分享:
分享到微信朋友圈
X
临床研究
磁共振集成技术定量评估腰椎旁肌肉的可行性研究
高超 黄益龙 马寄耀 黄鑫尘 李春丽 何波

Cite this article as: GAO C, HUANG Y L, MA J Y, et al. The feasibility study of quantitative assessment of lumbar paravertebral muscles by synthetic magnetic resonance technique[J]. Chin J Magn Reson Imaging, 2025, 16(7): 58-64.本文引用格式:高超, 黄益龙, 马寄耀, 等. 磁共振集成技术定量评估腰椎旁肌肉的可行性研究[J]. 磁共振成像, 2025, 16(7): 58-64. DOI:10.12015/issn.1674-8034.2025.07.009.


[摘要] 目的 探究磁共振集成(magnetic resonance image complication, MAGIC)技术定量评估腰椎旁肌的可行性。材料与方法 前瞻性纳入腰椎MRI检查患者32例,采集轴位MAGIC、T2/T1 mapping及T2/T1WI图像。采用李克特量表对图像质量(伪影、分辨率、对比度、液体信号)评分,测量椎体、多裂肌、竖脊肌的信噪比(signal-to-noise ratio, SNR),比较MAGIC与传统定量技术的T1/T2值差异及一致性。结果 采集常规T2、T1对比序列及常规T2、T1定量序列四个序列平均用时1028 s,采集MAGIC序列采集平均用时702 s,时间缩短近31.7%。MAGIC T2的图像伪影少于常规T2WI图像(P<0.001),液体信号强度更高(P=0.027),但空间分辨率较低(P<0.001),两者对比度差异无统计学意义(P>0.05)。MAGIC T1图像的SNR在椎体(P=0.003)、多裂肌(P=0.007)、竖脊肌(P<0.001)区域均低于常规图像。而MAGIC T2图像在椎体区域的SNR低于常规图像(P<0.001),在多裂肌(P<0.001)、竖脊肌(P=0.024)区域的SNR高于常规图像。轴位MAGIC T2MAP与T2 mapping测得的T2值呈中高度相关:多裂肌T2值(r=0.768,P<0.001)、竖脊肌T2值(r=0.836,P<0.001);而MAGIC T1MAP与T1 mapping测得的T1值未见显著相关(|r|<0.3,P>0.05)。两次测量可重复性高[组内相关系数(intra-class correlation coefficient, ICC)T2=0.904,ICCT1=0.960]。结论 MAGIC技术可缩短扫描时间31.7%,提供满足临床需求的图像,并稳定应用于腰椎旁肌T2弛豫定量。
[Abstract] Objective To explore the feasibility of magnetic resonance image complication (MAGIC) technique in quantitative evaluation of lumbar paraspinal muscles.Materials and Methods A total of 32 patients with lumbar spine MR examination were prospectively included, acquisition of axial MAGIC, T2/T1 mapping and T2/T1WI images. The image quality (artifact, resolution, contrast, liquid signal) was scored by Likert scale, and the signal-to-noise ratio (SNR) of vertebral body, multifidus muscle and erector spinae muscle was measured. The difference and consistency of T1/T2 values between MAGIC and traditional quantitative techniques were compared.Results The average time for collecting conventional T2 and T1 comparative sequences and conventional T2 and T1 quantitative sequences was 1028 s, while the average time for collecting MAGIC sequences was 702 s, a time reduction of nearly 31.7%. The image artifacts of MAGIC T2 were less than those of conventional T2WI (P < 0.001), liquid signal intensity was higher (P = 0.027), but the spatial resolution was lower (P < 0.001). There was no significant difference in contrast between the two groups (P > 0.05). The SNR of MAGIC T1 images was lower than that of conventional images in vertebral body (P = 0.003), multifidus (P = 0.007) and erector spinae (P < 0.001). The SNR of MAGIC T2 images in the vertebral region was lower than that of conventional images (P < 0.001), and the SNR in the multifidus (P < 0.001) and erector spinae (P = 0.024) regions was higher than that of conventional images. The axial MAGIC T2MAP was highly correlated with the T2 value measured by T2 mapping: T2 value of multifidus muscle (r = 0.768, P < 0.001) and T2 value of erector spinae muscle (r = 0.836, P < 0.001). However, there was no significant correlation between MAGIC T1MAP and T1 values measured by T1 mapping (|r| < 0.3, P > 0.05). The repeatability of the two measurements was high [intra-class correlation coefficient (ICC)T2 = 0.904, ICCT1 = 0.960].Conclusions MAGIC technology can shorten the scanning time by 31.7%, provide images that meet clinical needs, and is stably applied to T2 relaxation quantification of lumbar paraspinal muscles.
[关键词] 腰椎旁肌;合成磁共振成像;定量磁共振;图像质量;信噪比;成像时间
[Keywords] lumbar paravertebral muscle;synthetic magnetic resonance imaging;quantitative magnetic resonance;image quality;signal-to-noise ratio;imaging time

