast cancer, with its cardiotoxicity being a side effect during anti-tumor treatment, posing a severe threat to patient health. Timely and accurate detection of cardiotoxicity and intervention treatment are effective methods for the prevention and treatment of cardiotoxicity. Cardiac magnetic resonance (CMR), as a non-invasive imaging technique, can comprehensively assess cardiac structure, function, and tissue characteristics, and has applications potential in baseline risk stratification and follow-up monitoring of cardiotoxicity. This article reviews the progress and future prospects of CMR in the application of cardiotoxicity related to trastuzumab treatment in HER-2 positive breast cancer, aiming to provide reference for the clinical establishment of a reasonable and effective baseline risk assessment and follow-up monitoring plan for cardiac toxicity.
[关键词] 乳腺癌;曲妥珠单抗;人类表皮生长因子受体-2;心脏毒性;磁共振成像
[Keywords] breast cancer;trastuzumab;human epidermal growth factor receptor 2;cardiotoxicity;magnetic resonance imaging

邓宇飞 1   徐茜 1   沈合松 2   张久权 2*  

1 重庆大学医学院,重庆 400030

2 重庆大学附属肿瘤医院影像科,重庆 400030

通信作者:张久权,E-mail:zhangjq_radiol@foxmail.com

作者贡献声明::张久权、沈合松设计本研究的方案,对稿件的重要内容进行了修改,获得了国家自然科学基金项目和重庆市科卫联合面上项目的资助;邓宇飞参与选题和设计,起草和撰写稿件,获取、分析、解释本研究的文献;徐茜获取、分析本研究的文献,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82371937 重庆市科卫联合面上项目 2024MSXM096
收稿日期:2025-01-07
接受日期:2025-06-05
中图分类号:R445.2  R737.9  R541 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.06.026
本文引用格式:邓宇飞, 徐茜, 沈合松, 等. 心脏磁共振成像在HER-2阳性乳腺癌患者曲妥珠单抗治疗相关心脏毒性中的应用研究进展[J]. 磁共振成像, 2025, 16(6): 171-175, 181. DOI:10.12015/issn.1674-8034.2025.06.026.

0 引言

       人类表皮生长因子受体-2(human epidermal growth factor receptor 2, HER-2)阳性乳腺癌是常见乳腺癌亚型之一,约占全部乳腺癌患者的20%~30%,且侵袭性高、预后差[1]。以曲妥珠单抗为代表的靶向治疗是HER-2阳性乳腺癌的常见治疗方法之一[2, 3],该方法虽然能够明显改善患者预后,但常引发心脏毒性[4]。随着HER-2阳性乳腺癌患者生存率升高,曲妥珠单抗治疗所引发相关心脏毒性已成为这部分患者非癌症死亡的最主要原因[5]。因此,在HER-2阳性乳腺癌患者曲妥珠单抗治疗前进行心脏毒性风险分层,治疗中和治疗后监测心脏毒性,及时早期识别并进行干预治疗至关重要。

       心脏磁共振(cardiac magnetic resonance, CMR)成像是一种非侵入性的影像技术,能够全面评估心脏结构、功能和组织特征[6],在心脏毒性基线风险分层和随访监测等方面具有应用潜力。现有研究表明,在曲妥珠单抗治疗相关心脏毒性基线风险分层和随访监测中,不同CMR技术组合方式,CMR、超声心动图等多模态影像联合策略以及CMR检测频率仍缺乏全面的认识。然而,现有的综述性文章均聚焦于曲妥珠单抗引起心脏毒性的机制与监测策略[7]、超声心动图和CMR对蒽环类药物和免疫治疗引起心脏毒性的诊断监测[8]。CMR常规技术和新技术在HER-2阳性乳腺癌患者曲妥珠单抗治疗相关心脏毒性的现状和应用尚未被清晰、系统地阐明。因此,本文就CMR在监测和评估HER-2阳性乳腺癌患者曲妥珠单抗治疗相关心脏毒性中的应用研究进展进行综述,旨在为临床制订合理、有效的心脏毒性基线风险评估、随访监测方案提供参考。

1 曲妥珠单抗治疗相关的心脏毒性

       曲妥珠单抗是一种人类单克隆抗体,可通过与肿瘤细胞HER-2受体胞外区域结合,阻止胞内酪氨酸激酶的激活,进而抑制肿瘤细胞的增殖与存活[9],已成为HER-2阳性乳腺癌患者的一线治疗用药[10]。心脏毒性是指抗肿瘤治疗过程中出现的心肌损伤和(或)心功能障碍,是曲妥珠单抗治疗引发的主要副作用。研究发现,约50%接受曲妥珠单抗治疗的患者出现了不同程度的心功能下降[11],约16%的患者出现心脏毒性[12],主要表现为心肌标记物升高[13]或伴有/无症状的左心室射血分数(left ventricular ejection fractions, LVEF)降低[14]

