分享:
分享到微信朋友圈
X
综述
影像组学在肝细胞癌预后的研究进展
郑晓君 黄丽洪 农海洋 黄德尤

Cite this article as: ZHENG X J, HUANG L H, NONG H Y, et al. Research progress of radiomics in the prognosis of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(6): 189-194.本文引用格式:郑晓君, 黄丽洪, 农海洋, 等. 影像组学在肝细胞癌预后的研究进展[J]. 磁共振成像, 2025, 16(6): 189-194. DOI:10.12015/issn.1674-8034.2025.06.029.


[摘要] 肝细胞癌(hepatocellular carcinoma, HCC)是中国癌症相关死亡的第二大原因,预后亟需精准预测手段。影像组学虽展现出潜力,但现有综述多局限于单一模态或技术层面。本文系统综述超声、计算机断层扫描、磁共振成像及正电子发射体层成像影像组学在HCC预后的研究进展,剖析标准化缺失、生物学解释不足等关键瓶颈。本文认为,未来重点发展多模态融合算法、可解释性模型和前瞻性验证研究,指导临床实践,提高诊疗效果。
[Abstract] Hepatocellular carcinoma (HCC) ranks as the second leading cause of cancer-related mortality in China, underscoring the urgent need for precise prognostic tools. While radiomics has demonstrated considerable potential, existing reviews predominantly focus on single-modality approaches or technical methodologies. This article systematically reviews advancements in multimodal radiomics: encompassing ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography for HCC prognosis, while critically analyzing key bottlenecks such as standardization gaps and limited biological interpretability. We propose that future efforts should prioritize: multimodal fusion algorithms, explainable artificial intelligence models, and prospective validation studies, aiming to translate research findings into clinical practice and improve patient outcomes.
[关键词] 肝细胞癌;影像组学;超声;计算机断层扫描;磁共振成像;正电子发射体层成像;人工智能;预后
[Keywords] hepatocellular carcinoma;radiomics;ultrasound;computed tomography;magnetic resonance imaging;positron emission tomography;artificial intelligence;prognosis

郑晓君 1, 2   黄丽洪 1, 2   农海洋 2   黄德尤 2*  

1 右江民族医学院研究生学院,百色 533000

2 右江民族医学院附属医院放射科,百色 533000

通信作者:黄德尤,E-mail:FZXYH2012@126.com

作者贡献声明::黄德尤设计本研究的方案,对稿件重要内容进行了修改;郑晓君起草和撰写稿件,获取、分析和解释本研究的数据;黄丽洪、农海洋获取、分析或解释本研究的数据,对稿件重要内容进行了修改;农海洋获得了2024年度广西高校中青年教师科研基础能力提升项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本综述的准确性和诚信。


基金项目: 2024年度广西高校中青年教师科研基础能力提升项目 2024KY0559
收稿日期:2024-12-31
接受日期:2025-05-10
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.06.029
本文引用格式:郑晓君, 黄丽洪, 农海洋, 等. 影像组学在肝细胞癌预后的研究进展[J]. 磁共振成像, 2025, 16(6): 189-194. DOI:10.12015/issn.1674-8034.2025.06.029.

0 引言

       肝细胞癌(hepatocellular carcinoma, HCC)是全球第六大常见恶性肿瘤,也是中国癌症相关死亡的第二大原因,其高复发率和异质性导致临床预后差异显著,使得精准预后预测成为优化治疗策略的关键[1, 2]。近年来,影像组学通过高通量提取和分析定量影像特征,结合人工智能(artificial intelligence, AI)技术,在HCC的无创预后评估中展现出重要潜力,为肿瘤生物学行为解析和个体化治疗决策提供了新视角[3, 4]

       尽管影像组学在HCC预后研究中的应用日益广泛,但现有综述多聚焦于单一影像模态的技术原理或早期探索性研究,缺乏对多模态影像组学的系统性总结[5, 6]。此外,近2年来的研究在深度学习模型优化、生物学可解释性及临床转化验证方面取得显著进展,但尚未见相关综述对这些前沿方向进行整合分析[7, 8]。同时,当前影像组学在HCC预后中的挑战(如特征标准化、多中心数据异质性、模型泛化性不足等)仍缺乏基于循证医学的解决方案探讨,限制了其临床落地应用[9]

       本文系统综述了超声(ultrasound, US)、计算机断层扫描(computed tomography, CT)、磁共振成像(magnetic resonance imaging, MRI)及正电子发射体层成像(positron emission tomography, PET)影像组学在HCC预后预测(包括复发风险分层、微血管侵犯评估、治疗反应预测等)中的最新研究进展,重点分析了多模态数据融合、可解释性AI(explainable artificial intelligence, XAI)模型及临床转化路径等关键问题。在此基础上,本文进一步探讨了当前技术瓶颈(如算法鲁棒性、生物学关联验证等),并提出未来研究应着力于跨学科协作框架构建、前瞻性多中心验证及标准化流程建立。我们期望通过本综述,为HCC影像组学研究的创新方向提供新思路,并为临床预后评估体系的优化提供参考,最终推动个体化诊疗水平的提升。

