分享:
分享到微信朋友圈
X
临床研究
深度学习重建结合小视野高分辨扫描在提高手指磁共振图像质量中的价值
陆阿琴 徐露露 徐磊 郝绍伟 邹月芬

Cite this article as: LU A Q, XU L L, XU L, et al. The value of deep learning reconstruction combined with small field-of-view high-resolution scanning in improving the quality of finger magnetic resonance images[J]. Chin J Magn Reson Imaging, 2025, 16(7): 52-57.本文引用格式:陆阿琴, 徐露露, 徐磊, 等. 深度学习重建结合小视野高分辨扫描在提高手指磁共振图像质量中的价值[J]. 磁共振成像, 2025, 16(7): 52-57. DOI:10.12015/issn.1674-8034.2025.07.008.


[摘要] 目的 探讨深度学习重建(deep-learning reconstruction, DLR)结合小视野(small field-of-view, sFOV)高分辨率扫描在提高手指磁共振成像(magnetic resonance imaging, MRI)图像质量中的价值。材料与方法 前瞻性纳入33例健康志愿者和24例手部疾病患者,每位受检者均接受小视野高分辨率T2加权自旋回波成像矢状位序列(the small field-of-view high-resolution T2-weighted turbo spin-echo sequence, TSE-sFOV)和DLR结合TSE-sFOV(DLR combined with TSE-sFOV, TSEDL-sFOV)的MRI扫描。采用4分法对57例样本的两组图像的整体图像质量(基于图像对比度、边缘锐利度、噪声、伪影)和解剖结构清晰度(包括骨、关节软骨、肌腱和韧带)进行主观评分;对其中24例样本的两组图像的病灶显示(包括病灶对比度及边缘锐利度、病灶位置及内部形态)和诊断置信度进行评分。评估57例样本两组图像的疾病检出能力(包括骨改变、关节间隙改变、肌腱异常、软组织异常)进行0或1检出。比较两组图像的信噪比(signal-to-noise ratio, SNR)、对比噪声比(contrast-to-noise ratio, CNR)。结果 在主观评分中,57例样本的TSEDL-sFOV组图像在整体图像质量、骨、关节软骨的评分中均高于TSE-sFOV组(P均<0.05),肌腱韧带方面的评分差异无统计学意义(P>0.05);在24例样本的病灶显示和诊断置信度方面,TSEDL-sFOV组图像评分均高于TSE-sFOV组,差异具有统计学意义(P均<0.05)。在疾病检出能力方面,两组图像的疾病检出结果差异无统计学意义(P均>0.05);两组图像的一致性很好(kappa值均>0.84)。在客观评价中,TSEDL-sFOV组的SNR和CNR均高于TSE-sFOV组(P均<0.05)。结论 DLR结合sFOV手指MRI在缩短扫描时间的前提下,降低了噪声并提高了图像质量,为临床提供了更精准的影像依据。
[Abstract] Objective To explore the value of small field-of-view (sFOV) high-resolution scanning based on deep-learning reconstruction (DLR) algorithm in improving the imaging quality of finger magnetic resonance imaging (MRI).Materials and Methods Thirty-three healthy volunteers and 24 patients with hand diseases were prospectively recruited. Both the small field-of-view high-resolution T2-weighted spin-echo sequence (TSE-sFOV) and DLR combined with TSE-sFOV (TSEDL-sFOV), were conducted on the subjects. A 4-point scale was used to subjectively evaluate the overall image quality (based on image contrast, edge sharpness, noise and artifact) and the clarity of anatomical structures (including bone, articular cartilage, tendon and ligament) in the two sets of images from 57 samples; Additionally, The lesion display (including lesion contrast and edge sharpness, lesion location and internal morphology) and diagnostic confidence were scored for 24 samples. The disease detection capabilities (including bone changes, joint space changes, tendon abnormalities, and soft tissue abnormalities) of the two groups of images from 57 samples were assessed as either 0 or 1. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the two sets of images were compared.Results In the subjective evaluation, the TSEDL-sFOV group of images scored higher than the TSE-sFOV in overall image quality, bone and articular cartilage (P < 0.05), while there was no statistical difference in tendon and ligament scores. For lesion display and diagnostic confidence in the 24 samples, the TSEDL-sFOV group of images scored higher than the TSE-sFOV group, with statistical difference (P < 0.05). In terms of disease detection capabilities, there was no statistical difference between the two groups of images (P > 0.05), and the consistency between the two sets of images was excellent (Kappa > 0.84). In the objective evaluation, the SNR and CNR of the TSEDL-sFOV group of images were higher than those of the TSE-sFOV group (P < 0.05).Conclusions DLR combined with sFOV finger MRI can reduce the noise and improve the image quality under the premise of shortening scanning time. This provides more precise images for clinic.
[关键词] 手指;磁共振成像;深度学习;高分辨率;图像质量
[Keywords] finger;magnetic resonance imaging;deep learning;high resolution;image quality

