分享:
分享到微信朋友圈
X
综述
结构-功能磁共振成像在rTMS治疗重度抑郁障碍作用机制中的研究进展
刘靖雯 胡良波

Cite this article as: LIU J W, HU L B. The mechanisms of rTMS treatment for major depressive disorder through structural-functional MRI[J]. Chin J Magn Reson Imaging, 2025, 16(7): 102-108.本文引用格式:刘靖雯, 胡良波. 结构-功能磁共振成像在rTMS治疗重度抑郁障碍作用机制中的研究进展[J]. 磁共振成像, 2025, 16(7): 102-108. DOI:10.12015/issn.1674-8034.2025.07.017.


[摘要] 重度抑郁障碍(major depressive disorder, MDD)是一种常见的精神疾病,伴随大脑结构和功能连接的改变,严重影响患者的身心健康和社会功能。重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)是一种基于电磁感应的非侵入性神经调节技术,在MDD治疗中已表现出显著疗效,但其通过调节大脑结构和功能来发挥抗抑郁作用的具体机制仍不明确。尽管多模态MRI为揭示rTMS的神经调控机制提供了重要手段,但现有综述多侧重于独立分析大脑结构或功能的变化,未能系统整合和充分探讨rTMS对大脑结构-功能耦合关系的影响。因此,本综述将基于结构-功能MRI,系统梳理rTMS在治疗MDD过程中对大脑结构-功能耦合关系变化的研究进展,从而为优化刺激靶点选择提供新视角,并为实现rTMS干预效果的多尺度客观评估提供方法论建议。本文认为,深入理解rTMS对大脑结构-功能耦合的调控机制,是推动其实现MDD治疗精准化和疗效评估客观化的关键路径。
[Abstract] Major depressive disorder (MDD) is a prevalent psychiatric condition associated with alterations in brain structural and functional connectivity, which significantly affects physical, psychological, and social functioning. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique that applies magnetic pulses to the cortical regions, has shown significant efficacy in the treatment of MDD. However, the specific mechanisms by which it exerts its antidepressant effects through regulating brain structure and function remain unclear. Although multimodal MRI has provided valuable tools for revealing the neuroregulatory mechanisms of rTMS, existing reviews mostly focus on separate analyses of structural or functional changes, without systematically integrating how rTMS affects the structural-functional coupling of the brain. Therefore, we systematically summarize the research progress on rTMS-induced changes in the brain's structure-function coupling during MDD treatment, based on structural-functional MRI. It aims to provide new perspectives for optimizing the selection of stimulation targets and offers methodological suggestions for the multi-scale objective evaluation of rTMS intervention effects. We propose that a deeper understanding of the regulatory mechanisms of rTMS on brain structure-function coupling is a core to achieving precision in MDD treatment and objectivity in efficacy evaluation.
[关键词] 重度抑郁障碍;磁共振成像;多模态;重复经颅磁刺激;机制
[Keywords] major depressive disorder;magnetic resonance imaging;multimodal;repetitive transcranial magnetic stimulation;mechanism

刘靖雯    胡良波 *  

重庆医科大学附属永川医院放射科,重庆 402160

通信作者:胡良波,E-mail: 700056@hospital.cqmu.edu.cn

作者贡献声明:胡良波设计本研究的方案,对稿件重要内容进行了修改,获得了重庆市自然科学基金面上项目及重庆市科卫联合医学科研项目的资助;刘靖雯参与构思和设计研究,收集并分析参考文献,起草和撰写稿件;全体作者都同意发表最后的修改稿,同意对本研究所有方面负责,确保本研究的准确性和诚信。


基金项目: 重庆市自然科学基金面上项目 CSTB2022NSCQ-MSX1035 重庆市科卫联合医学科研项目 2024ZDXM013
收稿日期:2025-04-07
接受日期:2025-06-10
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.017
本文引用格式:刘靖雯, 胡良波. 结构-功能磁共振成像在rTMS治疗重度抑郁障碍作用机制中的研究进展[J]. 磁共振成像, 2025, 16(7): 102-108. DOI:10.12015/issn.1674-8034.2025.07.017.