高超 1   黄益龙 1   马寄耀 1   黄鑫尘 2   李春丽 1   何波 1*  

1 昆明医科大学第一附属医院医学影像科,昆明 650031

2 浙江大学医学院附属第二医院放射科,杭州 310052

通信作者:何波,E-mail: kmmu_hb@163.com

作者贡献声明:何波、黄益龙负责对研究内容进行设计,对稿件进行结构和内容设计,并对稿件重要内容进行了修改,提供沟通及协调帮助;高超参与选题和设计,负责试验资料的查找和收集,为资料分析与解释的主要执行人,完成稿件撰写和修改;马寄耀、黄鑫尘、李春丽参与样本的收集与质控,并对样品信息进行记录,对资料的分析与解释,并对稿件重要内容进行了修改;何波、黄益龙获得了国家自然科学基金项目资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82260338
收稿日期:2025-02-15
接受日期:2025-07-02
中图分类号:R445.2  R681.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.009
本文引用格式:高超, 黄益龙, 马寄耀, 等. 磁共振集成技术定量评估腰椎旁肌肉的可行性研究[J]. 磁共振成像, 2025, 16(7): 58-64. DOI:10.12015/issn.1674-8034.2025.07.009.

0 引言

       慢性腰痛是全球致残率最高的疾病之一[1],而椎旁肌肉在内的脊柱稳定系统功能障碍在慢性腰痛中起重要作用[2]。目前腰椎旁肌肉的评估主要依赖主观视觉判断,缺乏客观定量方法[3]。尽管T1/T2 mapping等技术可提供稳定的弛豫定量参数[4, 5]。然而,这些技术通常非常耗时,且需要分别独立进行T1/T2 mapping成像,限制了临床普及[6]

       磁共振集成(magnetic resonance image complication, MAGIC)技术是基于多动态多回波(multiple-dynamic multiple-echo, MDME)序列,它采用120°交叉层面选择饱和脉冲及多回波采集方式,一次扫描,可以获得T1WI、T2WI等10种对比图像,以及T2MAP、T1MAP等5种定量图谱[7, 8, 9, 10]。有学者利用1.5 T MRI对膝关节疾病患者采集常规序列及MAGIC序列发现,虽然在图像伪影方面,MAGIC序列比常规序列图像伪影更重,但MAGIC采集时间比常规序列所用时间缩短了39%,而且也获得了质量较好、能满足诊断要求的图像[11]。在脊柱应用方面,DRAKE-PÉREZ等[12]在1.5 T MRI设备上应用MAGIC对正常人群的脊柱椎体、椎间盘、脊髓及脑脊液等结构的T1、T2及质子密度(proton density, PD)值进行定量测量,为该技术在脊柱的应用奠定了基础。然而,MAGIC技术应用于腰椎旁肌的临床及定量研究是否可行尚无研究报道,故而本研究旨在探究MAGIC技术用于评估腰椎旁肌的可行性,为临床提供高效、可靠的影像学工具。

1 材料与方法

1.1 受试者

       本研究遵守《赫尔辛基宣言》,每名受试者在扫描前均被详细告知试验目的、了解试验过程以及可能存在的风险,经患者本人知情同意并签署知情同意书后开展,所有内容均经昆明医科大学第一附属医院伦理委员会批准,批准文号:(2022)伦审L第305号。前瞻性纳入了2022年12月至2023年11月因腰痛来行腰椎MRI检查的患者。纳入标准:(1)年龄24~69岁;(2)无高血压,氧饱和度、心率均正常;(3)检查前24小时无吸烟、饮酒、药物服用史。排除标准:(1)脊柱骨折、感染、畸形等;(2)脊柱(或周围)手术史;(3)怀孕或运动员;(4)经过抗炎、针灸等治疗;(5)配合欠佳,图像质量不符合要求患者。样本量估算使用Bonett(2002)的置信区间宽度公式:n=(8×Zα/22×(1-ρ)²)/ω²+1。其中ρ为预期组内相关系数(intra-class correlation coefficient, ICC)值,此处设为0.8,ω为允许的置信区间全宽,查阅资料此处应为0.2,Zα/2为双侧检验的Z值,α=0.05时,Z0.05/2=1.96,代入计算公式可得n≈31.7,本研究最终纳入了32例患者。