陆阿琴 1   徐露露 1   徐磊 1   郝绍伟 2   邹月芬 1*  

1 南京医科大学第一附属医院放射科,南京 210029

2 西门子数字医疗科技(上海)有限公司应用培训部,上海 200000

通信作者:邹月芬,E-mail: zou_yf@163.com

作者贡献声明:邹月芬设计了本研究方案,对稿件重要内容进行了修改;陆阿琴起草和撰写了本稿件,参与了试验的设计并负责实验研究、数据采集和分析;徐露露参与了研究的设计实施和数据的采集及分析,并对稿件重要内容做了修改;徐磊、郝绍伟参与了本研究的设计,对稿件重要内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-03-19
接受日期:2025-07-07
中图分类号:R445.2  R681.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.008
本文引用格式:陆阿琴, 徐露露, 徐磊, 等. 深度学习重建结合小视野高分辨扫描在提高手指磁共振图像质量中的价值[J]. 磁共振成像, 2025, 16(7): 52-57. DOI:10.12015/issn.1674-8034.2025.07.008.

0 引言

       磁共振成像(magnetic resonance imaging, MRI)凭借其优异的软组织对比度及多参数成像特性,已成为手部疾病评估的重要影像学手段,在手部隐匿性骨折、软组织损伤及肿瘤病变的检测中具有独特优势[1, 2]。然而由于手部结构的复杂性,常规扫描层厚、层间距的设置往往会带来部分容积效应所致的病变显示模糊[3],因此手部MRI对空间分辨率有更高的要求[4, 5]。学界指出,基于损伤特异性成像策略的小视野(small field-of-view, sFOV)结合薄层扫描,是实现手部高分辨率MRI的技术关键[6, 7]。但随着空间分辨率的提升,必然要增加激励次数来保证图像质量,这显然将大大增加扫描时间。目前已有几种技术来加速MRI扫描,如并行成像(parallel imaging, PI)、压缩感知(compressed sensing, CS)等。这些加速技术可通过K空间欠采样来实现降低扫描时间的目的,但本质上属于k空间数据维度压缩策略[8],必然伴随信噪比(signal-to-noise ratio, SNR)的下降[9],且这种信号损失在高分辨率成像中尤为显著,可能影响细微解剖结构改变的诊断。

       近年来,深度学习重建(deep-learning reconstruction, DLR)作为MRI快速扫描领域的前沿算法,已被运用到检查实践中[10],其核心在于构建经过海量迭代优化的深度卷积神经网络(convolutional neural network, CNN)模型[11]。该模型采用具有临床级规模的训练数据集,包含逾万例精准配对的“高信噪比-高空间分辨率”与“低信噪比-低空间分辨率”双域对比影像数据,通过数千万次参数迭代优化实现从低质量图像到高质量图像的非线性映射关系的精确建模[12, 13]。目前已有多个文献证明DLR能够提高诸如前列腺[14, 15]、大脑[16, 17, 18]和乳腺[19]等部位的图像质量;在肌肉骨骼系统中,多中心研究显示DLR与常规重建方法相比,极大地缩短了扫描时间(21%~75%),同时还提高了SNR[20, 21, 22, 23, 24, 25]

       目前关于DLR在sFOV高分辨率手部MRI中的应用国内尚缺乏报道,且DLR在手部高分辨率成像中能否同时兼顾扫描时间短和成像质量高这两方面问题有待验证。故本研究创新性地将DLR结合sFOV高分辨率序列与常规sFOV高分辨率序列相比较,以探讨其在手部sFOV高分辨率MR图像质量提升和疾病诊断中的价值。