1 影像组学在HCC预后预测中的研究现状

1.1 US影像组学

       US影像组学在评估HCC病理特征和生物学行为方面具有重要价值[10]。微血管侵犯(microvascular invasion, MVI)是HCC术后复发的重要危险因素,郭童瞳等[11]通过腹腔镜灰阶超声(laparoscopic ultrasound, LUS)特征构建的支持向量机(Support Vector Machine, SVM)模型在ROC曲线下面积(area under the curve, AUC)、准确性、敏感性和特异性等方面显著优于临床和自适应增强(Adaptive Boosting, AdaBoost)模型。

       此外,Ki-67高表达提示HCC预后不良[12]。左丹等[13]基于超声造影(contrast-enhanced ultrasound, CEUS)库普弗期特征的影像组学模型,在AUC(0.753 vs. 0.535)、准确度(72.0% vs. 58.0%)和敏感度(45.8% vs. 25.0%)均优于传统灰阶超声模型,且校准曲线证实其与Ki-67实际表达水平高度一致。ZHANG等[14]进一步开发了基于CEUS影像组学特征的列线图,在训练集、验证集和外部测试集中AUC均超过0.85,显著优于传统临床模型,凸显其稳健的预测能力。

       深度学习(deep learning, DL)技术的引入进一步拓展了US影像组学的应用潜力。XU等[15]基于ResNet-18卷积神经网络开发的CEUS模型,在预测HCC血管外肿瘤簇(vessels encapsulating tumor clusters, VETC)模式中表现出色(训练集AUC=0.92,测试集AUC=0.90),并与术后早期复发独立相关,为复发风险评估提供了新工具。在生存预测方面,CAO等[16]构建的临床-超声-放射组学模型对HCC术后早期复发的预测性能优异(训练集AUC=0.907,验证集AUC=0.925)。HUANG等[17]的研究同样证实,结合DL的模型可显著提高HCC根治术后患者总生存期(overall survival, OS)的预测准确性。

       US影像组学还能通过量化肿瘤异质性,非侵入性反映微环境特征(如坏死、纤维化),为免疫治疗疗效预测提供生物标志物[18]。一项多中心研究显示,基于US组学构建的模型预测酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)联合抗程序性死亡受体-1(programmed cell death protein-1, PD-1)抗体治疗晚期HCC的客观反应率(objective remission rate, ORR),其AUC在训练集和验证集分别达0.999和0.828,显著优于临床模型;此外,基于影像组学评分(radiomics score, Rad-score)的患者分层显示,高评分组无进展生存期(progression-free survival, PFS)显著延长(训练组风险比为0.488,验证组风险比为0.451)[19]。尽管该研究证实了超声组学的预测潜力,但其样本量有限且缺乏外部验证,未来需通过多中心大样本研究进一步优化模型,并整合超声造影等动态特征以提升预测精度。此外,不同TKI和抗PD-1抗体的疗效差异仍需深入探索。这一技术的成熟将为HCC个体化治疗决策提供重要依据。

       尽管US影像组学在HCC预后评估中前景广阔,但多数研究仅聚焦于预测效能,对其生物学机制探索不足。未来需结合多组学数据,深入解析影像特征与肿瘤分子特性的关联,以推动个体化诊疗的精准化发展。

1.2 CT影像组学

       近年来,CT影像组学凭借其非侵入性、可重复性及高通量特征提取能力,在HCC的预后预测中展现出重要价值[20, 21, 22]。通过结合机器学习(machine learning, ML)或DL,研究者已开发出多种预测模型,为HCC的精准诊疗提供了新思路。

       在治疗疗效预测方面,WU等[23]构建的多层感知机(multilayer perceptron, MLP)模型预测不可切除HCC患者接受仑伐替尼联合PD-1抑制剂及介入治疗的疗效,验证集AUC达0.857,且能有效分层患者生存风险。CHEN等[24]开发的融合模型在预测中期HCC患者首次经导管动脉化疗栓塞术(transcatheter arterial chemoembolization, TACE)疗效时内部和外部验证AUC分别为0.94和0.90,显著优于传统临床指标。这些成果为治疗方案选择提供了客观依据。

       肿瘤生物学行为评估方面,LI等[25]通过双能CT(Dual-Energy CT, DECT)与DL技术,将粗梁-团块/实体型(macrotrabecular-massive, MTM)亚型诊断AUC提升至0.91。WANG等[26]结合瘤周特征使MVI预测AUC达0.82,揭示了瘤周微环境的重要性。此外,扩展感兴趣区(region of Interest, ROI)3 mm有助于提高预测MVI的准确性[27]。HCC术后复发预测是临床决策的关键环节,而传统临床指标预测效能有限。一项多中心研究筛选13个特征构建的复发预测模型,训练和验证集AUC分别为0.720和0.753,且特征与传统病理参数无相关性,提示其可捕捉独特的肿瘤生物学特性[28]。这一研究为HCC术后个体化随访策略的制订提供了客观依据,但未来仍需扩大样本量并整合多模态影像数据以进一步提升预测准确性。影像组学技术的临床应用,有望推动HCC术后管理进入精准医学新时代。

       在生存预后预测领域,WANG等[29]开发的基于治疗前CT图像的影像组学方法,通过最小绝对收缩和选择算子-Cox(least absolute shrinkage and selection operator-Cox, LASSO-COX)回归算法构建特征,并与癌症基因组图谱(the cancer genome atlas, TCGA)鉴定出的7个OS相关基因进行比对,发现这些基因与HCC的治疗效果相关。GUO等[30]开发的DL模型预测肝硬化癌变AUC达0.929,为高危人群监测提供新方法。CHE等[31]通过门脉期CT特征预测β-arrestin1磷酸化状态为靶向治疗选择提供了潜在依据。