       曲妥珠单抗治疗相关心脏毒性的主要机制包括:(1)减弱神经调节因子-1/酪氨酸激酶受体信号通路的活性;(2)增加心肌氧化应激和亚硝化应激相关基因的表达;(3)抑制人跨膜受体蛋白1的信号转导;(4)激活血管紧张素受体1型信号通路引起心肌损害[15, 16]。此外,曲妥珠单抗常与蒽环类药物化疗[17]、放疗联合应用[18],其心脏毒性发生率和严重程度更高。

       曲妥珠单抗治疗导致的相关心脏毒性病理改变为早期心肌细胞水肿、坏死和晚期心肌间质纤维化,临床表现为无心衰症状或有心衰症状的心脏功能不全,该过程通常被认为是可逆的,即停用后可恢复心功能[19]。然而,也有研究指出曲妥珠单抗对心脏的损害不可逆,其诱发的心脏毒性在治疗结束后多年依然存在[20]。因此,早期发现是心脏毒性诊断和治疗的关键。肌钙蛋白、B型脑钠肽及其前体等心肌标记物是目前应用较为广泛的监测心肌损伤的有效实验室检查方法[21, 22, 23],超声心动图[24]和CMR是广泛应用于监测心功能的影像学检查方法。LVEF和整体纵向应变(global longitudinal strain, GLS)是癌症治疗相关心脏毒性的主要诊断指标[25],也用于心脏毒性的基线评估、纵向监测。超声心动图和CMR均可测量LVEF和GLS。超声心动图的低成本及广泛可及性,在心脏毒性的随访监测方面存在优势。然而,其存在操作者依赖的局限性。相较而言,CMR的多序列成像不存在操作者依赖,且可量化心肌水肿、坏死和纤维化等心肌组织学特征,在心脏毒性的识别和监测方面具有较高的应用潜力[26, 27]

2 CMR在曲妥珠单抗治疗相关心脏毒性中的应用

2.1 CMR常规技术的应用

       CMR能够通过多种成像技术监测评估心脏结构、功能和组织特征。常规CMR技术主要包括电影成像和延迟钆增强(late gadolinium enhancement, LGE)成像[28]。CMR电影成像能够定量LVEF来评估患者心脏功能;LGE成像能够识别和检测心肌缺血坏死、纤维化[29]等心肌损害,可用于曲妥珠单抗治疗相关心脏毒性的基线风险分层、动态监测和预后评价。

       由CMR电影成像计算得到的LVEF[30]被用于定义曲妥珠单抗治疗后的心脏毒性[25, 31]。应用LVEF进行的心脏毒性评估无创、直观,美国食品药品监督管理局的曲妥珠单抗标签建议,应每3个月对患者的LVEF进行一次检测;当完成1年的治疗疗程后,检测频率调整为每6个月一次,且需持续2年[32]。然而,LVEF检测技术存在一定局限性,对于心脏功能早期出现的微小变化并不敏感,往往只有在心脏功能已经发生实质性损害时,才能够观察到LVEF数值的下降[32]。一项使用CMR电影成像比较了接受蒽环类药物和曲妥珠单抗治疗的乳腺癌患者心脏功能的研究显示,与未接受治疗的患者相比,接受治疗的患者左心室收缩末期容积指数较高(42 vs. 29,P=0.004),但LVEF差异无统计学意义(60% vs. 57%,P=0.077)[33]。因此,为了实现心脏毒性的早期精准检测,选择更为灵敏的生物标志物,或是应用能够有效反映心脏早期损害的CMR成像新技术,显得尤为关键。

       心室重塑所致的心脏功能受限同样是心脏毒性的表现之一。CMR还能够通过左室容积和质量定量来评估患者左心室重塑,优于超声心动图[34]。在一项纳入41名接受曲妥珠单抗治疗患者的队列研究中,研究人员使用CMR电影成像在治疗6个月后观察到患者左室容积增加,并在结束治疗6个月后恢复,且这一过程与心肌标记物的变化相关[34]。此外,CMR还能够通过测量右心室体积和右心室射血分数在曲妥珠单抗治疗周期内的变化,来评估和诊断曲妥珠单抗治疗所致患者右心室结构和功能损害[35]

       LGE成像可识别心肌细胞损伤[36, 37],能够提示曲妥珠单抗治疗后的心肌纤维化,可以作为心脏毒性监测的生物标记物[38]。在心脏毒性的识别和诊断方面,LGE成像能够在一定程度上提示曲妥珠单抗治疗中的心脏损伤。一项应用LGE的研究显示,在曲妥珠单抗治疗12个月后,LGE较基线升高(升高百分比,4% vs. 2.4%,P=0.332),在与健康女性的对比中也观察到相同的结果(升高百分比,4% vs. 2 %,P=0.306)[39];而LGE成像也能够评估心肌损伤以确定蒽环类药物和曲妥珠单抗治疗相关心脏毒性的严重程度[3]。另一项针对接受曲妥珠单抗治疗并确诊心脏毒性的乳腺癌患者的研究显示,使用LGE和mapping技术评估心肌损伤,观察到中间部前间隔和心尖部侧壁以及心尖的运动异常,该区域LGE占比为33.1%;然而,该研究显示在LGE阴性区域也观察到心肌损伤[40]。与此相同的是,一项研究显示,LGE不仅存在于少数(10.4%)接受蒽环类药物或曲妥珠单抗治疗的乳腺癌患者中,范围分布很广(3.9%~34.7%),且也存在于未接受蒽环类药物或曲妥珠单抗治疗的乳腺癌患者中[41]