1.2 MRI扫描

       采用GE SIGNA Architect 3.0 T MRI扫描仪,使用16通道小号柔性相控阵线圈,让受试者平躺于检查床,线圈紧贴受试者腰部区域,仰卧位脚先进,在受试者腘窝处放置三角海绵垫使其双腿保持弯曲,从而使腰背部尽量贴近线圈。为保证扫描参数一致性及结果准确性,所有患者每个序列扫描层数、重复时间、激励次数等影响扫描时间的参数均保持一致,主要扫描序列及参数详见表1

表1  磁共振扫描参数
Tab. 1  Magnetic resonance scanning parameters

1.3 MR图像数据处理和分析

       由两位工作5年以上的放射科主治医生对常规T2WI、T1WI及MAGIC的T2WI、T1WI图像的伪影、空间分辨率、对比度及液体信号强度用Likert Scale进行评分(5分:非常好;4分:好;3分:可以接受;2分:差;1分:无法诊断),取两位观察者评分结果均值,对两者图像质量主观比较。同时在L3、L4、L5椎体中间水平层面分别对MAGIC及常规图像椎体、两侧多裂肌、竖脊肌进行勾画,勾画时取组织最大横截面积,且尽量避开周围脂肪、筋膜等,分别记录各感兴趣区(region of interest, ROI)的信号强度值和噪声值,其中信号强度为平均信号强度,噪声为标准差(standard deviation, SD),计算该ROI的信噪比(signal-to-noise ratio, SNR),SNR=信号强度值/噪声值,从而对两者图像质量客观比较。上述两位医生对MR图像进行后处理,使用GE主机MAGIC后处理软件进行MAGIC序列的图像后处理,生成T2MAP、T1MAP两组定量序列,对照后处理工作中常规弛豫定量T2 mapping、T1 mapping图。在L3、L4、L5椎体中间水平层面分别对MAGIC序列及T2 mapping、T1 mapping同一层面多裂肌、竖脊肌的左、右两侧进行勾边ROI勾画,记录各组织不同技术条件下的T2值、T1值,并分别对每个独立层面各组织左右两侧取均值,获得每个独立层面多裂肌、竖脊肌的T2、T1值并分别纳入统计。勾画效果图见图1

图1  椎体及椎旁肌勾画示意图。1A~1C分别为MAGIC T2WI、MAGIC T2MAP、MAGIC T1MAP,1D~1F分别为常规T2WI、T2 mapping、T1 mapping。1A~1F均展示了对椎体、多裂肌、竖脊肌的勾画,如1D所示,标记绿色区域为多裂肌,标记红色区域为竖脊肌。MAGIC:磁共振集成。
Fig. 1  Schematic illustration of vertebral body and paraspinal muscle segmentation. 1A-1C represent MAGIC T2WI, MAGIC T2 MAP, and MAGIC T1 MAP, respectively. 1D-1F correspond to conventional T2WI, T2 mapping, and T1 mapping. In 1A-1F, the vertebral body, multifidus muscle, and erector spinae muscle are outlined. As demonstrated in 1D, the green areas denote the multifidus muscle, while the red areas demarcate the erector spinae muscle. MAGIC: magnetic resonance image complication.