1 材料与方法

1.1 一般资料

       2024年1月至2024年6月,于江苏省人民医院招募健康志愿者和手部疾病患者,行手部MRI检查。健康志愿者纳入标准:(1)年龄≥18周岁;(2)无手部疼痛、肿胀、活动障碍等临床症状,无手部外伤史、手术史及神经系统疾病史,无类风湿性关节炎等全身性骨关节疾病;(3)无MRI检查禁忌证并具备扫描配合能力。手部疾病患者纳入标准:(1)经临床诊断需行手部MRI;(2)存在持续性手部疾病症状;(3)无MRI禁忌证并具备扫描配合能力。所有受检者排除标准:(1)无法配合完成所有序列扫描;(2)图像存在严重的自主性运动伪影。本研究遵守《赫尔辛基宣言》,经江苏省人民医院伦理委员会批准,所有受检者均签署知情同意书,批准文号:2023-SR-700。

1.2 仪器与方法

       采用西门子3.0 T MAGNETOM Vida(Siemens Healthcare, Erlangen, Germany)MRI扫描仪,16通道手腕专用相控阵线圈。受检者取俯卧位,手臂沿头颈长轴方向充分前伸,掌心向下,单手置于线圈内。对志愿者任一指骨分别行sFOV高分辨率T2加权自旋回波成像矢状位序列(the small field-of-view high-resolution T2-weighted turbo spin-echo sequence, TSE-sFOV)和深度学习重建结合TSE-sFOV(deep learning reconstruction combined with TSE-sFOV, TSEDL-sFOV)扫描;手部疾病患者的扫描对象为患病手指。TSE-sFOV序列具体扫描参数如下:TR 3200 ms,TE 60 ms,FOV 100 mm×100 mm,层厚1.2 mm,层间距0 mm,体素0.2 mm×0.2 mm×1.2 mm,平均激励次数4,加速因子2,相位编码参考线32;扫描时间5 min 28 s;TSEDL-sFOV序列参数中TR、TE以及几何参数同TSE-sFOV,平均激励次数2,加速因子3,相位编码参考线27;扫描时间2 min 8 s。

1.3 样本量估算

       小样本实验中分别选取10例符合纳入标准的健康志愿者和手部疾病患者,健康志愿者统计TSE-sFOV组和TSEDL-sFOV组中的(contrast-to-noise ratio, CNR)的平均数和标准差;手部疾病患者统计两组的病灶对比度及边缘锐利度的中位数和四分位数。采用PASS统计软件进行样本量估算,均选择配对t检验方法,设定检验水准α=0.05,期望检验功效为0.80。

1.4 图像分析

1.4.1 定性分析

       由两名肌骨方向的副主任医师在西门子后处理工作站(Syngo Via VB40B版本)上行双盲法独立分析图像。采用Likert 4分法[26]行主观评价,内容包括57例受检者中两组图像的整体图像质量评价(基于图像对比度、边缘锐利度、噪声、伪影)和解剖结构清晰度评价(包括骨、关节软骨、肌腱和韧带),24例手部疾病患者中两组图像的病灶显示(包括病灶对比度及边缘锐利度、病灶位置及内部形态)评估和诊断置信度[27]评分。评分细则如下:(1)整体图像质量方面,4=无伪影,图像质量佳;3=轻度伪影,图像质量良好;2=中度伪影,图像质量一般;1=严重伪影,图像质量低;(2)解剖结构清晰度方面,4=结构清晰度佳;3=良好;2=一般;1=差;(3)病灶显示及诊断置信度方面,4=病灶描绘佳,病灶发现佳,诊断信心高;3=病灶描绘良好,病灶发现较好,诊断信心较好;2=病灶描绘一般,病灶发现一般,诊断信心一般;1=病灶描绘差,病灶发现差,诊断信心低。最后,两位阅片者还需对57例受检者的两组图像在骨改变、关节间隙改变、肌腱异常、软组织异常的疾病检出能力方面进行评估,所有图像根据以下标准进行判读:(1)骨质改变包括骨髓水肿,骨内囊肿,骨质增生,骨侵蚀,骨畸形;(2)关节间隙改变包括关节间隙变窄;(3)肌腱异常包括腱鞘炎性改变、肌腱内占位、肌腱走形不连续;(4)软组织异常包括软组织肿胀,占位。判读结果为某疾病存在或者不存在(0=不存在,1=存在)。