0 引言

       重度抑郁障碍(major depressive disorder, MDD)是全球致残的主要原因之一[1],其典型症状包括持续的情绪低落、快感缺失、自我价值感降低、食欲改变、疲劳感、睡眠障碍以及认知功能(如注意力和记忆力)受损等[2]。随着MDD发病率的不断上升,预计到2030年,抑郁症将成为全球负担最重的疾病[3]。然而,在MDD患者中,至少30%的个体对抗抑郁药物治疗的反应不佳[4],因此,开发安全有效的非药物治疗手段,将成为改善MDD症状的关键突破口。重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)作为一种安全、有效的非侵入性物理治疗方式,已获得美国食品药品监督管理局(Food and Drug Administration, FDA)的批准,用于治疗MDD。多项研究[5, 6]已证实,rTMS能显著缓解MDD的相关症状,但其通过调节大脑结构和功能来发挥抗抑郁作用的具体机制仍不明确。

       临床研究表明,MDD的发生与大脑结构和功能异常改变密切相关,在神经影像学上常表现出显著差异[7, 8, 9, 10]。MRI因其无辐射、高分辨率等优势,已成为精神障碍研究中的重要工具。其中,结构性MRI(structural MRI, sMRI)利用强磁场和射频脉冲,可对大脑结构进行高分辨率成像[11];扩散张量成像(diffusion tensor imaging, DTI)通过定量检测脑组织中水分子扩散的各向异性,反映白质纤维束的微观结构和完整性[12];静息态功能MRI(resting-state functional MRI, rs-fMRI)则通过测量大脑在静息状态下的血氧水平依赖信号变化,评估大脑神经功能活动[13]。这些神经影像技术能够揭示与疾病相关的大脑结构连接(structural connectivity, SC)和功能连接(functional connectivity, FC)的微妙变化,从而为精神疾病的神经生物学基础提供关键见解,也为揭示rTMS对MDD的神经调控机制提供了重要手段。然而,现有综述多侧重于独立分析大脑结构或功能,未能系统整合和充分探讨rTMS对大脑结构-功能耦合关系的影响。因此,本文将结合sMRI和功能MRI(functional MRI, fMRI)技术,对rTMS在治疗MDD过程中对大脑结构-功能的改变进行综述,旨在为优化刺激靶点选择提供新视角,以及为实现rTMS干预效果的多尺度客观评估提供方法论建议。

1 MDD的神经影像机制

1.1 MDD的大脑结构异常改变

       大脑主要由灰质和白质构成。其中,灰质以神经元胞体、树突等为主,负责信息处理、控制运动、情感表达等多项功能,并在思考、感知、记忆等认知过程中起着关键作用;白质则多由神经纤维组成,负责实现各脑区之间的高效信息传递。大量神经影像学研究表明,MDD患者的大脑结构存在显著的异常改变[14, 15],常表现为关键脑区体积缩小[16]、白质纤维束受损[7]等。

       首先,灰质的体积或形态异常改变常常与多种精神障碍相关[17, 18, 19]。SCHMAAL等[20]通过对比分析全球20个地区的MDD患者和健康对照者的结构性T1加权成像数据,发现成年MDD患者的额叶和颞叶皮质厚度显著降低,尤其是在双侧内侧眶额皮质(orbitofrontal cortex, OFC)、梭状回、岛叶和前、后扣带皮质,以及左侧颞中回、右侧颞下回和右侧尾侧前扣带回(anterior cingulate cortex, ACC)等区域。然而,青少年MDD患者在皮质厚度方面与对照组间并无显著差异,主要表现为左右半球总表面积的减少,这表明可能存在皮质发育的延迟,也提示MDD在不同生命周期阶段表现出不同的大脑结构异常模式。研究[21, 22]还显示,MDD患者多个大脑区域的灰质体积(gray matter volume, GMV)存在明显变化,如双侧前额叶皮质(prefrontal cortex, PFC)、扣带回、脑岛、右侧额上回等区域的GMV均显著减小。YI等[23]的研究则发现MDD患者双侧ACC的GMV增大,且与自杀意念的产生相关。此外,基于体素的形态测量研究[21, 24, 25, 26]也发现,MDD患者部分脑区的GMV减小,如小脑、海马体及左侧纹状体等。上述不同脑区GMV的不同变化模式揭示了MDD的复杂神经病理学机制,且这些存在异常改变的脑区多参与情绪调节、认知与执行等功能,为临床症状异质性提供了潜在的神经影像学依据。然而,HAN等[27]通过联合分析皮质厚度、皮质和皮质下体积及白质完整性等多个神经影像学指标,得出了与前述研究相异的结论,发现MDD患者的双侧海马体积增大。MDD的发生是由多个脑区的结构异常变化共同作用,这些脑区横跨多个脑网络,涉及社会认知、情感调节、记忆形成等高级功能,因此大脑结构的异常改变与MDD的发生和发展息息相关。