1.4 统计学分析

       采用GraphPad Prism 8.0.2软件进行统计学分析。对测得的主观、客观数据结果进行正态性检验,符合正态分布的数据采用配对样本t检验,不符合正态分布的数据采用Wilcoxon检验。对T2和T1值测量结果,用ICC分析两观察者测得结果的可重复性。然后以传统定量方法得到的结果为金标准,计算MAGIC与传统定量结果的差值,使用Bland-Altman分析对两种方法测得的结果进行一致性评估。而对于两者T1和T2值结果比较,采用皮尔逊相关系数分析并绘制散点图,相关系数用r表示,0≤|r|<0.3为低相关,0.3≤|r|<0.8为中相关,0.8≤|r|<1.0为高相关。P<0.05认为差异有统计学意义。

2 结果

2.1 一般资料

       前瞻性收集37例患者,排除配合欠佳,图像质量不符合要求患者5例,最终纳入32例患者,其中男9例,女23例,年龄(40.3±28.6)岁。采集常规T2、T1对比序列及常规T2、T1定量序列四个序列平均用时1028 s,采集MAGIC序列平均用时702 s,时间缩短近31.7%。

2.2 图像质量主观评价

       MAGIC重建的图像与常规图像相比(图2),在图像伪影评分方面(主要体现在运动伪影),MAGIC T2高于常规T2图像,差异具有统计学意义(P<0.001),T1WI两者差异无统计学意义(P>0.05)。MAGIC T2图像液体信号强度高于常规T2图像,差异具有统计学意义(P<0.05)。而在图像空间分辨率方面评分T2、T1均低于常规图像评分T2、T1,差异均具有统计学意义(P<0.001)。在对比度方面,无论T2WI还是T1WI两者图像差异没有统计学意义,结果见表2

图2  MAGIC图像和常规图像主观图像质量比较。2A~2D分别为MAGIC T2WI、常规T2WI、MAGIC T1WI、常规T1WI图像,从图中可以看到MAGIC图像伪影(主要为腹部运动伪影,白箭所示)明显少于常规图像。而MAGIC T2WI图像上椎管内液体(脑脊液)信号强度尤其是脊髓间液体信号明显高于常规T2WI(红箭所示)。MAGIC:磁共振集成。
Fig. 2  Subjective image quality comparison between MAGIC MRI and conventional MRI. 2A-2D: Representative images of MAGIC T2WI, conventional T2WI, MAGIC T1WI, and conventional T1WI. MAGIC sequences demonstrate significantly fewer artifacts (predominantly abdominal motion artifacts, indicated by white arrows) compared to conventional sequences. The signal intensity of spinal fluid (cerebrospinal fluid) on MAGIC T2WI images is significantly higher than that of conventional T2WI (red arrows). MAGIC: magnetic resonance image complication.
表2  MAGIC图像与常规磁共振图像质量主观评分
Tab. 2  Subjective image quality scores of MAGIC versus conventional MRI

2.3 图像质量客观评价

       在图像质量客观评价方面,MAGIC T1WI图像SNR在椎体(P=0.003)、多裂肌(P=0.007)、竖脊肌(P<0.001)区域均低于常规图像。MAGIC T2WI的图像在椎体区域的SNR低于常规T2WI(P<0.001),而在多裂肌(P<0.001)、竖脊肌(P=0.024)区域的SNR均高于常规T2WI。结果见表3图3。此外,所有患者常规MR图像上能观察到的影像征象在MAGIC图像上也可观察到(图4)。

图3  MAGIC图像与常规(Con)图像在椎体、多裂肌、竖脊肌区域的SNR比较。MAGIC:磁共振集成;SNR:信噪比。
Fig. 3  Comparison of SNR between MAGIC and conventional (Con) MRI in vertebral body, multifidus muscle, and erector spinae muscle regions. MAGIC: magnetic resonance image complication; SNR: signal-to-noise ratio.
图4  MAGIC图像与常规MR图像影像征象比较。4A~4B:56岁女性腰痛患者,4A为MAGIC T2WI,4B为常规T2WI,两者均可见椎体左前份高信号病灶(白箭),同时可见患者椎旁肌大面积脂肪浸润;4C~4D:61岁男性腰痛患者,4C为MAGIC T2WI,4D为常规T2WI,两者均可见椎体周围骨质增生(白箭)。MAGIC:磁共振集成。
Fig. 4  Comparison of imaging signs between MAGIC and conventional MRI. 4A and 4B: A 56-year-old female patient, 4A is MAGIC T2WI, 4B is conventional T2WI, both sequences demonstrate a hyperintense lesion in the left anterolateral vertebral body (white arrows) and extensive fatty infiltration of the paraspinal muscles; 4C and 4D: A 61-year-old male patient, 4C is MAGIC T2WI, 4D is conventional T2WI, both sequences reveal peri-vertebral osteophytes (white arrows). MAGIC: magnetic resonance image complication.
表3  MAGIC图像与常规图像SNR比较
Tab. 3  Comparison of SNR between MAGIC and conventional MRI