1.4.2 定量分析

       测量并计算两组图像的SNR和CNR。感兴趣区(region of interest, ROI)选取原则:选取中间层面图像,于近节指骨基底部放置ROI指骨、近节指骨对应的屈肌腱ROI肌腱,测量感兴趣区的信号强度(signal integrity, SI)SI指骨、SI肌腱,以及标准差(standard deviation, SD)SD指骨、SD肌腱。每个ROI测量三次,取其平均值作为最终结果。SNR指骨=SI指骨/SD指骨,SNR肌腱=SI肌腱/SD肌腱;CNR=(SI指骨-SI肌腱)/SD指骨2+SD肌腱2[28]。ROI在两组图像中的位置、形状、大小一致。测量方法如图1所示。

图1  ROI勾画示意图。1A和1B分别为TSE-sFOV和TSEDL-sFOV图。虚线圆圈代表指骨ROI,测量得SI指骨和SD指骨值;实线圆圈代表肌腱ROI,测量得SI肌腱和SD肌腱值。两组ROI对应一致,位置、面积相同。ROI:感兴趣区;TSE-sFOV:小视野高分辨率T2加权自旋回波成像矢状位序列;TSEDL-sFOV:深度学习重建(DLR)结合TSE-sFOV;SI:信号强度;SD:标准差。
Fig. 1  Schematic diagram of ROI delineation. 1A and 1B respectively show TSE-sFOV and TSEDL-sFOV images. The dashed circles represent phalangeal ROIs where SI_phalangeal and SD_phalangeal values were measured; the solid circles represent tendinous ROIs where SI_tendon and SD_tendon values were measured. The paired ROIs demonstrate spatial congruence with identical positioning and equivalent area. ROI: region of interest; TSE-sFOV: the small field-of-view high-resolution T2-weighted turbo spin-echo sequence; TSEDL-sFOV: deep-learning reconstruction (DLR) combined with TSE-sFOV; SI: signal integrity; SD: standard deviation.

1.5 统计学分析

       所有数据均采用SPSS 23.0软件处理。所有主观评分数据采用Kappa统计法来评估两名观察者间的一致性(κ≤0.40,一致性较差;0.40<κ<0.70,一致性中等;κ≥0.70,一致性良好)[29],如一致性较好,则后续采用高年资医生的评分结果进行统计分析。用Shapiro-Wilk检验对主观评分数据和客观SNR、CNR数据进行正态性检验,符合正态分布的数据用均数±标准差表示,采用配对样本t检验;非正态分布数据用中位数和四分位数表示,采用Wilcoxon秩和检验进行统计学分析。两组图像对疾病检出能力的差异,采用McNemar检验[29];采用kappa检验评估两组成像方法间诊断结果的一致性。以TSE-sFOV组图像为参考标准,计算出TSEDL-sFOV组图像的特异度、敏感度和准确度。P<0.05为差异有统计学意义。

2 结果

2.1 受检者资料

       样本量估算结果为健康志愿者不少于30例,手部疾病患者不少于22例。在62例完成所有序列检查的受检者中,57例受检者图像纳入最终研究样本,男29例,女28例,年龄范围为20至79岁,中位数为37岁,下四分位数(Q1)为26岁,上四分位数(Q3)为53岁。健康志愿者33例及手部疾病患者24例,疾病类型分布如下:骨囊性变2例,腱鞘炎7例,类风湿关节炎4例,软组织肿胀伴关节腔积液3例,腱鞘囊肿2例,腱鞘肿瘤性病变4例(腱鞘巨细胞瘤2例,血管瘤2例),软组织肿瘤性病变2例。

2.2 主观评价

2.2.1 图像质量评价

       两名医生在所有受检者整体图像质量、骨、关节软骨、肌腱和韧带解剖结构清晰度的评价上一致性均良好(κ均>0.71)。在整体图像质量、骨和关节软骨清晰度的比较,TSEDL-sFOV组图像评分高于TSE-sFOV组图像(图2),差异均具有统计学意义(P均<0.05);在肌腱韧带方面的比较中,两组图像差异无统计学意义(P>0.05)。详见表1