       免疫治疗预测方面,LIN等[32]通过整合CT影像组学特征、DL模型及临床变量,构建了预测免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)治疗持久临床获益(durable clinical benefit, DCB)的集成模型,该模型在训练集和测试集中AUC分别达到0.96和0.88,显著区分患者生存风险,且高分患者更易实现序贯手术切除和病理完全缓解(pathological complete response, pCR);进一步放射基因组学分析揭示,高分肿瘤呈现主要组织相容性复合体(major histocompatibility complex I, MHC I)高表达、CD8+ T细胞浸润增强、血管生成活跃等免疫激活特征,同时伴随TP53突变频率升高及肿瘤突变负荷增加。这些发现不仅证实了模型的预测效能,还揭示了其与免疫微环境及基因组特征的潜在关联,为HCC个体化转化治疗提供了重要工具和理论依据。另一项研究开发的PD-1状态预测模型AUC达0.897,可筛选联合治疗获益人群[33]

       基础大模型,依托于ML,能够通过小样本学习、零样本学习等方式解决多样化任务,具有卓越的泛化能力和适应性[34]。学者们正致力于开发多模态图像的组合训练,以形成统一的多尺度基础模型,如Segment Anything Model(SAM)也在图像分割任务中展现出色的表现[35]。LI的团队设计了一种名为nnSAM的即插即用解决方案,显著提升了肝脏分割任务的准确度,充分展示了小样本学习的巨大潜力[36]。这一成果不仅凸显了基础大模型在医学图像分析中的实用性,也为未来模型应用的新方向提供了有力证据。

       总之,CT放射组学治疗反应预测、术后复发与生存预测、分子标志物与生物学行为关联及术前MVI侵犯表现出巨大的潜力,但存在生物学解释性不足,缺乏前瞻性多中心验证和实时临床应用测试。当前基础大模型适用于规则形状的器官分割,对于形态多变的肿瘤分割效果尚未令人满意,未来需要进一步深化研究。

1.3 MRI影像组学

       扩散加权成像(diffusion weighted image, DWI)通过检测水分子的扩散受限程度,可无创评估HCC的生物学特性。研究表明,DWI的表观扩散系数(apparent diffusion coefficient, ADC)值和指数化表观扩散系数(exponential apparent diffusion coefficient, eADC)与肿瘤侵袭性相关[37, 38, 39]。华中科技大学团队结合DWI影像组学特征与临床病理指标构建的综合预测模型可有效分层术后复发风险,其AUC值达0.74以上。DWI的纹理特征(如熵、偏度)与肿瘤分化程度显著相关[40]。然而,DWI技术易受呼吸运动伪影影响,且不同中心扫描参数的差异导致特征标准化困难,限制了模型的泛化应用。

       生境分析通过评估肿瘤及其周围微环境的异质性,为HCC预后预测提供了新思路[41, 42, 43]。LIU等[44]基于277例HCC的增强MRI数据,整合生境分析和DL特征构建的融合模型,在预测MVI和低分化HCC(poorly differentiated HCC, pHCC)方面表现出卓越性能(AUC=0.90)。MICHELOTTI等[45]进一步研究发现,肿瘤及瘤周微环境中的栖息地特征与MVI的发生密切相关,这为术前风险评估提供了新的影像学标志物。

       动态对比增强MRI(dynamic contrast enhanced- MRI, DCE-MRI)通过血流动力学参数揭示肿瘤的血管生成特征[46, 47, 48]。在一项针对直径≤5 cm的孤立性HCC患者术前MVI和无复发生存期(recurrence-free survival, RFS)的研究中,CHONG等[49]纳入了356例接受钆塞酸二钠增强MRI检查的患者,他们利用随机森林(random survival forest, RSF)算法和基于影像组学的列线图进行术前MVI预测,发现这种基于影像的方法是预测5 cm孤立性HCC患者MVI和RFS的潜在生物标志物。DCE-MRI的这一应用不仅能够预测术前MVI,同样也能用于预测Ki-67的表达。

       体素内不相关运动(intravoxel incoherent motion, IVIM)技术通过区分水分子扩散和微循环(由小动脉、毛细血管和小静脉组成)灌注,为HCC预后评估提供了更丰富的信息[50, 51, 52]。GUO等[53]研究发现IVIM参数(D值)与肿瘤大小、边缘特征等指标共同构成早期复发的独立预测因素,基于这些指标构建的列线图展现出优异的预测效能(训练集C指数0.913,验证集0.875)。不过,MRI扫描仪和对比剂类型的差异可能影响结果的可比性,需要进一步的多中心验证。

       磁共振弹性成像(magnetic resonance elastography, MRE)是一种测量组织刚度的技术,通过无创评估肝脏硬度(liver stiffness, LS),提供了与HCC复发密切相关的生物标志信息[39, 54, 55, 56]。一项前瞻性研究纳入111例单发HCC患者(MVI阳性52例),构建基于MRE的预测模型,发现肿瘤硬度>6.284 kPa和瘤周动脉期强化是MVI的独立预测因子;MRE参数在训练集和验证集中均展现出稳定效能(AUC分别为0.81和0.77),而整合两项指标的列线图表现更优(C指数达0.88和0.87),且决策曲线分析证实了其临床适用性[57]。该研究为HCC个体化治疗提供了重要影像学工具,但需进一步扩大样本验证其普适性,MRE联合多模态影像或将成为术前风险评估的新范式。