2.4 肌肉定量方面

       轴位MAGIC T2MAP与常规T2 mapping测得的多裂肌T2值(r=0.768,P<0.001)及竖脊肌T2值(r=0.836,P<0.001)呈中高度相关。而MAGIC T1MAP与常规T1 mapping测得的多裂肌T1值及竖脊肌T1值未见显著相关(|r|<0.3,P>0.05),MAGIC T1MAP技术与我们使用的多翻转角T1 mapping技术所测得的T1值相关性较低。详见图5表4所示。两观察者之间测量结果可重复性较好[ICCT2=0.904,95% CI:0.861~0.933,P<0.001;ICCT1=0.960,95% CI:0.946~0.974,P<0.001]。

       MAGIC T2MAP与常规T2 mapping测得的多裂肌、竖脊肌T2、T1值的Bland-Altman图(图6)显示,两种方法对于T2测量结果的所有数据点均在95%的一致性范围内,具有较好的一致性;而对于T1测量结果,超过7%的数据点在95%的一致性范围之外,一致性欠佳。

图5  MAGIC和T1 mapping及T2 mapping测量得T1和T2值的散点图。
Fig. 5  Scatter plots comparing T1 and T2 values measured by MAGIC versus conventional T1/T2 mapping.
图6  MAGIC T2MAP与常规T2 mapping测得的多裂肌(6A、6C)、竖脊肌(6B、6D)T2、T1值的Bland-Altman图。两种方法对于T2测量结果,所有的数据点均在95%的一致性范围内。两种方法多裂肌、竖脊肌T1测量结果,有超过7%的数据点在95%的一致性范围之外。
Fig. 6  Bland-Altman plots comparing T2 and T1 values of multifidus (6A, 6C) and erector spinae (6B, 6D) muscles measured by MAGIC T2MAP versus conventional T2 mapping. For T2 measurements, all data points fall within the 95% limits of agreement between the two methods. For T1 measurements, over 7% of data points lie outside the 95% limits of agreement.
表4  MAGIC与常规定量序列T2、T1值的差异比较
Tab. 4  Comparison of discrepancies in T2 and T1 values between MAGIC and conventional quantitative sequences

3 讨论

       本研究使用3.0 T MRI采集轴位MAGIC、T2/T1 mapping及常规轴位T2/T1WI图像,比较常规序列图像及MAGIC图像的图像质量,并与传统定量MRI技术对比观察MAGIC定量技术在腰椎旁肌肉定量方面的可行性。研究结果表明在图像质量方面,虽然MAGIC序列比常规序列图像空间分辨率更低,但运动伪影较常规序列更不明显。在SNR方面,两者的T2图像SNR各有优势,而T1图像表现更佳,且MAGIC序列较常规对比及定量序列在扫描时间上缩短了31.7%,同时也获得了满足临床诊断需求的图像。与传统定量MRI相比,MAGIC技术在腰椎旁肌T2值定量方面表现了较好的一致性,而T1值定量方面一致性欠佳。

3.1 图像质量与扫描效率

       随着MRI技术发展,扫描时间及参数定量越来越多地被重视,MAGIC技术可以通过一次5~10 min的扫描获得10种不同对比度的MRI图像及5种定量图谱,相较于传统的分次扫描,缩短了整体扫描时间,提高了临床应用的可行性[13, 14, 15]。ZHANG等[16]通过3.0 T MRI对腰椎MAGIC图像进行图像质量评估,发现MAGIC图像伪影高于常规序列,空间分辨率低于常规序列。本研究发现MAGIC T2WI图像在对比度方面与常规图像无显著差异,在空间分辨率方面不如常规图像,与以往研究结果一致。而在伪影方面,MAGIC T2WI优于常规图像,与ZHANG的研究结果相反,这可能与扫描顺序(MAGIC先于常规序列可减少患者疲劳)相关。在图像SNR方面,本研究发现在椎体区域,MAGIC技术合成T2WI图像SNR低于常规T2WI图像,而在肌肉(多裂肌、竖脊肌)区域,MAGIC技术合成T2WI图像SNR高于常规T2WI图像。由于椎体相较于肌肉来说离线圈距离更远,而MAGIC技术相比传统的基于自旋回波序列的T2WI可能更易受线圈等其他因素干扰,当然这可能需要后期研究进一步证实。对于T1WI图像SNR,在椎体、多裂肌、竖脊肌三个区域MAGIC技术合成T1WI图像均比常规T1WI图像的SNR低,这可能是由于MAGIC序列所使用的回波时间较常规T1WI序列明显延长所致。