       其次,大脑白质完整性的异常改变也是MDD发生的重要原因之一。各向异性分数(fractional anisotropy, FA)可量化水分子在脑白质中的扩散方向依赖性,是评估白质纤维完整性的重要指标。已有研究[28]发现,MDD患者右侧钩状束的FA显著降低,表明该区域的白质完整性受损。白质纤维作为连接皮质和皮质下区域的重要桥梁,为脑回路奠定了结构基础。钩状束连接杏仁核、海马与内、外侧OFC,因此当钩状束的FA降低时,这些重要区域之间的SC可能严重受损,从而在MDD的发生发展中起到关键作用。然而GERAETS等[29]的研究则显示,白质连接的减少仅与抑郁症状的普遍性和持续性相关,而并非抑郁障碍的直接致病因素。总体而言,MDD的发生涉及多个脑区的结构异常,这些脑区参与认知、情感等多项高级功能,其白质纤维完整性的变化可能在病理过程中起到至关重要的作用。

1.2 MDD的大脑功能异常改变

       多项rs-fMRI研究表明,MDD不仅与单一大脑区域的异常活动有关,还涉及这些区域之间的FC异常[30, 31, 32]。MDD患者的多个大脑网络,包括默认模式网络(default mode network, DMN)[33]、突显网络(salience network, SAN)[34]、中央执行网络(central executive network, CEN)[35]、额顶网络[36]、边缘系统网络[37]等,均出现了FC的改变,这些脑网络参与自我参照思维、执行控制、情感调节和记忆处理等多项认知功能。

       LYNCH等[34]利用精密功能映射技术发现,MDD患者的前额-纹状体SAN显著扩大。该网络与奖赏处理、认知控制以及自主反馈与环境需求的整合密切相关[38],其功能失调可能导致情绪调节能力下降以及对奖赏的反应减弱,从而引发抑郁症状和快感缺失。此外,杏仁核是边缘系统的核心结构,与大脑皮质的多个区域间形成相互连接[39, 40]。研究显示[30, 31, 36],MDD患者杏仁核和PFC等脑区之间的FC减弱,这种连接异常与认知表现下降(如信息处理速度、注意力和联想学习)及其接受的急性应激密切相关。

       除了静息态FC异常外,MDD患者在强化学习任务中还表现出与奖励或惩罚反馈相关的有效连接异常。在奖赏处理期间,MDD患者的PFC-纹状体回路活动减少,这可能导致积极情绪的产生与维持受损,从而影响奖赏相关的学习功能[41]。RUPPRECHTER等[42]通过大样本数据分析也发现,MDD患者内侧前额叶皮质(medial prefrontal cortex, mPFC)与纹状体间的奖励相关有效连接减少,引起纹状体激活减弱,加剧了抑郁症状。另外,外侧缰核(lateral habenula, LHb)的过度激活也是MDD患者的显著特征之一[43]。LHb位于将情绪信息转化为适当行为反应的中心位置,该脑区中过度活跃的神经元会抑制奖赏信号的产生,导致过度处理厌恶事件、动机降低等[44, 45]。LHb在处理抑郁、焦虑等负面情绪中的重要性不可忽视。这些大脑功能异常揭示了MDD的潜在病理机制,为理解MDD患者在情绪调节、决策能力和自我认知等方面的相关神经功能障碍提供了线索,并为开发新的治疗靶点奠定了基础。

1.3 MDD的大脑结构-功能耦合异常改变

       结构-功能耦合反映了大脑解剖结构与神经活动之间的动态协调关系。随着多模态神经影像技术的不断进步,MDD中大脑结构-功能耦合的异常引起了广泛关注。近期,一项研究[46]采用多集典型相关分析-联合独立成分分析方法,将比率低频振幅(fractional amplitude of low-frequency fluctuation, fALFF)与GMV这两个分别反映大脑功能与结构的指标结合起来,以识别MDD患者的大脑结构-功能耦合异常,发现未接受药物治疗的首发MDD患者在大规模脑网络中存在广泛的功能-结构协变异常,涉及小脑、颞叶、额顶网络、DMN、感觉运动网络、视觉网络、听觉网络、基底神经节等多个区域。LIAO等[47]也利用多模态神经影像技术发现,MDD患者在多个脑区的SC-FC耦合显著低于健康人群,尤其是顶叶与皮质下区域之间。此外,WANG等[48]进一步证实,MDD患者在左侧mPFC区域的结构-功能耦合存在破坏。XU等[49]的研究发现,青少年MDD患者在视觉网络、DMN和脑岛中的结构-功能耦合增加,这一结果不仅扩展了有关抑郁症中额叶-边缘系统异常的研究,也凸显了这种耦合对外部压力源的易感性。这些大脑结构-功能耦合的异常变化有助于深入理解MDD的潜在发病机制,并为抑郁症的诊治提供了新的思路。