       最近的一项研究通过单细胞测序与多组学分析,重新定义了ICIs敏感的HCC肿瘤微环境(tumor microenvironment, TME)亚型,发现低缺氧评分与高免疫浸润的常氧-免疫富集(higher immune infiltrate-normoxic, HIN)亚型对ICIs响应最佳,关键基因TRAF3IP3通过激活MAVS/IFN-I通路,在常氧条件下增强免疫应答;这种基于MRI影像组学开发的TME分型模型(AUC>0.80)可无创筛选潜在ICIs应答者,为HCC免疫治疗精准分层提供了新策略,该研究为优化ICIs治疗选择及探索“免疫-缺氧”交互机制提供了重要依据[58]

1.4 PET影像组学

       近年来,PET影像组学在HCC预后评估领域展现出重要价值。基于68Ga-成纤维细胞激活蛋白抑制剂(68Ga-fibroblast activation protein inhibitors, 68Ga-FAPI)PET影像组学在预测MVI方面取得显著进展,FAN等[59]研究发现,采用不同SUVmax阈值(30%~60%)半自动勾画构建的8个预测模型中,50%阈值组的逻辑回归(logistic regression, LR)模型表现最优(AUC=0.896),准确率达87.5%。这项研究不仅证实了68Ga-FAPI PET影像组学预测MVI的可行性,更揭示了半自动勾画阈值对模型性能的重要影响,为个体化阈值选择提供了实证依据。这些发现对术前风险评估和治疗方案制订具有重要指导意义,未来需通过多中心研究进一步验证模型的外部适用性,并探索最优阈值与肿瘤生物学特性的内在关联。

       在生存预后预测方面,SUI等[60]创新性提出基于18F-FDG PET/CT的生境放射组学模型,通过两步无监督聚类方法识别出3种肿瘤内生境,结合Stacking集成学习方法构建的MLP-Cox-栖息地-2模型外部验证队列的C指数达0.702;与临床模型整合后,联合模型的预测效能显著提升(C指数=0.747),1~3年OS预测AUC分别为0.835、0.828和0.800。该研究不仅证实了肿瘤内异质性特征对预后的重要影响,更通过多模态影像组学分析为个体化预后评估提供了新范式。然而,受限于样本量和回顾性设计,其结论尚需大规模前瞻性研究验证。未来研究应着重探索影像组学特征与分子病理的关联机制,并通过亚组分析进一步提升模型的临床适用性。这一创新方法为HCC精准医疗开辟了新途径,具有重要的转化医学价值。

       PET影像组学在HCC免疫治疗领域仍存在显著的研究空白,特别是在ORR和PFS等关键疗效终点方面缺乏系统性探索[61]。尽管18F-FDG PET/CT的代谢参数(如SUVmax)与肿瘤免疫微环境特征存在潜在关联,但目前尚未建立可靠的影像组学预测模型。该技术面临的主要挑战包括影像数据标准化不足、肿瘤异质性影响特征提取,以及现有模型的泛化能力有限。未来研究应着重整合PET代谢参数与多模态影像特征,结合DL技术构建更精准的预测体系。通过加强多中心协作、优化影像采集协议,并探索PET影像特征与免疫治疗生物标志物的相关性,有望推动PET影像组学在HCC免疫治疗精准评估中的临床应用。

2 面临的挑战

       HCC的高度异质性导致病理特征、分子亚型及治疗反应差异显著,使得传统预后模型(如BCLC分期)难以精准预测个体结局。虽然基因组学和液体活检在分子分型中展现出潜力,但目前缺乏高特异性标志物,且临床转化证据多限于回顾性研究(证据级别Ⅲ~Ⅳ)[62, 63]。当前影像组学的适用范围和证据基础存在明显差异(表1):US影像组学的实时弹性成像在肝硬化背景下的HCC筛查中具有成本优势(证据级别Ⅲ),但深部肿瘤特征提取稳定性较差,尚缺乏预后预测的高级别证据;CT影像组学广泛用于手术切除后复发预测(证据级别Ⅱ~Ⅲ),但其对MVI的敏感性较低,且受扫描协议差异影响显著;MRI影像组学在MVI评估和早期复发风险分层中表现最优(证据级别Ⅱ),但动态增强序列的标准化不足,且多中心数据异质性限制了模型泛化性;PET影像组学的代谢参数(如SUVmax)与肿瘤侵袭性相关(证据级别Ⅲ),但成本高、普及率低,目前仅推荐用于晚期HCC的系统治疗反应监测[2, 64]。此外,多模态数据融合虽可提升预测效能(如MRI+基因组学,证据级别Ⅱ),但跨模态配准和生物学解释仍是技术瓶颈。现有模型多基于单中心回顾性数据(证据级别Ⅲ~Ⅳ),亟需前瞻性多中心验证以推动临床落地。

表1  基于不同影像技术组学在HCC预后中的应用比较
Tab. 1  Comparative analysis of radiomics applications in HCC prognosis across different imaging modalities