3.2 骨骼肌肉T1、T2值不同定量方法的比较

       定量MRI技术对骨骼肌肉系统疾病的早期诊断、发病机制及预后有重要意义,常用的定量MRI包括T1弛豫定量、T2弛豫定量等[17, 18]。T1弛豫定量常被用于评估骨骼肌肉组织铁过载、对比剂摄取、血流灌注情况和脂肪浸润情况等。T2弛豫定量被越来越多地用作骨骼肌组织中疾病活动的定量MRI标志物[19, 20, 21]。VOGRIG等[22]用1.5 T MRI对膝关节软骨病变患者行MAGIC技术与传统定量MRI对软骨T2弛豫定量对比,发现MAGIC技术对软骨T2值定量被严重高估。而DRAKE-PÉREZ等[12]用MAGIC技术在1.5 T MRI上对脊柱各区域进行定量测量,结果显示MAGIC技术对脑脊液、椎体、椎间盘等的T1、T2、PD测量结果与传统定量方法测量结果匹配度较高。常规T2 mapping基本的序列是使用自旋回波技术(具有不同TE值的多个序列)测量的信号,被认为是MRI定量T2值的标准技术[23, 24],我们的研究发现轴位MAGIC T2MAP与常规T2 mapping测得的多裂肌T2值虽然有一定的差异性,但两者结果显著相关,这也反映了在肌肉的T2值定量方面,MAGIC技术有较好的可靠性。

       本研究中常规T1 mapping采用可变翻转角(variable flip angle, VFA)技术获得,VFA技术定量T1弛豫时间受翻转角选择、图像噪声、B1场不均匀性等因素影响较大,研究结果显示MAGIC得到的T1值与常规定量技术得到的T1值相关性较小,一致性较低,两种方法获得的T1值差异性较大。T1定量方法有很多种,最常用的方法有:反转恢复法(inversion recovery, IR)、Look-Locker(LL)和VFA法[25, 26, 27, 28]。不同定量方法所测得的T1值差异较大,而且对于T1值的测量,即使是同一种定量方法,对同一组织所测得的T1值差异变化也有超过50%的报道[29, 30]。由于缺乏可靠且统一的标准,不能断定MAGIC技术不能用于骨骼肌肉组织T1值的测量,在未来的研究中,还需要对各测量方法使用更大的样本量在定量值测量、诊断效能、临床一致性等方面来进一步验证。

3.3 局限性

       本研究存在以下局限性:(1)研究样本量较少,这可能导致结果存在偏差。(2)研究仅使用了GE公司的MAGiC序列,未对其他厂家的MDME序列进行研究,而且因弛豫定量受环境等因素影响较大,多个厂家多中心扫描参数的对比评价可能更有价值。(3)研究中的序列扫描参数相对固定,且MAGIC序列和常规定量序列FOV、矩阵、层厚等参数不完全一致,这些因素都可能影响定量结果的一致性,MRI扫描参数较多,不同扫描参数对弛豫定量结果是否有影响需要进一步验证。(4)常规T1弛豫定量方法较多,且不同方法测得的T1结果差异较大,本研究只使用了一种方法,应在前期研究中使用体膜校正或使用更多方法验证。

4 结论

       本研究通过对常规序列和MAGIC序列在腰椎旁肌肉应用的图像质量进行对比评估,证明了MAGIC技术能够同时获得T1WI、T2WI等常规对比图像,以及T1MAP、T1MAP等定量图谱,时间缩短了31.7%,并且生成的常规对比图像能满足临床诊断需求。另外,通过对MAGIC技术生成的定量图谱与常规定量技术结果进行比较,证明MAGIC技术能较稳定地应用于腰椎旁肌肉T2弛豫定量。本研究为MAGIC技术实际用于腰椎旁肌肉临床评价提供了理论依据,为其进一步研究腰椎旁肌提供基础。