       MDD患者普遍存在大脑结构与功能的异常改变,这些异常不仅影响患者的情绪调节能力,还可能引发认知功能障碍等严重后果。而rTMS作为一种非侵入性治疗方式,通过对特定脑区进行磁刺激,能够调节神经活动、促进神经可塑性,从而改善大脑结构和功能异常。因此,深入探究rTMS改善MDD患者大脑结构与功能异常的机制,不仅能为rTMS的抗抑郁疗效提供神经生物学依据,还将为开发更精准有效的治疗手段奠定重要临床基础。

2 rTMS对MDD患者大脑结构的影响

       rTMS治疗对MDD患者大脑结构的影响已成为当前神经科学研究的重要方向。由于sMRI的独特优势,我们能够通过分析大脑结构的变化来揭示rTMS的抗抑郁机制,且现有研究已表明[50],rTMS的效应能够通过SC在大脑内传播其效应。

       LAN等[51]的研究对27名接受为期25天10 Hz rTMS治疗的MDD患者进行评估,以左侧背外侧前额叶皮质(dorsolateral prefrontal cortex, dlPFC)为刺激靶点,研究发现,治疗后左侧ACC、左颞中回、左岛叶和右角回的GMV增加,尤其是左侧ACC的GMV变化与抑郁症状的改善显著相关。这表明,rTMS可能通过增加特定脑区的GMV,促进神经可塑性,进而改善抑郁症状。此外,rTMS还可能通过促进双侧丘脑的GMV增加来发挥治疗作用[52]。另有研究发现,rTMS可导致某些脑区皮质厚度的变化。BAEKEN等[53]采用加速rTMS方案,发现右侧尾部ACC皮质厚度的纵向变化与临床疗效显著相关,且该区域的皮质厚度可能对患者的临床反应具有预测潜力。此外该研究还发现右侧颞区皮质厚度变化和抑郁症状的严重程度变化之间呈显著负相关,表明皮层厚度的减少与更有效的rTMS治疗有关,这也进一步支持了rTMS疗效的结构生物标志物作用。其他研究[54]通过基于皮质厚度、表面积及GMV的结构性协方差网络分析,发现rTMS可能通过直接刺激dlPFC区域,重塑相关的结构网络,进而改善临床症状。此前[55, 56, 57]还发现,rTMS能诱导MDD患者单侧海马体积的增加,且基线状态的海马体积与治疗反应间存在一定联系。DALHUISEN等[58]对31名慢性耐药性MDD患者的研究则表明,在完成20次10 Hz rTMS治疗后,海马和杏仁核体积并未见明显改变。rTMS调节海马体积的潜在机制之一是调节改善海马突触的可塑性[59],而不同患者对神经可塑性刺激的敏感度存在差异,可能与其脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)表达水平[60, 61]相关,且各项研究中MDD患者存在不同临床症状亚型,也可能引起rTMS疗效差异[62]。除此之外,rTMS的效果受刺激频率、强度和持续时间等多个因素的影响[63],不同的rTMS刺激参数可能对海马体积造成不同的影响,这提示对于慢性耐药性MDD,未来rTMS的研究可能需要增加疗程和每次治疗的脉冲数,或者尝试不同的治疗方案,以期待更显著的神经可塑性效应。

       除了脑结构体积的变化,DTI还揭示不同脑区之间白质纤维的改变。与rTMS靶点区域或大脑整体功能连接性相比,靶点网络的结构连接性(如白质通路的纤维密度等)与经颅磁刺激(ranscranial magnetic stimulation, TMS)诱发的活动之间有着更强的相关性[50]。一项结合TMS-脑电图、rs-fMRI和DTI的研究[64]表明,TMS效应更倾向于遵循SC而非FC传播,白质通路是TMS信号传播的主要路径。SYDNOR等[50]发现,当TMS刺激左侧腹外侧PFC时,白质通路可以将信号传播至杏仁核,进而诱发杏仁核的下游变化。该白质通路的纤维密度与杏仁核及海马的反应幅度显著相关,这一发现为TMS调节杏仁核功能提供了理论支持。rTMS还可能引起特定白质纤维束的微观结构变化。如NING等[65]发现rTMS治疗后,ACC、胼胝体与PFC之间的白质纤维束发生了不同的变化。尤其是在外侧PFC与背侧ACC、外侧PFC与胼胝体间的纤维束中,自由水校正FA的增加、径向扩散率的降低与临床症状的改善显著相关。这些发现揭示了rTMS治疗在MDD患者脑区引起的微观结构变化。

       尽管不同研究的结果存在一定差异,可能与研究对象的个体差异及疾病异质性或rTMS治疗方案的不同有关,包括遗传及分子生物学差异(如BDNF基因多态性)[60]、临床症状亚型及共病差异[62]、rTMS刺激参数差异[63]等,但这些研究一致表明,rTMS能够通过多种途径引起MDD患者大脑结构的变化,进而改善其临床症状。这为rTMS在MDD治疗中的神经可塑性机制提供了更加深入的理解。