3 未来发展方向

       未来,HCC预后预测将朝向更加精准和个体化的方向发展。基因组学技术推动了分子标志物的识别,液体活检技术(如循环肿瘤DNA、RNA)和个性化治疗方案成为新的研究重点。尽管免疫治疗和靶向治疗有所进展,但免疫逃逸与耐药性问题依然需要解决。AI与大数据结合为精准诊疗提供新机遇,液体活检与多重生物标志物检测为早期筛查提供支持。

       影像组学未来的应用方向包括建立多中心影像数据库和统一标准,提升技术一致性和可靠性;结合XAI,增强模型透明度,提高临床决策的信任度;整合影像、病理和分子标志物等多模态数据,构建全面的HCC预后模型,以实现动态预测和个性化治疗。通过优化治疗方案,影像组学将在HCC的治疗与预后评估中发挥重要作用。

4 结论

       影像组学作为新兴的无创评估应用,在HCC预后预测领域展现出重要价值。通过多模态影像分析可有效预测复发风险、微血管侵犯和治疗反应。当前仍面临标准化不足、数据异质性和模型泛化性等挑战。未来需重点建立标准化数据库、开发XAI模型、推进多模态融合及前瞻性验证。随着技术创新和跨学科合作,影像组学将为HCC个体化诊疗提供更精准的决策支持,但其临床应用仍需在算法优化和生物学机制研究方面持续突破。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 磁共振成像, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
Department of Medical Administration of the National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition)[J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[3]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[4]
GUTIERREZ-CHAKRABORTY E, CHAKRABORTY D, DAS D, et al. Discovering novel prognostic biomarkers of hepatocellular carcinoma using eXplainable Artificial Intelligence[J/OL]. Expert Syst Appl, 2024, 252(Pt B): 124239 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10705238/. DOI: 10.1016/j.eswa.2024.124239.
[5]
MOKRANE F Z, LU L, VAVASSEUR A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w.
[6]
JIN J, JIANG Y, ZHAO Y L, et al. Radiomics-based machine learning to predict the recurrence of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Acad Radiol, 2024, 31(2): 467-479. DOI: 10.1016/j.acra.2023.09.008.
[7]
CHEN K, SUI C X, WANG Z Y, et al. Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study[J/OL]. Transl Oncol, 2025, 52: 102260 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11754828/. DOI: 10.1016/j.tranon.2024.102260.
[8]
KOCAK B, KUS E A, KILICKESMEZ O. How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts[J]. Eur Radiol, 2021, 31(4): 1819-1830. DOI: 10.1007/s00330-020-07324-4.
[9]
LIN P, QIN Q, GAN X Y, et al. Integrating single-cell and bulk RNA sequencing data to characterize the heterogeneity of glycan-lipid metabolism polarization in hepatocellular carcinoma[J/OL]. J Transl Med, 2025, 23(1): 358 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11929990/. DOI: 10.1186/s12967-025-06347-z.
[10]
BO Z Y, SONG J T, HE Q K, et al. Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma[J/OL]. Comput Biol Med, 2024, 173: 108337 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/38547656/. DOI: 10.1016/j.compbiomed.2024.108337.
[11]
郭童瞳, 罗鸿昌, 王含章, 等. 基于腹腔镜超声影像组学模型术中预测肝细胞性肝癌微血管浸润的价值[J]. 中华超声影像学杂志, 2024, 33(9): 807-814. DOI: 10.3760/cma.j.cn131148-20240328-00186.
GUO T T, LUO H C, WANG H Z, et al. Predictive value of radiomics based on laparoscopic ultrasound imaging in microvascular invasion of hepatocellular carcinoma[J]. Chin J Ultrason, 2024, 33(9): 807-814. DOI: 10.3760/cma.j.cn131148-20240328-00186.
[12]
王燕, 田薇, 靳钦, 等. 肝细胞癌中HBO1和Ki-67表达的相关性及其临床意义[J]. 临床与实验病理学杂志, 2018, 34(6): 605-609. DOI: 10.13315/j.cnki.cjcep.2018.06.004.
WANG Y, TIAN W, JIN Q, et al. Correlation and clinical value of HBO1 and Ki-67 expression in hepatocellular carcinoma[J]. Chin J Clin Exp Pathol, 2018, 34(6): 605-609. DOI: 10.13315/j.cnki.cjcep.2018.06.004.
[13]
左丹, 董怡, 王含章, 等. 基于Sonazoid超声造影库普弗期表现术前预测肝细胞癌Ki-67水平的影像组学研究[J]. 中华超声影像学杂志, 2023, 32(2): 123-128. DOI: 10.3760/cma.j.cn131148-20220616-00436.
ZUO D, DONG Y, WANG H Z, et al. Preoperative prediction of Ki-67 level in hepatocellular carcinoma based on radiomics signatures during Kupffer phase of Sonazoid contrast enhanced ultrasound[J]. Chin J Ultrason, 2023, 32(2): 123-128. DOI: 10.3760/cma.j.cn131148-20220616-00436.
[14]
ZHANG D, ZHANG X Y, LU W W, et al. Predicting Ki-67 expression in hepatocellular carcinoma: nomogram based on clinical factors and contrast-enhanced ultrasound radiomics signatures[J]. Abdom Radiol (NY), 2024, 49(5): 1419-1431. DOI: 10.1007/s00261-024-04191-1.
[15]
XU W X, ZHANG H Y, ZHANG R, et al. Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma[J]. Eur Radiol, 2025, 35(2): 989-1000. DOI: 10.1007/s00330-024-10985-0.
[16]
CAO K P, WANG X Y, XU C L, et al. Ultrasound-based radiomics analysis for assessing risk factors associated with early recurrence following surgical resection of hepatocellular carcinoma[J]. Ultrasound Med Biol, 2024, 50(12): 1964-1972. DOI: 10.1016/j.ultrasmedbio.2024.09.002.
[17]