[1]
COHEN K R. Management of chronic low back pain[J]. JAMA Intern Med, 2022, 182(2): 222-223. DOI: 10.1001/jamainternmed.2021.7359.
[2]
CHEN C, TANG Y, YANG S, et al. Relationship between paravertebral muscle function, pelvic incidence, and health-related quality of life in patients with degenerative spinal deformity[J/OL]. J Orthop Surg Res, 2024, 19(1): 102 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/38297329/. DOI: 10.1186/s13018-024-04593-3.
[3]
LUO M Q, LIU Y Q, LIU W V, et al. Quantitative magnetic resonance imaging of paraspinal muscles for assessing chronic non-specific low back pain in young adults: a prospective case-control study[J]. Eur Spine J, 2024, 33(12): 4544-4554. DOI: 10.1007/s00586-024-08535-9.
[4]
MELONI A, CARNEVALE A, GAIO P, et al. Liver T1 and T2 mapping in a large cohort of healthy subjects: normal ranges and correlation with age and sex[J]. MAGMA, 2024, 37(1): 93-100. DOI: 10.1007/s10334-023-01135-6.
[5]
ENGELKE K, CHAUDRY O, GAST L, et al. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art[J]. J Orthop Transl, 2023, 42: 57-72. DOI: 10.1016/j.jot.2023.07.005.
[6]
崔峰, 王聪, 王娅, 等. MAGiC技术的基本原理及临床研究进展[J]. 临床放射学杂志, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
CUI F, WANG C, WANG Y, et al. Basic principle and clinical research progress of MAGiC technology[J]. J Clin Radiol, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
[7]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[8]
张琴, 张玉龙, 刘曦. 合成磁共振成像技术在恶性肿瘤中的研究进展[J]. 磁共振成像, 2023, 14(5): 196-202. DOI: 10.12015/issn.1674-8034.2023.05.035.
ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imag, 2023, 14(5): 196-202. DOI: 10.12015/issn.1674-8034.2023.05.035.
[9]
ZHANG Z, LI S, WANG W, et al. Synthetic MRI for the quantitative and morphologic assessment of head and neck tumors: a preliminary study[J/OL]. Dentomaxillofac Radiol, 2023, 52(6): 20230103 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/37427697/. DOI: 10.1259/dmfr.20230103.
[10]
ZHANG L T, MAI W F, MO X K, et al. Quantitative evaluation of Meniscus injury using synthetic magnetic resonance imaging[J/OL]. BMC Musculoskelet Disord, 2024, 25(1): 292 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/38622682/. DOI: 10.1186/s12891-024-07375-4.
[11]
BOUDABBOUS S, NEROLADAKI A, BAGETAKOS I, et al. Feasibility of synthetic MRI in knee imaging in routine practice[J/OL]. Acta Radiol Open, 2018, 7(5): 2058460118769686 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/29780615/. DOI: 10.1177/2058460118769686.
[12]
DRAKE-PÉREZ M, DELATTRE B A, BOTO J, et al. Normal values of magnetic relaxation parameters of spine components with the synthetic MRI sequence[J]. AJNR Am J Neuroradiol, 2018, 39(4): 788-795. DOI: 10.3174/ajnr.A5566.
[13]
ZHU K X, CHEN Z C, CUI L L, et al. The preoperative diagnostic performance of multi-parametric quantitative assessment in rectal carcinoma: a preliminary study using synthetic magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 682003 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/35707367/. DOI: 10.3389/fonc.2022.682003.
[14]
刘雅文, 牛海军, 尹红霞, 等. 合成MRI与传统定量方法对T1、T2弛豫值测定的模体验证对比研究[J]. 磁共振成像, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imag, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
[15]
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: a comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/34217136/. DOI: 10.1016/j.ejrad.2021.109838.
[16]
ZHANG W L, ZHU J Y, XU X H, et al. Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI[J]. Acta Radiol, 2020, 61(4): 461-470. DOI: 10.1177/0284185119871670.
[17]