3 rTMS对MDD患者大脑功能的影响

       已有研究[66, 67]表明,rTMS可调节大脑网络内部及不同脑网络之间的FC,尤其是在跨网络调节方面,而非仅局限于靶点区域内。rTMS通过调节特定脑区的活动,改善MDD患者的临床症状,fMRI为这一现象提供了大量证据。

       抑郁症常见的病理机制之一是CEN和DMN的异常,而这也是rTMS重要的潜在治疗靶点。研究[68]发现,rTMS主要调节DMN的FC,尤其是减弱DMN的过度活跃。具体来说,rTMS能显著降低腹内侧前额叶(ventromedial prefrontal cortex, vmPFC)和膝前扣带回皮质(subgenual anterior cingulate cortex, sgACC)之间的高连接性,从而使DMN中的异常连接得以恢复。然而,rTMS对CEN内部连接的影响较小。这些变化可能通过影响DMN和CEN之间的交互作用,从而对缓解MDD症状起到重要作用。此外,GE等[69]的研究也证实了这一发现,指出rTMS显著降低了梭状回与sgACC之间的高连接性,并且这一变化与sgACC-dlPFC之间连接性有关。MORRISS等[70]的研究进一步表明,rTMS治疗后DMN与CEN之间的FC降低,与抑郁症的缓解相关。其他研究[71]还发现,rTMS刺激不同靶点(如右外侧OFC和左侧dlPFC)时,会引发不同的连接性变化,并强调了OFC-纹状体-丘脑网络在MDD治疗中的关键作用。此外,rTMS也可影响背内侧PFC与丘脑、sgACC与尾状核之间的FC,并通过恢复左侧执行控制网络和感觉运动网络、DMN和楔前叶网络之间受损的FC、减少背侧纹状体和额极皮质、右侧脑岛和左侧ACC之间的FC来有效降低自杀意念的产生[72, 73, 74, 75]。在治疗耐药性MDD方面,加速高频rTMS也表现出良好的疗效。患者接受加速高频rTMS治疗后,其蓝斑与多个脑区(如左侧上额叶、中央前回、小脑后部)之间的连接性发生变化,且这些变化与临床改善呈正相关,表明加速高频rTMS治疗能够有效改善MDD患者的大脑FC模式[76]

       随着rTMS技术的发展,个性化靶点的经颅磁刺激为MDD治疗开辟了新的方向,尤其在自杀意念的干预上取得了显著进展。该疗法可以恢复与自杀意念相关的DMN与楔前叶网络之间的异常连接,以及与抑郁症相关的左侧执行控制网络与感觉-运动网络间的异常FC[74]。这些发现表明,rTMS是恢复MDD患者受损脑网络的有效手段,并为神经调节机制的进一步理解提供了基础。

4 rTMS对MDD患者大脑结构-功能耦合的影响

       rTMS治疗MDD引起的大脑结构-功能耦合变化的研究主要集中在大脑结构与功能之间的交互作用。早期的神经影像学研究多依赖单一模态影像数据或独立分析不同模态数据,忽略了大脑结构与功能之间的异常相互作用对精神病理学的潜在影响[49]。相比之下,利用多模态神经影像数据,能够实现大脑的结构-功能耦合,进而显著提升大脑网络损伤检测的敏感度。

       BARREDO等[77]研究发现,在rTMS治疗后获得缓解的MDD患者,其右侧杏仁核和左侧mPFC之间的FC呈现正向关系。而且他们还通过DTI分析了四个额叶白质纤维束的纤维完整性,发现丘脑前辐射的白质完整性变化与FC之间存在显著关联。TURA等[78]的研究则观察到,MDD患者接受加速间歇性θ爆发刺激左侧dlPFC后,其全脑SC-FC耦合显著增强,尤其是在DMN内。这些研究结果表明,rTMS能够通过调节大脑结构-功能耦合,优化大脑不同区域之间的协调性和信息交流,从而有效改善MDD患者的相关临床症状。

       随着多模态神经影像学的不断发展,越来越多的研究开始采用机器学习方法,从sMRI、rs-fMRI、DTI等跨模态数据中自动提取特征,实现了对大脑结构-功能耦合的深入探索。CHEN等[79]利用机器学习方法探讨了丘脑-PFC之间的连接在rTMS治疗中的预测作用,发现rTMS可能通过重塑脑区间的SC,进而改变其FC模式。此外,结构性指标(包括GMV、皮质厚度、纤维数量、FA等)与功能性指标(包括FC、功能同步性等)的多维度融合[80],不仅揭示了MDD患者脑网络结构与功能的复杂动态调节机制,还通过高效的数据处理和模型训练,显著提升了机器学习算法在疾病诊断和疗效预测中的性能[81]