HUANG Z, SHU Z, ZHU R H, et al. Deep learning-based radiomics based on contrast-enhanced ultrasound predicts early recurrence and survival outcome in hepatocellular carcinoma[J]. World J Gastrointest Oncol, 2022, 14(12): 2380-2392. DOI: 10.4251/wjgo.v14.i12.2380.
[18]
MENDIRATTA-LALA M, FETZER D, KAMAYA A, et al. The future role of abdominal US in hepatocellular carcinoma surveillance[J/OL]. Radiology, 2024, 311(2): e232624 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11140528/. DOI: 10.1148/radiol.232624.
[19]
HU Y W, ZHANG L L, QI Q H, et al. Machine learning-based ultrasomics for predicting response to tyrosine kinase inhibitor in combination with anti-PD-1 antibody immunotherapy in hepatocellular carcinoma: a two-center study[J/OL]. Front Oncol, 2024, 14: 1464735 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11602396/. DOI: 10.3389/fonc.2024.1464735.
[20]
HE J, DUAN P Y, LIU Y, et al. Unveiling the impact of hemodynamics on endothelial inflammation-mediated hepatocellular carcinoma metastasis using a biomimetic vascular flow model[J/OL]. Adv Healthc Mater, 2024, 13(18): e2304439 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/38486060/. DOI: 10.1002/adhm.202304439.
[21]
CAI C Y, WANG L C, TAO L Y, et al. Imaging-based prediction of ki-67 expression in hepatocellular carcinoma: A retrospective study[J/OL]. Cancer Med, 2025, 14(4): e70562 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11834164/. DOI: 10.1002/cam4.70562.
[22]
ZHANG Z Y, ZHANG W L, HE C T, et al. Identification of macrotrabecular-massive hepatocellular carcinoma through Multiphasic CT-based representation learning method[J]. Med Phys, 2024, 51(12): 9017-9030. DOI: 10.1002/mp.17401.
[23]
WU X W, YOU J J, ZHANG S X, et al. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy[J/OL]. J Immunother Cancer, 2024, 12(9): e010330 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11425937/. DOI: 10.1136/jitc-2024-010330.
[24]
CHEN M Y, CAO J S, HU J H, et al. Clinical-radiomic analysis for pretreatment prediction of objective response to first transarterial chemoembolization in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 38-51. DOI: 10.1159/000512028.
[25]
LI M S, FAN Y H, YOU H Y, et al. Dual-energy CT deep learning radiomics to predict macrotrabecular-massive hepatocellular carcinoma[J/OL]. Radiology, 2023, 308(2): e230255 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/37606573/. DOI: 10.1148/radiol.230255.
[26]
WANG F, CHENG M, DU B B, et al. Predicting microvascular invasion in small (≤ 5 cm) hepatocellular carcinomas using radiomics-based peritumoral analysis[J/OL]. Insights Imaging, 2024, 15(1): 90 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10965872/. DOI: 10.1186/s13244-024-01649-0.
[27]
赵华飞, 冯智超, 李慧玲, 等. 感兴趣区范围对CT影像组学模型预测肝细胞癌微血管侵犯的影响[J]. 中南大学学报(医学版), 2022, 47(8): 1049-1057. DOI: 10.11817/j.issn.1672-7347.2022.220027.
ZHAO H F, FENG Z C, LI H L, et al. Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma[J]. J Cent South Univ Med Sci, 2022, 47(8): 1049-1057. DOI: 10.11817/j.issn.1672-7347.2022.220027.
[28]
朱晓青, 丁冠融. 预测肝癌患者微血管侵犯、术后转归和复发的CT放射组学模型[J]. 中国CT和MRI杂志, 2024, 22(6): 107-110. DOI: 10.3969/j.issn.1672-5131.2024.06.034.
ZHU X Q, DING G R. Establishment of CT radiomics model for predicting microvascular invasion, postoperative outcome and recurrence in patients with liver cancer[J]. Chin J CT MRI, 2024, 22(6): 107-110. DOI: 10.3969/j.issn.1672-5131.2024.06.034.
[29]
WANG D D, ZHANG L H, SUN Z Q, et al. A radiomics signature associated with underlying gene expression pattern for the prediction of prognosis and treatment response in hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 167: 111086 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/37708675/. DOI: 10.1016/j.ejrad.2023.111086.
[30]
GUO L X, HAO X, CHEN L, et al. Early warning of hepatocellular carcinoma in cirrhotic patients by three-phase CT-based deep learning radiomics model: a retrospective, multicentre, cohort study[J/OL]. EClinicalMedicine, 2024, 74: 102718 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11279308/. DOI: 10.1016/j.eclinm.2024.102718.
[31]
CHE F, XU Q, LI Q, et al. Radiomics signature: A potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(14): 1479-1493. DOI: 10.3748/wjg.v28.i14.1479.
[32]