图2  男,54岁,健康志愿者,整体图像质量和解剖结构清晰度方面的比较。相比于TSE-sFOV(2A),可见TSEDL-sFOV(2B)图像的噪声更小;对比度和锐利度更好;骨质结构更清晰;血管搏动伪影更小、血管显示更好;关节腔及关节软骨显示更细致。TSE-sFOV:小视野高分辨率T2加权自旋回波成像矢状位序列;TSEDL-sFOV:深度学习重建(DLR)结合TSE-sFOV。
Fig. 2  Male, 54-year-old, healthy volunteer, comparison in terms of overall image quality and anatomical clarity. Compared to the TSE-sFOV (2A), The TSEDL-sFOV (2B) image demonstrates the following advantages: reduced noise; improved contrast and sharpness; sharper depiction of bony structures; reduced vascular pulsation artifacts and enhanced vascular visualization; more detailed visualization of joint cavities and articular cartilage. TSE-sFOV: the small field-of-view high-resolution T2-weighted turbo spin-echo sequence; TSEDL-sFOV: deep-learning reconstruction (DLR) combined with TSE-sFOV.
表1  两组图像的整体图像质量以及解剖结构清晰度的比较
Tab. 1  Comparison of overall image quality and anatomical structural clarity between the two image groups

2.2.2 病灶显示评估及诊断置信度评分

       两名医生在对24例患者中的两组图像病灶显示和诊断置信度的评价中一致性均良好(κ均>0.81)。在病灶对比度及边缘锐利度、病灶位置及内部形态以及诊断置信度方面,TSEDL-sFOV组图像得分均高于TSE-sFOV组图像(图3),差异均具有统计学意义(P均<0.05)。详见表2

图3  女,51岁,影像诊断为血管瘤,肿块病理为肌内血管瘤。病灶显示方面,相较TSE-sFOV(3A)图像,TSEDL-sFOV(3B)图像中血管瘤的对比度更好;边界更清晰;与周围软组织以及肌腱的邻近关系显示更好;血管瘤分叶状形态显示更好;内见更清晰的低信号小血管影。
Fig. 3  Female, 51-year-old, radiologically diagnosed as hemangioma and pathologically confirmed as intramuscular hemangioma. Regarding lesion depiction, compared to TSE-sFOV (3A) images, the TSEDL-sFOV (3B) image demonstrates: improved lesion-to-background contrast; sharper tumor margins; enhanced spatial relationships with adjacent soft tissues and tendons; better delineation of lobulated morphology; increased conspicuity of hypointense small vessels. TSE-sFOV: the small field-of-view high-resolution T2-weighted turbo spin-echo sequence; TSEDL-sFOV: deep-learning reconstruction (DLR) combined with TSE-sFOV.
表2  两组图像病灶显示以及诊断置信度比较
Tab. 2  Comparison of lesion depiction and diagnostic confidence between the two image groups

2.2.3 疾病检出能力评估

       两名阅片者独立评估了TSE-sFOV组和TSEDL-sFOV两组共114例骨骼、关节、肌腱、软组织。阅片者间诊断结果一致性良好(κ均>0.78)。TSEDL-sFOV组在骨、关节、肌腱、软组织方面的疾病检出能力与TSE-sFOV组未发现显著差异(P均>0.05);两组图像间的一致性较好(κ均>0.84);以TSE-sFOV组图像作为参考标准,TSEDL-sFOV组图像对各项疾病检出的敏感度、特异度和准确度均高于89%(表3)。

表3  两组图像疾病检出能力的比较
Tab. 3  Comparison of disease detection capability between the two image groups

2.3 客观评价

       两组图像的SNR指骨、SNR肌腱和CNR的比较差异均具有统计学意义(P均<0.05),TSEDL-sFOV组图像数值均高于TSE-sFOV组图像(表4)。

表4  两组图像SNR指骨、SNR肌腱和CNR的比较
Tab. 4  Comparative assessment of SNR in phalanges, SNR in tendons, and CNR between the two image groups