5 小结与展望

       rTMS在治疗MDD中的抗抑郁效果已被多项研究证实,但其具体作用机制尚有待进一步探讨。随着神经影像学技术的快速发展,MRI在rTMS治疗MDD机制研究中的应用越来越广泛,特别是多模态影像技术的结合,为MRI技术在该领域的应用开拓了更为广阔的前景。然而,现有研究仍存在一些不足。

       首先,大多数现有研究仅从结构或功能的单一角度进行分析,这限制了对rTMS治疗MDD过程中相关机制的全面理解。其次,许多研究样本量较小,实验结果的可重复性较差。再者,许多受试者同时接受rTMS治疗与抗抑郁药物治疗,这使得很难明确大脑结构和功能的改变究竟是rTMS治疗的效果,还是抗抑郁药物的作用。因此,未来的研究应进一步控制药物的干扰,以便更清晰地辨别rTMS的独立作用。且传统的rTMS靶点定位方法准确性较低,而结合MRI或神经导航技术可以实现更为精准的定位,从而减少大脑区域个体差异对实验结果的影响。而且,现有的rTMS治疗方案大多集中在左侧dlPFC进行10 Hz TMS治疗,但不同的rTMS治疗方案可能对MDD患者产生不同的影响。因此,未来可以考虑探索更多的靶点和刺激参数,以期优化治疗效果。

       未来的研究应进一步探讨结构-功能耦合的纵向变化,明确rTMS对大脑结构和功能的长期影响。这将为后续的研究提供更具价值的方向,并为抑郁症治疗技术的创新和发展奠定坚实基础。后续研究可通过扩大样本量来验证实验结果,并尽可能纳入未接受药物治疗的患者,以排除抗抑郁药物可能产生的潜在混杂效应。尽管这可能面临伦理挑战,但这对于精准研究rTMS的独立作用至关重要。此外,未来的研究还可以关注不同rTMS治疗方案在改善不同抑郁症状上的效果,并结合深度学习技术,帮助研究人员预测患者对rTMS治疗的反应,从而优化治疗方案,推动个性化医疗的进一步发展。