LIN Z J, WANG W D, YAN Y C, et al. A deep learning-based clinical-radiomics model predicting the treatment response of immune checkpoint inhibitors (ICIs)-based conversion therapy in potentially convertible hepatocelluar carcinoma patients: a tumour marker prognostic study[J/OL]. Int J Surg, 2025 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/40085751/. DOI: 10.1097/JS9.0000000000002322.
[33]
HAPAER G, CHE F, XU Q, et al. Radiomics-based biomarker for PD-1 status and prognosis analysis in patients with HCC[J/OL]. Front Immunol, 2025, 16: 1435668 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11813882/. DOI: 10.3389/fimmu.2025.1435668.
[34]
ZHANG S T, METAXAS D. On the challenges and perspectives of foundation models for medical image analysis[J/OL]. Med Image Anal, 2024, 91: 102996 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/37857067/. DOI: 10.1016/j.media.2023.102996.
[35]
SHI P L, QIU J N, ABAXI S M D, et al. Generalist vision foundation models for medical imaging: a case study of segment anything model on zero-shot medical segmentation[J/OL]. Diagnostics (Basel), 2023, 13(11): 1947 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10252742/. DOI: 10.3390/diagnostics13111947.
[36]
LI Y X, JING B W, LI Z H, et al. Plug-and-play segment anything model improves nnUNet performance[J]. Med Phys, 2025, 52(2): 899-912. DOI: 10.1002/mp.17481.
[37]
景梦园, 曹云太, 邓娟, 等. 最小表观扩散系数值在评估肝细胞性肝癌侵袭性中的价值[J]. 磁共振成像, 2021, 12(5): 16-20. DOI: 10.12015/issn.1674-8034.2021.05.004.
JING M Y, CAO Y T, DENG J, et al. The value of minimum apparent diffusion coefficient in evaluating the invasiveness of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2021, 12(5): 16-20. DOI: 10.12015/issn.1674-8034.2021.05.004.
[38]
ZONG X D, LI M K, LI J W, et al. Mean ADC values and arterial phase hyperintensity discriminate small (≤ 3 Cm) well-differentiated hepatocellular carcinoma from dysplastic nodule[J]. Abdom Radiol (NY), 2024, 49(4): 1132-1143. DOI: 10.1007/s00261-023-04171-x.
[39]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order Calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/35278979/. DOI: 10.1016/j.ejrad.2022.110237.
[40]
ZHOU J, YANG D F, TANG H. Magnetic resonance imaging radiomics based on artificial intelligence is helpful to evaluate the prognosis of single hepatocellular carcinoma[J/OL]. Heliyon, 2025, 11(1): e41735 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11761343/. DOI: 10.1016/j.heliyon.2025.e41735.
[41]
NAPEL S, MU W, JARDIM-PERASSI B V, et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats[J]. Cancer, 2018, 124(24): 4633-4649. DOI: 10.1002/cncr.31630.
[42]
LOSIC B, CRAIG A J, VILLACORTA-MARTIN C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J/OL]. Nat Commun, 2020, 11(1): 291 [2025-04-23]. https://pubmed.ncbi.nlm.nih.gov/31941899/. DOI: 10.1038/s41467-019-14050-z.
[43]
XIAO Y Y, HUANG P, ZHANG Y F, et al. Component prediction in combined hepatocellular carcinoma-cholangiocarcinoma: habitat imaging and its biologic underpinnings[J]. Abdom Radiol (NY), 2024, 49(4): 1063-1073. DOI: 10.1007/s00261-023-04174-8.
[44]
LIU H F, WANG M, LU Y J, et al. CEMRI-based quantification of intratumoral heterogeneity for predicting aggressive characteristics of hepatocellular carcinoma using habitat analysis: comparison and combination of deep learning[J]. Acad Radiol, 2024, 31(6): 2346-2355. DOI: 10.1016/j.acra.2023.11.024.
[45]
MICHELOTTI F C. Editorial for "the association between tumor radiomic analysis and peritumor habitat-derived radiomic analysis on gadoxetate disodium-enhanced MRI with microvascular invasion in hepatocellular carcinoma"[J]. J Magn Reson Imaging, 2025, 61(3): 1440-1441. DOI: 10.1002/jmri.29551.
[46]
温桂海, 孔维. 基于术前DCE-MRI特征的肝癌患者术后MVI风险模型效能分析[J]. 西部医学, 2023, 35(9): 1331-1335. DOI: 10.3969/j.issn.1672-3511.2023.09.016.
WEN G H, KONG W. Efficacy analysis of postoperative MVI risk model in hepatocellular carcinoma patients based on preoperative DCE-MRI features[J]. Med J West China, 2023, 35(9): 1331-1335. DOI: 10.3969/j.issn.1672-3511.2023.09.016.
[47]
王文剑, 黄京城, 杨鑫, 等. 基于MRI增强扫描的影像组学对肝细胞癌Ki-67表达水平的术前预测价值[J]. 中国中西医结合影像学杂志, 2024, 22(3): 245-249, 261. DOI: 10.3969/j.issn.1672-0512.2024.03.001.
WANG W J, HUANG J C, YANG X, et al. Value of enhanced MRI radiomics in preoperative prediction for Ki-67 expression in hepatocellular carcinoma[J]. Chin Imag J Integr Tradit West Med, 2024, 22(3): 245-249, 261. DOI: 10.3969/j.issn.1672-0512.2024.03.001.
[48]