       总之,常规的CMR技术能够通过LVEF和LGE在曲妥珠单抗治疗相关心脏毒性评估和诊断方面发挥作用。然而,LVEF对早期损伤不敏感,LGE依赖对比剂且检测急性心肌损伤有效性有限,这都限制了常规CMR技术在心脏毒性识别和诊断方面的作用。开发无钆对比剂的虚拟强化技术、利用深度学习算法以优化LGE诊断或结合肌钙蛋白、脑钠肽等更灵敏生物标记物或CMR新技术,能够提高早期识别敏感性和特异性,实现心脏毒性的精准监测,是下一步的研究重点。

2.2 CMR新技术的应用

       CMR新技术主要包括磁共振特征追踪技术(cardiac magnetic resonance feature-tracking, FT-CMR)和组织特征成像(mapping),这些技术在曲妥珠单抗治疗相关心脏毒性的基线风险评估、随访监测上具有应用潜力。FT-CMR通过定量整个心动周期中心肌的长度变化的新技术,其定量参数主要包括整体纵向应变(global longitudinal strain, GLS)、整体周向应变(global circumferential strain, GCS)、整体径向应变(global radial strain, GRS)及其相应的应变率[42, 43, 44]。CMR mapping技术是一种定量评价心肌组织特征的新技术,主要包括T1 mapping、T1ρ mapping和T2 mapping成像。CMR mapping技术通过定量参数T1、T1ρ、T2和细胞外容积(extracellular volume, ECV)分数来量化心肌组织水肿、纤维化和大分子蛋白沉积等病理改变[45]

2.2.1 CMR新技术在心脏毒性基线风险评估中的应用

       欧洲心脏病协会指南建议在抗肿瘤治疗前对患者进行心脏毒性风险评估[25]。曲妥珠单抗治疗心脏毒性基线风险评估有助于患者治疗方案选择和监测频率制定[46],CMR新技术在其中发挥作用[38]

       基于FT-CMR的应变分析可用于评估曲妥珠单抗治疗相关心脏毒性的基线风险。在接受蒽环类药物和曲妥珠单抗治疗的心脏毒性患者中,基线GLS显著低于无心脏毒性患者(-18.7% vs. -19.9%,P=0.019)[27]。另一项针对接受蒽环类药物、曲妥珠单抗和放射治疗患者的研究显示,心脏毒性患者基线GLS显著低于非心脏毒性患者(-22.3% vs. -27.4%,P=0.04)[47],表明GLS在接受治疗的乳腺癌患者基线风险评估中的价值。然而,也有研究发现接受曲妥珠单抗治疗后有心脏毒性患者基线GLS稍高于无心脏毒性患者,但差异无统计学意义(-18.43% vs. -17.56%,P=0.468)[48],另一项研究发现,发生心脏毒性的患者的基线GLS虽然稍低于未发生心脏毒性的患者,两者差异无统计学意义(-13.7% vs. -15.0%,P=0.365)[49]

       T1 mapping可识别曲妥珠单抗治疗相关心肌水肿、心肌纤维化等心脏毒性[38]。T2 mapping对心肌水肿有较好的诊断效果[3],是癌症治疗初期评估心脏毒性的有效手段。ECV值能定量细胞外基质容积扩大程度,可评估心肌纤维化[50]。目前T1 mapping在曲妥珠单抗治疗患者基线风险评估中的作用存在一定的争议。在接受蒽环类药物和曲妥珠单抗的心脏毒性患者中,基线T1值(1352 ms vs. 1278 ms,P<0.01)和T2值(49.8 ms vs. 46.1 ms,P=0.03)高于无心脏毒性患者,差异具有统计学意义[47]。然而,也有研究显示,有无心脏毒性患者基线T1值虽然存在差异[(1 011.2±20.0)ms vs.(998.4±35.7)ms],但也与健康志愿者存在重叠[(1006.3±23.5)ms][51];另一项针对曲妥珠单抗治疗患者的研究显示,有无心脏毒性组基线T1值差异无统计学意义(1 009.0 ms vs. 1 013.1 ms,P=0.45)[38]