3 讨论

       本研究比较了手指TSEDL-sFOV序列与TSE-sFOV序列中的整体图像质量、解剖结构清晰度、病灶显示、诊断置信度以及疾病检出能力和客观指标(包括SNR指骨、SNR肌腱和CNR)。研究结果证实,DLR可显著提升手指图像质量,在手部疾病的诊断中与常规序列的诊断能力相当且具有更高的置信度。

3.1 本研究中DLR优化策略及两组图像客观结果的比较

       在本研究中,DLR技术通过三重策略突破传统MRI的物理限制,具体在TSEDL-sFOV序列扫描参数设置上的体现:(1)将信号平均次数(number of excitations, NEX)降低至常规组的50%,理论上会导致SNR的平方根衰减[30],但DLR的噪声建模具有逆向提升SNR的潜能;(2)并行成像加速因子提升至R=3,使k空间数据采集稀疏度相比常规方法增加了50%,但通过DLR的k空间插值算法可完整恢复高频信息[31];(3)相位参考线数目缩减至常规方案的80%,通过神经网络对中心k空间信号的智能预测可补偿信息损失。基于上述三种机制,DLR技术成功解耦了传统MRI中扫描时间-图像质量的强耦合关系,在保持相同空间分辨率条件下,DLR方案使扫描时间缩短了61%,同时实现SNR指骨、SNR肌腱和CNR分别提升了2.83±2.17、2.79(1.59,4.83)、1.54(0.64,3.12)(P均<0.001)。DLR这种多维度的智能重建机制,为手部微小结构的精准成像提供了新的技术方向。

3.2 两组图像主观评价的比较

       主观评分显示,TSEDL-sFOV在整体图像质量和骨、关节软骨等解剖结构清晰度方面表现均优于TSE-sFOV组,与HERRMANN等[26]的研究结果类似,这可能归功于DLR神经网络良好的学习能力:完成从低分辨率到高分辨率的映射,同时采用噪声抑制算法,有效提升了欠采样TSEDL-sFOV图像的保真度[32, 33],生成更清晰的解剖结构。但是HERRMANN等的研究仅分析了DLR对全身各关节图像质量的影响,未涉及诊断效能的评估,而本研究进一步评估了DLR方案的疾病检出能力。研究结果显示,TSEDL-sFOV组图像在骨、关节、肌腱、软组织的疾病检出能力方面,均与TSE-sFOV相当,同时在敏感度、特异度和准确度方面也表现出较高的水平。这一结论与RECHT等[34]在膝关节DLR图像与常规重建图像对膝关节结构异常检出方面的比较相一致。此外,在本研究的24例样本中,DLR组在病灶对比度及边缘锐利度、病灶的内部形态和位置以及诊断置信度方面表现均优于常规组,尤其在病灶对比度及边缘锐利度方面,DLR组与常规组存在显著差异,这主要是因为DLR的神经网络通过多层级特征提取,创新性引入自适应截断伪影识别模块,在针对性去除噪声的同时保留了病灶边缘的高频细节[35, 36],实现了不同组织间的对比度增强和边缘锐化。