[1]
VOS T, LIM S S, ABBAFATI C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[2]
MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/S0140-6736(18)31948-2.
[3]
World Health Organization. The global burden of disease: 2004 update[EB/OL]. [2024-11-20]. https://iris.who.int/handle/10665/43942.
[4]
MCINTYRE R S, ALSUWAIDAN M, BAUNE B T, et al. Treatment‐resistant depression: Definition, prevalence, detection, management, and investigational interventions[J]. World Psychiatry, 2023, 22(3): 394-412. DOI: 10.1002/wps.21120.
[5]
WU C L, LU T H, CHANG W H, et al. Role of the insula in rTMS response for depression[J/OL]. J Affect Disord, 2025, 370: 538-546 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0165032724019062. DOI: 10.1016/j.jad.2024.11.043.
[6]
OATHES D J, DUPRAT R J P, REBER J, et al. Non-invasively targeting, probing and modulating a deep brain circuit for depression alleviation[J]. Nature Mental Health, 2023, 1(12): 1033-1042. DOI: 10.1038/s44220-023-00165-2.
[7]
FLINKENFLÜGEL K, MEINERT S, HIRTSIEFER C, et al. Associations between white matter microstructure and cognitive decline in major depressive disorder versus controls in germany: A prospective case-control cohort study[J]. Lancet Psychiatry, 2024, 11(11): 899-909. DOI: 10.1016/S2215-0366(24)00291-8.
[8]
NOTHDURFTER D, JAWINSKI P, MARKETT S. White matter tract integrity is reduced in depression and in individuals with genetic liability to depression[J]. Biol Psychiatry, 2024, 95(12): 1063-1071. DOI: 10.1016/j.biopsych.2023.11.028.
[9]
JIANG J, LI L, LIN J, et al. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases[J/OL]. Neurosci Biobehav Rev, 2023, 144: 104991 [2024-12-26]. https://linkinghub.elsevier.com/retrieve/pii/S0149763422004808. DOI: 10.1016/j.neubiorev.2022.104991.
[10]
GALLO S, EL-GAZZAR A, ZHUTOVSKY P, et al. Functional connectivity signatures of major depressive disorder: Machine learning analysis of two multicenter neuroimaging studies[J]. Mol Psychiatry, 2023, 28(7): 3013-3022. DOI: 10.1038/s41380-023-01977-5.
[11]
FINKELSTEIN O, LEVAKOV G, KAPLAN A, et al. Deep learning‐based BMI inference from structural brain MRI reflects brain alterations following lifestyle intervention[J/OL]. Hum Brain Mapp, 2024, 45(3): e26595 [2025-05-28]. https://onlinelibrary.wiley.com/doi/10.1002/hbm.26595. DOI: 10.1002/hbm.26595.
[12]
MILLEVERT C, VIDAS-GUSCIC N, ADHIKARI M H, et al. Tracking brain maturation in vivo: Functional connectivity, white matter integrity, and synaptic density in developing mice[J/OL]. Ebiomedicine, 2025, 115: 105720 [2025-05-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032915. DOI: 10.1016/j.ebiom.2025.105720.
[13]
SCHLEIFER C H. Brainwide risk scores: An example of psychiatric risk prediction from resting-state functional magnetic resonance imaging[J/OL]. Biol Psychiatry, 2024, 95(7): e17-e19 [2025-05-28]. https://www.biologicalpsychiatryjournal.com/article/S0006-3223(24)00032-5/fulltext. DOI: 10.1016/j.biopsych.2024.01.006.
[14]
LONG J Y, QIN K, PAN N, et al. Impaired topology and connectivity of grey matter structural networks in major depressive disorder: Evidence from a multi-site neuroimaging data-set[J]. Br J Psychiatry, 2024, 224(5): 170-178. DOI: 10.1192/bjp.2024.41.
[15]
GRUBER M, MAURITZ M, MEINERT S, et al. Cognitive performance and brain structural connectome alterations in major depressive disorder[J]. Psychol Med, 2023, 53(14): 6611-6622. DOI: 10.1017/S0033291722004007.
[16]
WISE T, RADUA J, VIA E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis[J]. Mol Psychiatry, 2017, 22(10): 1455-1463. DOI: 10.1038/mp.2016.72.
[17]
LONG X, LI L, WANG X, et al. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder[J/OL]. J Affect Disord, 2023, 325: 550-563 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0165032723000599. DOI: 10.1016/j.jad.2023.01.049.
[18]
LIANG J, YU Q, LIU Y, et al. Gray matter abnormalities in patients with major depressive disorder and social anxiety disorder: A voxel-based meta-analysis[J]. Brain Imaging Behav, 2023, 17(6): 749-763. DOI: 10.1007/s11682-023-00797-z.
[19]
LILOIA D, ZAMFIRA D A, TANAKA M, et al. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research[J/OL]. Neurosci Biobehav Rev, 2024, 164: 105791 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0149763424002604. DOI: 10.1016/j.neubiorev.2024.105791.
[20]
SCHMAAL L, HIBAR D P, SÄMANN P G, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group[J]. Mol Psychiatry, 2017, 22(6): 900-909. DOI: 10.1038/mp.2016.60.
[21]
FORTEA L, ORTUÑO M, DE PRISCO M, et al. Atlas of gray matter volume differences across psychiatric conditions: A systematic review with a novel meta-analysis that considers co-occurring disorders[J/OL]. Biol Psychiatry, 2024: S0006-3223(24)1729-3 [2024-11-20]. https://linkinghub.elsevier.com/retrieve/pii/S0006-3223(24)01729-3. DOI: 10.1016/j.biopsych.2024.10.020.
[22]
MATSUMOTO J, FUKUNAGA M, MIURA K, et al. Cerebral cortical structural alteration patterns across four major psychiatric disorders in 5549 individuals[J]. Mol Psychiatry, 2023, 28(11): 4915-4923. DOI: 10.1038/s41380-023-02224-7.