       总之,抗肿瘤治疗前评估心脏毒性风险对治疗至关重要,CMR新技术(如FT-CMR应变分析)可早期识别GLS变化,较LVEF敏感;T1/T2 mapping和ECV可评估心肌水肿、纤维化。然而,CMR新技术在心脏毒性风险分层方面仍存在分层准确性不足等局限。在未来的研究中,将CMR新技术与肌钙蛋白等生物标记物和传统CMR技术联合应用,能够提高分层有效性。基于大规模临床研究优化的深度学习算法也能够帮助CMR新技术更好地在心脏毒性患者的风险评估方面发挥价值。

2.2.2 CMR新技术在心脏毒性动态监测和预后预测中的应用

       动态监测曲妥珠单抗相关心脏毒性可以及时发现心脏毒性并干预治疗。确定心脏毒性的风险因素,并选择合适的监测方案是该领域的研究重点。CMR可用于心脏毒性的监测和预后预测[52]

       基于FT-CMR的应变分析在监测曲妥珠单抗治疗相关心脏毒性[27, 53]方面具有应用潜力。GLS的下降与LVEF下降均是心脏毒性的重要标志[54],GLS能够在LVEF变化前识别心脏毒性,对早期心脏毒性的检测优于LVEF[33]。有研究发现,在治疗6个月后观察到GLS显著下降(P=0.024),而LVEF的变化很小且>50%[55],体现出GLS在心脏毒性早期识别中的作用。一项基于41名接受曲妥珠单抗治疗患者的纵向CMR研究显示,与基线相比,GLS和GCS在治疗后第6个月(分别为P=0.024和P<0.001)和第12个月(分别为P=0.002和P<0.001)均呈显著降低。同时,从治疗第6个月开始纵向应变率和周向应变率呈下降趋势,而径向应变率则呈现上升趋势[55]。此外,还有研究对比了接受蒽环类药物、曲妥珠单抗和放射治疗的乳腺癌患者与健康受试者间CMR参数的差异。发现在治疗12个月后,两者间LVEF并没有明显变化(61.1% vs. 63.4%,P=0.296),但GLS存在明显差异(-13.8% vs. -16.6%,P=0.002)[39],这一发现进一步证实了应变分析在早期诊断曲妥珠单抗相关心脏毒性中的潜在价值。这些发现提示应变参数可能作为曲妥珠单抗相关心脏毒性的早期监测指标。在预测后续心脏毒性方面,GLS预测能力优于LVEF[27]。GLS还可以预测接受曲妥珠单抗治疗患者心脏毒性发生是否恢复正常[56]

       CMR mapping技术在曲妥珠单抗治疗相关心脏毒性的监测和预后预测方面发挥作用[57, 58]。动物实验证实T1、T2和ECV值可以监测曲妥珠单抗治疗小鼠的心肌水肿和心肌纤维化[59]。多项临床研究表明,曲妥珠单抗治疗后患者T1、T2和ECV值升高,在有心脏毒性组和无心脏毒性组间存在差异,表明T1、T2和ECV值升高有助于识别心脏毒性[47, 51]。一项针对83名患者的研究发现,单变量回归分析显示T1(OR=2.03,P<0.01)和T2值(OR=1.86,P<0.01)与心脏毒性相关;多变量回归分析显示,仅T1值是心脏毒性的独立预测因素(OR=2.33,P=0.02)[47]。此外,也有研究指出曲妥珠单抗治疗后患者T1、T2和ECV值虽然升高(基线与治疗后3个月相比,T1:1012 ms vs. 1035 ms;T2:51.4 ms vs. 52.6 ms;ECV:25.2% vs. 26.8%),有心脏毒性组和无心脏毒性组并无明显差异[38],提示CMR mapping技术在识别心脏毒性方面的价值仍有待进一步研究。在心脏毒性的预测方面,一项针对39名患者的小规模研究发现,T1、T2和ECV值能够预测抗肿瘤治疗后的心脏毒性。其中,T1是最佳预测参数,敏感度高(100%)但特异度低(44%)[60]。在接受曲妥珠单抗治疗的患者方面,近期一项单中心研究显示T1ρ和T1值从基线到给药3个月后的变化可以作为心脏毒性的有效预测标志,其预测特异度和敏感度分别为65.1%(T1ρ)、68.4%(T1)和63.5%(T1ρ)、78.9%(T1)[48]。除曲妥珠单抗外,蒽环类药物和放疗引起的心脏毒性也可能表现为类似的T1值、T2值的异常。研究显示,在蒽环类药物治疗5个月后观察到患者T1值(1293 ms vs. 1244 ms,P<0.001)和T2值(48 ms vs. 45 ms,P<0.001)较基线显著上升[60]。在接受放疗的部分患者心尖部和基底部的T1、T2值异常(T1>1300 ms,T2>60 ms),可能与放疗引起的心肌纤维化有关[61]