3.3 局限性分析

       本研究的局限性:(1)纳入的病例种类较少,未对病种进行归类比较;(2)未收集到韧带急慢性损伤的病例。上述不足之处将在后续研究中补充。

4 结论

       综上所述,DLR结合手部sFOV高分辨率MR扫描,在缩短扫描时间的前提下,提高了手指结构显示的清晰度和图像的SNR,为临床诊断手指相关疾病提供更多信息。

[1]
HASHEM A, KALAAWY B AL. The feasibility of high-resolution ultrasonography and MRI in diagnosing finger lesions[J]. J Ultrasound, 2022, 25(2): 133-144. DOI: 10.1007/s40477-021-00593-9.
[2]
RATASVUORI M S, LINDFORS N C, SORMAALA M J. The clinical significance of magnetic resonance imaging of the hand: an analysis of 318 hand and wrist images referred by hand surgeons[J]. J Plast Surg Hand Surg, 2022, 56(2): 69-73. DOI: 10.1080/2000656X.2021.1933993.
[3]
KIJOWSKI R, GOLD G E. Routine 3D magnetic resonance imaging of joints[J]. J Magn Reson Imaging, 2011, 33(4): 758-771. DOI: 10.1002/jmri.22342.
[4]
SCHREIBMAN K L, FREELAND A, GILULA L A, et al. Imaging of the hand and wrist[J]. Orthop Clin N Am, 1997, 28(4): 537-582. DOI: 10.1016/S0030-5898(05)70308-4.
[5]
SCHMITT R, HESSE N, GRUNZ J P. Tendons and tendon sheaths of the hand-an update on MRI[J]. Rofo, 2022, 194(12): 1307-1321. DOI: 10.1055/a-1826-1007.
[6]
PETCHPRAPA C N, VASWANI D. MRI of the fingers: an update[J]. Am J Roentgenol, 2019, 213(3): 534-548. DOI: 10.2214/ajr.19.21217.
[7]
ZBOJNIEWICZ A M. MRI anatomy and injuries of the fingers[J]. Pediatr Radiol, 2023, 53(8): 1562-1575. DOI: 10.1007/s00247-023-05624-7.
[8]
HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magn Reson Med, 2018, 79(6): 3055-3071. DOI: 10.1002/mrm.26977.
[9]
SHENG R F, ZHENG L Y, JIN K P, et al. Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: a clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI[J]. Magn Reson Imaging, 2021, 81: 75-81. DOI: 10.1016/j.mri.2021.06.014.
[10]
严福华. 深度学习MRI重建算法的临床应用和发展前景[J]. 磁共振成像, 2023, 14(5): 8-10. DOI: 10.12015/issn.1674-8034.2023.05.002.
YAN F H. The clinical application and development prospect of deep learning MRI reconstruction algorithm[J]. Chin J Magn Reson Imag, 2023, 14(5): 8-10. DOI: 10.12015/issn.1674-8034.2023.05.002.
[11]
LIU J, LI W, LI Z Y, et al. Magnetic resonance shoulder imaging using deep learning-based algorithm[J]. Eur Radiol, 2023, 33(7): 4864-4874. DOI: 10.1007/s00330-023-09470-x.
[12]
MICHAELY H J, ARINGHIERI G, CIONI D, et al. Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer: a systematic review[J]. Diagnostics (Basel), 2022, 12(4): 799 [2025-03-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9027206/. DOI: 10.3390/diagnostics12040799.
[13]
DO W J, SEO S, HAN Y, et al. Reconstruction of multicontrast MR images through deep learning[J]. Med Phys, 2020, 47(3): 983-997. DOI: 10.1002/mp.14006.
[14]
PARK J C, PARK K J, PARK M Y, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744. DOI: 10.1002/jmri.27992.
[15]
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging[J]. Radiology, 2022, 303(2): 373-381. DOI: 10.1148/radiol.204097.
[16]
MAN C, LAU V, SU S, et al. Deep learning enabled fast 3D brain MRI at 0.055 tesla[J/OL]. Sci Adv, 2023, 9(38): eadi9327 [2025-03-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10516503/. DOI: 10.1126/sciadv.adi9327.
[17]
RUDIE J D, GLEASON T, BARKOVICH M J, et al. Clinical assessment of deep learning-based super-resolution for 3D volumetric brain MRI[J/OL]. Radiol Artif Intell, 2022, 4(2): e210059 [2025-03-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8980882/. DOI: 10.1148/ryai.210059.
[18]
CHOI Y, KO J S, PARK J E, et al. Beyond the conventional structural MRI: clinical application of deep learning image reconstruction and synthetic MRI of the brain[J]. Invest Radiol, 2025, 60(1): 27-42. DOI: 10.1097/RLI.0000000000001114.
[19]
WILPERT C, NEUBAUER C, RAU A, et al. Accelerated diffusion-weighted imaging in 3 T breast MRI using a deep learning reconstruction algorithm with superresolution processing: a prospective comparative study[J]. Invest Radiol, 2023, 58(12): 842-852. DOI: 10.1097/RLI.0000000000000997.