ECK B L, YANG M R, ELIAS J J, et al. Quantitative MRI for evaluation of musculoskeletal disease: cartilage and muscle composition, joint inflammation, and biomechanics in osteoarthritis[J]. Invest Radiol, 2023, 58(1): 60-75. DOI: 10.1097/RLI.0000000000000909.
[18]
BYUN H, HAN D, CHUN H J, et al. Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting[J]. Skeletal Radiol, 2024, 53(6): 1071-1080. DOI: 10.1007/s00256-023-04521-2.
[19]
MICEK M, AEBISHER D, SURÓWKA J, et al. Applications of T1 and T2 relaxation time calculation in tissue differentiation and cancer diagnostics-a systematic literature review[J/OL]. Front Oncol, 2022, 12: 1010643 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/36531030/. DOI: 10.3389/fonc.2022.1010643.
[20]
CHEN J X, HUANG Y L, ZENG X M, et al. Functional magnetic resonance imaging reveals dysfunction of the paraspinal muscles in patients with chronic low back pain: a cross-sectional study[J]. Quant Imaging Med Surg, 2023, 13(6): 3416-3427. DOI: 10.21037/qims-22-1106.
[21]
田兆荣, 龚瑞, 孙杰, 等. MR集成序列定量图谱技术在特发性炎性肌病中的应用[J]. 中国医学影像学杂志, 2021, 29(11): 1149-1153. DOI: 10.3969/j.issn.1005-5185.2021.11.021.
TIAN Z R, GONG R, SUN J, et al. Magnetic resonance image complication in the assessment of idiopathic inflammatory myopathies[J]. Chin J Med Imag, 2021, 29(11): 1149-1153. DOI: 10.3969/j.issn.1005-5185.2021.11.021.
[22]
VOGRIG C, LOUIS J S, AVILA F, et al. Synthetic MRI is not yet ready for morphologic and functional assessment of patellar cartilage at 1.5Tesla[J]. Diagn Interv Imaging, 2021, 102(3): 181-187. DOI: 10.1016/j.diii.2020.09.002.
[23]
FATEMI Y, DANYALI H, HELFROUSH M S, et al. Fast T2 mapping using multi-echo spin-echo MRI: a linear order approach[J]. Magn Reson Med, 2020, 84(5): 2815-2830. DOI: 10.1002/mrm.28309.
[24]
WANG Y C, LOU H F, XIAN M, et al. Investigation of the value of T 2 mapping in the prediction of eosinophilic chronic rhinosinusitis with nasal polyps[J]. J Comput Assist Tomogr, 2023, 47(2): 329-336. DOI: 10.1097/RCT.0000000000001411.
[25]
张玮, 赵鹏, 郭文秀, 等. 基于T1 mapping序列的定量参数鉴别肺癌病理类型的应用研究[J]. 磁共振成像, 2023, 14(12): 33-39, 48. DOI: 10.12015/issn.1674-8034.2023.12.006.
ZHANG W, ZHAO P, GUO W X, et al. Application of quantitative parameters based on T1 mapping sequence in identifying pathological types of lung cancer[J]. Chin J Magn Reson Imag, 2023, 14(12): 33-39, 48. DOI: 10.12015/issn.1674-8034.2023.12.006.
[26]
YAN Z W, ZHANG R C. Measurement of spin-lattice relaxation times in multiphase polymer systems[J/OL]. J Magn Reson, 2023, 357: 107597 [2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/37984029/. DOI: 10.1016/j.jmr.2023.107597.
[27]
ZHU H Z, ZOU M S, WU D D, et al. Quantitative assessment of extraocular muscles in Graves' ophthalmopathy using T1 mapping[J]. Eur Radiol, 2023, 33(12): 9074-9083. DOI: 10.1007/s00330-023-09931-3.
[28]
杨雪, 贾凤林, 马鑫茂, 等. MOLLI T1 mapping定量技术在儿童脑发育评估中的应用可行性探讨[J]. 磁共振成像, 2024, 15(11): 32-38. DOI: 10.12015/issn.1674-8034.2024.11.006.
YANG X, JIA F L, MA X M, et al. Application of MOLLI T1 mapping quantitative technology in the assessment of pediatric brain development[J]. Chin J Magn Reson Imag, 2024, 15(11): 32-38. DOI: 10.12015/issn.1674-8034.2024.11.006.
[29]
STIKOV N, BOUDREAU M, LEVESQUE I R, et al. On the accuracy of T1 mapping: searching for common ground[J]. Magn Reson Med, 2015, 73(2): 514-522. DOI: 10.1002/mrm.25135.
[30]
TAYLOR A J, SALERNO M, DHARMAKUMAR R, et al. T1 mapping: basic techniques and clinical applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.

上一篇 深度学习重建结合小视野高分辨扫描在提高手指磁共振图像质量中的价值
下一篇 基于深度学习重建算法的扩散加权成像在颅脑MRI检查中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2