       总之,动态监测和预后预测有助于对曲妥珠单抗相关心脏毒性的早期发现和干预,而CMR技术在其中发挥作用。基于FT-CMR的应变参数能比传统LVEF更敏感地识别心功能异常,但其敏感性和特异性仍受人群差异及负荷依赖性限制。CMR mapping技术可有效反映心肌水肿和纤维化,但存在特异性和有效性有限和依赖操作者经验等问题。在今后的研究中,联合FT-CMR和mapping技术构建风险预测模型,可以提高动态监测效能。基于多中心大样本的临床研究联合深度学习算法优化能够校正负荷依赖和降低操作者经验的影响,更好地发挥CMR新技术在心脏毒性动态监测和预测方面的价值。

3 小结与展望

       心脏毒性是HER-2阳性乳腺癌患者曲妥珠单抗治疗后的严重副作用。在治疗前进行心脏毒性风险分层,治疗中进行动态监测是预防和治疗心脏毒性的有效方法。CMR常规成像技术和新技术的结合在曲妥珠单抗治疗相关心脏毒性基线风险分层、随访监测和预后评估方面具有应用价值。然而,现如今磁共振成像新技术比如FT-CMR、mapping技术在心脏毒性识别和预测准确性仍有待提高。CMR评价心功能的新指标血流动力学力有望用于曲妥珠单抗治疗相关心脏毒性的早期识别。此外,随着人工智能的发展,利用人工智能整合CMR、传统的心肌标志物、心电图、超声心动图等多模态数据有望提高曲妥珠单抗治疗相关心脏毒性的基线风险分层、早期识别和预后预测的准确性。