YANG J W, DONG X, JIN S Z, et al. Radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(1): 146-156. DOI: 10.1016/j.acra.2024.07.007.
[49]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[50]
AI Z, HAN Q J, HUANG Z W, et al. The value of multiparametric histogram features based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the differential diagnosis of liver lesions[J/OL]. Ann Transl Med, 2020, 8(18): 1128 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7576072/. DOI: 10.21037/atm-20-5109.
[51]
马依迪丽·尼加提, 王劲, 买合米提江·达莫拉, 等. IVIM-DWI多参数MRI对肝癌微血管侵犯的预测价值[J]. 中华肝脏外科手术学电子杂志, 2022, 11(1): 39-43. DOI: 10.3877/cma.j.issn.2095-3232.2022.01.009.
MAYIDILI·N, WANG J, MAIHEMITIJIANG·D, et al. Predictive value of IVIM-DWI multi-parameter MRI in microvessel invasion of hepatocellular carcinoma[J]. Chin J Hepatic Surg Electron Ed, 2022, 11(1): 39-43. DOI: 10.3877/cma.j.issn.2095-3232.2022.01.009.
[52]
WEI Y C, YUN L, LIANG Y L, et al. Nomogram based on the neutrophil-to-lymphocyte ratio and MR diffusion quantitative parameters for predicting Ki67 expression in hepatocellular carcinoma from a prospective study[J/OL]. Sci Rep, 2024, 14(1): 31738 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11685758/. DOI: 10.1038/s41598-024-82333-7.
[53]
GUO D, LIU L P, JIN Y. Prediction early recurrence of hepatocellular carcinoma after hepatectomy using gadoxetic acid-enhanced MRI and IVIM[J/OL]. Eur J Radiol Open, 2025, 14: 100643 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11957592/. DOI: 10.1016/j.ejro.2025.100643.
[54]
GU Y, JIN K, GAO S, et al. A preoperative nomogram with MR elastography in identifying cytokeratin 19 status of hepatocellular carcinoma[J]. Br J Radiol, 2025, 98(1166): 210-219. DOI: 10.1093/bjr/tqae193.
[55]
ZHANG L N, CHEN J B, JIANG H, et al. MR elastography as a biomarker for prediction of early and late recurrence in HBV-related hepatocellular carcinoma patients before hepatectomy[J/OL]. Eur J Radiol, 2022, 152: 110340 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9535659/. DOI: 10.1016/j.ejrad.2022.110340.
[56]
PARK S J, YOON J H, LEE D H, et al. Tumor stiffness measurements on MR elastography for single nodular hepatocellular carcinomas can predict tumor recurrence after hepatic resection[J]. J Magn Reson Imaging, 2021, 53(2): 587-596. DOI: 10.1002/jmri.27359.
[57]
GAO S S, ZHANG Y F, SUN W, et al. Assessment of an MR elastography-based nomogram as a potential imaging biomarker for predicting microvascular invasion of hepatocellular carcinoma[J]. J Magn Reson Imaging, 2023, 58(2): 392-402. DOI: 10.1002/jmri.28553.
[58]
SONG L N, WANG B, CAI J L, et al. Stratifying ICIs-responsive tumor microenvironment in HCC: from parsing out immune-hypoxic crosstalk to clinically applicable MRI-radiomics models[J]. Br J Cancer, 2024, 130(8): 1356-1364. DOI: 10.1038/s41416-023-02463-z.
[59]
FAN R Q, LONG X Q, CHEN X L, et al. The value of machine learning-based radiomics model characterized by PET imaging with 68Ga-FAPI in assessing microvascular invasion of hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(4): 2233-2246. DOI: 10.1016/j.acra.2024.11.034.
[60]
SUI C X, SU Q, CHEN K, et al. 18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study[J/OL]. BMC Cancer, 2024, 24(1): 1457 [2025-04-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11600565/. DOI: 10.1186/s12885-024-13206-5.
[61]
CHALIAN H, TÖRE H G, HOROWITZ J M, et al. Radiologic assessment of response to therapy: comparison of RECIST versions 1.1 and 1.0[J]. Radiographics, 2011, 31(7): 2093-2105. DOI: 10.1148/rg.317115050.
[62]
CHEN J B, KAYA N A, ZHANG Y, et al. A multimodal atlas of hepatocellular carcinoma reveals convergent evolutionary paths and 'bad apple' effect on clinical trajectory[J]. J Hepatol, 2024, 81(4): 667-678. DOI: 10.1016/j.jhep.2024.05.017.
[63]
PARK J, LEE Y T, AGOPIAN V G, et al. Liquid biopsy in hepatocellular carcinoma: challenges, advances, and clinical implications[J]. Clin Mol Hepatol, 2025, 31(Suppl): S255-S284. DOI: 10.3350/cmh.2024.0541.
[64]
VAN DER POL C B, MCINNES M D F, SALAMEH J P, et al. CT/MRI and CEUS LI-RADS major features association with hepatocellular carcinoma: individual patient data meta-analysis[J]. Radiology, 2022, 302(2): 326-335. DOI: 10.1148/radiol.2021211244.

上一篇 磁共振成像预测肝细胞癌免疫组化标志物的研究进展
下一篇 影像学评估肝脏体积的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2