[20]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577.
[21]
KOCH K M, SHERAFATI M, ARPINAR V E, et al. Analysis and evaluation of a deep learning reconstruction approach with denoising for orthopedic MRI[J/OL]. Radiol Artif Intell, 2021, 3(6): e200278 [2024-11-07]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8637471/. DOI: 10.1148/ryai.2021200278.
[22]
SUN S, TAN E T, MINTZ D N, et al. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI[J]. Eur Radiol, 2022, 32(9): 6167-6177. DOI: 10.1007/s00330-022-08708-4.
[23]
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9): 6118-6125. DOI: 10.1007/s00330-022-08729-z.
[24]
JOHNSON P M, LIN D J, ZBONTAR J, et al. Deep learning reconstruction enables prospectively accelerated clinical knee MRI[J/OL]. Radiology, 2023, 307(2): e220425 [2025-01-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10102623/. DOI: 10.1148/radiol.220425.
[25]
HALLINAN J T P D. Deep learning for spine MRI: reducing time not quality[J/OL]. Radiology, 2023, 306(3): e222410 [2025-01-13]. https://pubs.rsna.org/doi/10.1148/radiol.222410. DOI: 10.1148/radiol.222410.
[26]
HERRMANN J, KOERZDOERFER G, NICKEL D, et al. Feasibility and implementation of a deep learning MR reconstruction for TSE sequences in musculoskeletal imaging[J/OL]. Diagnostics (Basel), 2021, 11(8): 1484 [2024-12-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8394583/. DOI: 10.3390/diagnostics11081484.
[27]
KANIEWSKA M, DEININGER-CZERMAK E, GETZMANN J M, et al. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time[J]. Eur Radiol, 2023, 33(3): 1513-1525. DOI: 10.1007/s00330-022-09151-1.
[28]
刘美伶, 邓锡佳, 张菁, 等. 宫颈癌MR同时多层采集高清扩散成像图像质量评价[J]. 临床放射学杂志, 2022, 41(4): 729-735. DOI: 10.13437/j.cnki.jcr.2022.04.030.
LIU M L, DENG X J, ZHANG J, et al. Image quality assessment of SMS-RESOLVE diffusion weighted imaging in cervical cancer[J]. J Clin Radiol, 2022, 41(4): 729-735. DOI: 10.13437/j.cnki.jcr.2022.04.030.
[29]
HOU B W, LI Y T, XIONG Y, et al. Comparison of caipirinha-accelerated 3d fat-saturated-space MRI with 2d MRI sequences for the assessment of shoulder pathology[J]. Eur Radiol, 2022, 32(1): 593-601. DOI: 10.1007/s00330-021-08183-3.
[30]
YARACH U, CHATNUNTAWECH I, SETSOMPOP K, et al. Improved reconstruction for highly accelerated propeller diffusion 1.5 T clinical MRI[J]. Magn Reson Mater Phys Biol Med, 2024, 37(2): 283-294. DOI: 10.1007/s10334-023-01142-7.
[31]
KIRYU S, AKAI H, YASAKA K, et al. Clinical impact of deep learning reconstruction in MRI[J/OL]. Radiographics, 2023, 43(6): e220133 [2025-03-12]. https://pubs.rsna.org/doi/10.1148/rg.220133. DOI: 10.1148/rg.220133.
[32]
QIU D F, ZHANG S X, LIU Y, et al. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning[J/OL]. Comput Meth Programs Biomed, 2020, 187: 105059 [2025-01-16]. https://www.sciencedirect.com/science/article/abs/pii/S0169260719312416. DOI: 10.1016/j.cmpb.2019.105059.
[33]
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298(1): 114-122. DOI: 10.1148/radiol.2020200723.
[34]
RECHT M P, ZBONTAR J, SODICKSON D K, et al. Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study[J]. AJR Am J Roentgenol, 2020, 215(6): 1421-1429. DOI: 10.2214/AJR.20.23313.
[35]
KIDOH M, SHINODA K, KITAJIMA M, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers[J]. Magn Reson Med Sci, 2020, 19(3): 195-206. DOI: 10.2463/mrms.mp.2019-0018.
[36]
LIU Z J, WEN B H, WANG Z Y, et al. Deep learning-based reconstruction enhances image quality and improves diagnosis in magnetic resonance imaging of the shoulder joint[J]. Quant Imaging Med Surg, 2024, 14(4): 2840-2856. DOI: 10.21037/qims-23-1412.

上一篇 电影体积渲染技术在腰骶丛神经鞘瘤中的应用价值:一项与最大密度投影的对比研究
下一篇 磁共振集成技术定量评估腰椎旁肌肉的可行性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2