[1]
LI Y W, DAI L J, WU X R, et al. Molecular characterization and classification of HER2-positive breast cancer inform tailored therapeutic strategies[J]. Cancer Res, 2024, 84(21): 3669-3683. DOI: 10.1158/0008-5472.CAN-23-4066.
[2]
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association (2024 edition)[J]. CHINA ONCOLOG, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[3]
JAFARI F, SAFAEI A M, HOSSEINI L, et al. The role of cardiac magnetic resonance imaging in the detection and monitoring of cardiotoxicity in patients with breast cancer after treatment: a comprehensive review[J]. Heart Fail Rev, 2021, 26(3): 679-697. DOI: 10.1007/s10741-020-10028-y.
[4]
XU Z F, GAO Z Z, FU H X, et al. PTX3 from vascular endothelial cells contributes to trastuzumab-induced cardiac complications[J]. Cardiovasc Res, 2023, 119(5): 1250-1264. DOI: 10.1093/cvr/cvad012.
[5]
SETIA A, CHALLA R R, VALLAMKONDA B, et al. Nanomedicine and nanotheranostics: special focus on imaging of anticancer drugs induced cardiac toxicity[J]. Nanotheranostics, 2024, 8(4): 473-496. DOI: 10.7150/ntno.96846.
[6]
FRANCONE M, FIGLIOZZI S, MONTI L, et al. Multiparametric cardiac magnetic resonance unveiling the mechanisms and early manifestations of anticancer drug cardiotoxicity[J]. Eur Radiol, 2023, 33(12): 8439-8441. DOI: 10.1007/s00330-023-09948-8.
[7]
SIRI-ANGKUL N, CHATTIPAKORN S C, CHATTIPAKORN N. The mechanistic insights of the arrhythmogenic effect of trastuzumab[J/OL]. Biomed Pharmacother, 2021, 139: 111620 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/33901874/. DOI: 10.1016/j.biopha.2021.111620.
[8]
HENRIKSEN P A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention[J]. Heart, 2018, 104(12): 971-977. DOI: 10.1136/heartjnl-2017-312103.
[9]
YANG L, BHATTACHARYA A, PETERSON D, et al. Targeted dual degradation of HER2 and EGFR obliterates oncogenic signaling, overcomes therapy resistance, and inhibits metastatic lesions in HER2-positive breast cancer models[J/OL]. Drug Resist Updat, 2024, 74: 101078 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/38503142/. DOI: 10.1016/j.drup.2024.101078.
[10]
SWAIN S M, SHASTRY M, HAMILTON E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126. DOI: 10.1038/s41573-022-00579-0.
[11]
HERRMANN J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia[J]. Nat Rev Cardiol, 2020, 17(8): 474-502. DOI: 10.1038/s41569-020-0348-1.
[12]
BATTISTI N M L, ANDRES M S, LEE K A, et al. Incidence of cardiotoxicity and validation of the Heart Failure Association-International Cardio-Oncology Society risk stratification tool in patients treated with trastuzumab for HER2-positive early breast cancer[J]. Breast Cancer Res Treat, 2021, 188(1): 149-163. DOI: 10.1007/s10549-021-06192-w.
[13]
EBRAHIM N, SAIHATI H A AL, MOSTAFA O, et al. Prophylactic evidence of MSCs-derived exosomes in doxorubicin/trastuzumab-induced cardiotoxicity: beyond mechanistic target of NRG-1/erb signaling pathway[J/OL]. Int J Mol Sci, 2022, 23(11): 5967 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/35682646/. DOI: 10.3390/ijms23115967.
[14]
DE AZAMBUJA E, AGOSTINETTO E, PROCTER M, et al. Cardiac safety of dual anti-HER2 blockade with pertuzumab plus trastuzumab in early HER2-positive breast cancer in the APHINITY trial[J/OL]. ESMO Open, 2023, 8(1): 100772 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36681013/. DOI: 10.1016/j.esmoop.2022.100772.
[15]
LIN M M, XIONG W P, WANG S Y, et al. The research progress of trastuzumab-induced cardiotoxicity in HER-2-positive breast cancer treatment[J/OL]. Front Cardiovasc Med, 2022, 8: 821663 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/35097033/. DOI: 10.3389/fcvm.2021.821663.
[16]
MIN J, WU L, LIU Y D, et al. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis[J/OL]. Life Sci, 2023, 312: 121207 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36403642/. DOI: 10.1016/j.lfs.2022.121207.
[17]
WEI S S, MA W J, YANG Y Y, et al. Trastuzumab potentiates doxorubicin-induced cardiotoxicity via activating the NLRP3 inflammasome in vivo and in vitro[J/OL]. Biochem Pharmacol, 2023, 214: 115662 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/37331637/. DOI: 10.1016/j.bcp.2023.115662.
[18]
ASLAN D, OZONER S, INANC M, et al. Evaluation of early cardiotoxicity in HER2-positive breast cancer patients receiving radiotherapy and concurrent trastuzumab[J]. Ir J Med Sci, 2025, 194(1): 7-18. DOI: 10.1007/s11845-024-03835-x.
[19]
GONCIAR D, MOCAN L, ZLIBUT A, et al. Cardiotoxicity in HER2-positive breast cancer patients[J]. Heart Fail Rev, 2021, 26(4): 919-935. DOI: 10.1007/s10741-020-10072-8.
[20]
RICCIO G, COPPOLA C, PISCOPO G, et al. Trastuzumab and target-therapy side effects: is still valid to differentiate anthracycline type I from type II cardiomyopathies?[J]. Hum Vaccin Immunother, 2016, 12(5): 1124-1131. DOI: 10.1080/21645515.2015.1125056.
[21]
WANG W, LIU D, YANG L Y, et al. Compound Kushen injection attenuates angiotensin II-mediated heart failure by inhibiting the PI3K/Akt pathway[J/OL]. Int J Mol Med, 2023, 51(3): 23 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36734284/. DOI: 10.3892/ijmm.2023.5226.
[22]
CARDIOVASCULAR EXPERT COMMITTEE OF CHINESE MEDICAL DOCTOR ASSOCIATION OF LABORATORY MEDICINE, SECTION OF CARDIO-ONCOLOGY GROUP OF CHINESE SOCIETY OF CARDIOLOGY. Chinese expert consensus on cardiac biomarkers for monitoring and management of cardiovascular toxicity in cancer therapy (2024 edition)[J]. Zhonghua Yi Xue Za Zhi, 2024, 104(36): 3371-3385. DOI: 10.3760/cma.j.cn112137-20240510-01091.
[23]
Chinese Anti-cancer Association Society of Integrative Cardio-oncology, Ultrasound Branch of the Chinese Medical Association, Chinese Society of Echocardiography. Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity (2023 edition)[J]. Zhonghua Yi Xue Za Zhi, 2023, 103(42): 3367-3383. DOI: 10.3760/cma.j.cn112137-20230908-00428.
[24]
BERGAMINI C, NIRO L, SPRINGHETTI P, et al. Role of early left atrial functional decline in predicting cardiotoxicity in HER2 positive breast cancer patients treated with trastuzumab[J]. Cardiovasc Toxicol, 2024, 24(6): 550-562. DOI: 10.1007/s12012-024-09861-6.
[25]
LYON A R, LÓPEZ-FERNÁNDEZ T, COUCH L S, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)[J]. Eur Heart J, 2022, 43(41): 4229-4361. DOI: 10.1093/eurheartj/ehac244.
[26]
ESMAEILZADEH M, URZUA FRESNO C M, SOMERSET E, et al. A combined echocardiography approach for the diagnosis of cancer therapy-related cardiac dysfunction in women with early-stage breast cancer[J]. JAMA Cardiol, 2022, 7(3): 330-340. DOI: 10.1001/jamacardio.2021.5881.
[27]
HOUBOIS C P, NOLAN M, SOMERSET E, et al. Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: comparison with echocardiography[J]. JACC Cardiovasc Imaging, 2021, 14(5): 962-974. DOI: 10.1016/j.jcmg.2020.09.039.
[28]
MAŁEK Ł A, ŚPIEWAK M. Isolated myocardial edema in cardiac magnetic resonance - in search of a management strategy[J]. Trends Cardiovasc Med, 2023, 33(7): 395-402. DOI: 10.1016/j.tcm.2022.04.001.
[29]
NAKAMORI S, AMYAR A, FAHMY A S, et al. Cardiovascular magnetic resonance radiomics to identify components of the extracellular matrix in dilated cardiomyopathy[J]. Circulation, 2024, 150(1): 7-18. DOI: 10.1161/CIRCULATIONAHA.123.067107.
[30]
HALLIDAY B P, SENIOR R, PENNELL D J. Assessing left ventricular systolic function: from ejection fraction to strain analysis[J]. Eur Heart J, 2021, 42(7): 789-797. DOI: 10.1093/eurheartj/ehaa587.
[31]
CALVILLO-ARGÜELLES O, THAMPINATHAN B, SOMERSET E, et al. Diagnostic and prognostic value of myocardial work indices for identification of cancer therapy-related cardiotoxicity[J]. JACC Cardiovasc Imaging, 2022, 15(8): 1361-1376. DOI: 10.1016/j.jcmg.2022.02.027.
[32]
BOUWER N I, JAGER A, LIESTING C, et al. Cardiac monitoring in HER2-positive patients on trastuzumab treatment: a review and implications for clinical practice[J/OL]. Breast, 2020, 52: 33-44 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/32361151/. DOI: 10.1016/j.breast.2020.04.005.
[33]
KWAN J M, ARBUNE A, HENRY M L, et al. Quantitative cardiovascular magnetic resonance findings and clinical risk factors predict cardiovascular outcomes in breast cancer patients[J/OL]. PLoS One, 2023, 18(5): e0286364 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/37252927/. DOI: 10.1371/journal.pone.0286364.
[34]
HUANG F, BREZDEN-MASLEY C, CHAN K K W, et al. Evaluation of left atrial remodeling using cardiovascular magnetic resonance imaging in breast cancer patients treated with adjuvant trastuzumab[J]. Eur Radiol, 2022, 32(6): 4234-4242. DOI: 10.1007/s00330-021-08466-9.
[35]
BARTHUR A, BREZDEN-MASLEY C, CONNELLY K A, et al. Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 44 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/28395671/. DOI: 10.1186/s12968-017-0356-4.
[36]
GUO Y B, LIN L, ZHAO S H, et al. Myocardial fibrosis assessment at 3-T versus 5-T myocardial late gadolinium enhancement MRI: early results[J/OL]. Radiology, 2024, 313(2): e233424 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39530890/. DOI: 10.1148/radiol.233424.
[37]
KIM J, HONG Y J, HAN K, et al. Chemotherapy-related cardiac dysfunction: quantitative cardiac magnetic resonance image parameters and their prognostic implications[J]. Korean J Radiol, 2023, 24(9): 838-848. DOI: 10.3348/kjr.2023.0095.
[38]
THAVENDIRANATHAN P, SHALMON T, FAN C S, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer[J]. JAMA Cardiol, 2023, 8(6): 524-534. DOI: 10.1001/jamacardio.2023.0494.
[39]
KERSTEN J, FINK V, KERSTEN M, et al. CMR reveals myocardial damage from cardiotoxic oncologic therapies in breast cancer patients[J]. Int J Cardiovasc Imaging, 2024, 40(2): 225-235. DOI: 10.1007/s10554-023-02996-7.
[40]
KADOWAKI H, ISHIDA J, UEHARA M, et al. Detection of profound myocardial damage by cardiac MRI in a patient with severe cardiotoxicity induced by anti-HER2 therapy[J]. Int Heart J, 2021, 62(6): 1436-1441. DOI: 10.1536/ihj.21-388.
[41]
MODI K, JOPPA S, CHEN K A, et al. Myocardial damage assessed by late gadolinium enhancement on cardiovascular magnetic resonance imaging in cancer patients treated with anthracyclines and/or trastuzumab[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(4): 427-434. DOI: 10.1093/ehjci/jeaa279.
[42]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[43]
LI Y M, HUANG R G, ZHENG S Y, et al. Myocardial strain analysis by feature tracking cardiac magnetic resonance to identify subclinical cardiac dysfunction in patients with MINOCA[J/OL]. J Cardiothorac Surg, 2024, 19(1): 602 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39385205/. DOI: 10.1186/s13019-024-03093-z.
[44]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[45]
OGIER A C, BUSTIN A, COCHET H, et al. The road toward reproducibility of parametric mapping of the heart: a technical review[J/OL]. Front Cardiovasc Med, 2022, 9: 876475 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/35600490/. DOI: 10.3389/fcvm.2022.876475.
[46]
VAN DER LINDE D, VAN HAGEN I, VEEN K, et al. Global longitudinal strain: an early marker for cardiotoxicity in patients treated for breast cancer[J]. Neth Heart J, 2023, 31(3): 103-108. DOI: 10.1007/s12471-022-01734-3.
[47]
TERUI Y, SUGIMURA K, OTA H, et al. Usefulness of cardiac magnetic resonance for early detection of cancer therapeutics-related cardiac dysfunction in breast cancer patients[J/OL]. Int J Cardiol, 2023, 371: 472-479 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36115441/. DOI: 10.1016/j.ijcard.2022.09.025.
[48]
LI X Q, SHEN H S, PENG Y L, et al. The additional value of myocardial T1ρ mapping to T1 and T2 mapping for predicting subsequent cancer therapy-related cardiac dysfunction in breast cancer patients who received anthracyclines with/without trastuzumab[J/OL]. Eur J Radiol, 2024, 181: 111755 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39342884/. DOI: 10.1016/j.ejrad.2024.111755.
[49]
BOUWER N I, LIESTING C, KOFFLARD M J M, et al. 2D-echocardiography vs cardiac MRI strain: a prospective cohort study in patients with HER2-positive breast cancer undergoing trastuzumab[J/OL]. Cardiovasc Ultrasound, 2021, 19(1): 35 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/34753503/. DOI: 10.1186/s12947-021-00266-x.
[50]
MAWAD W, MERTENS L, PAGANO J J, et al. Effect of anthracycline therapy on myocardial function and markers of fibrotic remodelling in childhood cancer survivors[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(4): 435-442. DOI: 10.1093/ehjci/jeaa093.
[51]
ALTAHA M A, NOLAN M, MARWICK T H, et al. Can quantitative CMR tissue characterization adequately identify cardiotoxicity during chemotherapy?: impact of temporal and observer variability[J]. JACC Cardiovasc Imaging, 2020, 13(4): 951-962. DOI: 10.1016/j.jcmg.2019.10.016.
[52]
ABU-KHALAF M M, SAFONOV A, STRATTON J, et al. Examining the cost-effectiveness of baseline left ventricular function assessment among breast cancer patients undergoing anthracycline-based therapy[J]. Breast Cancer Res Treat, 2019, 176(2): 261-270. DOI: 10.1007/s10549-019-05178-z.
[53]
ZHENG Y, LIU H, ZHAO L, et al. Serial cardiac MRI for quantification of the dynamics of anthracycline-induced subclinical myocardial injury[J]. J Magn Reson Imaging, 2023, 58(5): 1533-1541. DOI: 10.1002/jmri.28667.
[54]
KIMBALL A, PATIL S, KOCZWARA B, et al. Late characterisation of cardiac effects following anthracycline and trastuzumab treatment in breast cancer patients[J/OL]. Int J Cardiol, 2018, 261: 159-161 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/29576422/. DOI: 10.1016/j.ijcard.2018.03.025.
[55]
GONG I Y, ONG G, BREZDEN-MASLEY C, et al. Early diastolic strain rate measurements by cardiac MRI in breast cancer patients treated with trastuzumab: a longitudinal study[J]. Int J Cardiovasc Imaging, 2019, 35(4): 653-662. DOI: 10.1007/s10554-018-1482-2.
[56]
GIUSCA S, KOROSOGLOU G, MONTENBRUCK M, et al. Multiparametric early detection and prediction of cardiotoxicity using myocardial strain, T1 and T2 mapping, and biochemical markers: a longitudinal cardiac resonance imaging study during 2 years of follow-up[J/OL]. Circ Cardiovasc Imaging, 2021, 14(6): e012459 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/34126756/. DOI: 10.1161/CIRCIMAGING.121.012459.
[57]
CHAI Y Z, JIANG M, WANG Y H, et al. Protocol for pyrotinib cardiac safety in patients with HER2-positive early or locally advanced breast cancer-The EARLY-MYO-BC study[J/OL]. Front Cardiovasc Med, 2023, 10: 1021937 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36844736/. DOI: 10.3389/fcvm.2023.1021937.
[58]
ČELUTKIENĖ J, PUDIL R, LÓPEZ-FERNÁNDEZ T, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2020, 22(9): 1504-1524. DOI: 10.1002/ejhf.1957.
[59]
NARESH N K, MISENER S, ZHANG Z L, et al. Cardiac MRI myocardial functional and tissue characterization detects early cardiac dysfunction in a mouse model of chemotherapy-induced cardiotoxicity[J/OL]. NMR Biomed, 2020, 33(9): e4327 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/32567177/. DOI: 10.1002/nbm.4327.
[60]
TAHIR E, AZAR M, SHIHADA S, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT[J]. Eur Radiol, 2022, 32(3): 1853-1865. DOI: 10.1007/s00330-021-08260-7.
[61]
MOISANDER M, SKYTTÄ T, KIVISTÖ S, et al. Radiotherapy-induced diffuse myocardial fibrosis in early-stage breast cancer patients - multimodality imaging study with six-year follow-up[J/OL]. Radiat Oncol, 2023, 18(1): 124 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/37496091/. DOI: 10.1186/s13014-023-02319-z.

上一篇 多模态心脏磁共振在左心衰竭病因分析方面的应用进展
下一篇 术前影像学评估乳腺癌脉管侵犯的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2