[23]
YI Z, XIA L, YI J, et al. Structural brain changes in the anterior cingulate cortex of major depressive disorder individuals with suicidal ideation: Evidence from the REST-meta-MDD project[J/OL]. Psychol Med, 2025, 55: e24 [2025-04-12]. https://www.cambridge.org/core/product/identifier/S0033291724003283/type/journal_article. DOI: 10.1017/S0033291724003283.
[24]
OKADA N, FUKUNAGA M, MIURA K, et al. Subcortical volumetric alterations in four major psychiatric disorders: a mega-analysis study of 5604 subjects and a volumetric data-driven approach for classification[J]. Mol Psychiatry, 2023, 28(12): 5206-5216. DOI: 10.1038/s41380-023-02141-9.
[25]
BROSCH K, STEIN F, SCHMITT S, et al. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders[J]. Mol Psychiatry, 2022, 27(10): 4234-4243. DOI: 10.1038/s41380-022-01687-4.
[26]
SERRA-BLASCO M, RADUA J, SORIANO-MAS C, et al. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis[J]. Neurosci Biobehav Rev, 2021, 129: 269-281. DOI: 10.1016/j.neubiorev.2021.07.002.
[27]
HAN K M, CHOI S, JUNG J, et al. Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression[J]. J Affect Disord, 2014, 155: 42-48. DOI: 10.1016/j.jad.2013.10.021.
[28]
BAN M, HE J, WANG D, et al. Association between segmental alterations of white matter bundles and cognitive performance in first-episode, treatment-naïve young adults with major depressive disorder[J]. J Affect Disord, 2024, 358: 309-317. DOI: 10.1016/j.jad.2024.05.001.
[29]
GERAETS A F J, KÖHLER S, VERGOOSSEN L W, et al. The association of white matter connectivity with prevalence, incidence and course of depressive symptoms: The maastricht study[J]. Psychol Med, 2022, 53(12): 5558-5568. DOI: 10.1017/S0033291722002768.
[30]
LIU Y, LI M, ZHANG B, et al. Transcriptional patterns of amygdala functional connectivity in first-episode, drug-naïve major depressive disorder[J/OL]. Transl Psychiatry, 2024, 14(1): 351 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365938. DOI: 10.1038/s41398-024-03062-z.
[31]
HOSSEIN S, COOPER J A, DEVRIES B A M, et al. Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala[J]. Mol Psychiatry, 2023, 28(11): 4602-4612. DOI: 10.1038/s41380-023-02056-5.
[32]
KANG L, WANG W, ZHANG N, et al. Anhedonia and dysregulation of an angular gyrus-centred and dynamic functional network in adolescent-onset depression[J]. J Affect Disord, 2023, 324: 82-91. DOI: 10.1016/j.jad.2022.12.057.
[33]
SUN J, MA Y, GUO C, et al. Distinct patterns of functional brain network integration between treatment-resistant depression and non treatment-resistant depression: A resting-state functional magnetic resonance imaging study[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 120: 110621 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0278584622001130. DOI: 10.1016/j.pnpbp.2022.110621.
[34]
LYNCH C J, ELBAU I G, NG T, et al. Frontostriatal salience network expansion in individuals in depression[J]. Nature, 2024, 633(8030): 624-633. DOI: 10.1038/s41586-024-07805-2.
[35]
SIEGEL-RAMSAY J E, BERTOCCI M A, WU B, et al. Distinguishing between depression in bipolar disorder and unipolar depression using magnetic resonance imaging: A systematic review[J]. Bipolar Disord, 2022, 24(5): 474-498. DOI: 10.1111/bdi.13176.
[36]
ZHUKOVSKY P, WAINBERG M, MILIC M, et al. Multiscale neural signatures of major depressive, anxiety, and stress-related disorders[J/OL]. Proc Natl Acad Sci U S A, 2022, 119(23): e2204433119 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191681. DOI: 10.1073/pnas.2204433119.
[37]
CHAI Y, SHELINE Y I, OATHES D J, et al. Functional connectomics in depression: Insights into therapies[J]. Trends Cogn Sci, 2023, 27(9): 814-832. DOI: 10.1016/j.tics.2023.05.006.
[38]
PISONI A, DAVIS S W, SMOSKI M. Neural signatures of saliency-mapping in anhedonia: A narrative review[J/OL]. Psychiatry Res, 2021, 304: 114123 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759627. DOI: 10.1016/j.psychres.2021.114123.
[39]
FOX A S, SHACKMAN A J. An honest reckoning with the amygdala and mental illness[J]. Am J Psychiatry, 2024, 181(12): 1059-1075. DOI: 10.1176/appi.ajp.20240941.
[40]
KIRSTEIN C F, GÜNTÜRKÜN O, OCKLENBURG S. Ultra-high field imaging of the amygdala - a narrative review[J/OL]. Neurosci Biobehav Rev, 2023, 152: 105245 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0149763423002142. DOI: 10.1016/j.neubiorev.2023.105245.
[41]
ZHAO X, WU S, LI X, et al. Common neural deficits across reward functions in major depression: A meta-analysis of fMRI studies[J]. Psychol Med, 2024, 54(11): 2794-2806. DOI: 10.1017/S0033291724001235.
[42]
RUPPRECHTER S, ROMANIUK L, SERIES P, et al. Blunted medial prefrontal cortico-limbic reward-related effective connectivity and depression[J]. Brain, 2020, 143(6): 1946-1956. DOI: 10.1093/brain/awaa106.
[43]
LI M. Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: A hypothesis[J]. Zool Res, 2022, 43(2): 166-175. DOI: 10.24272/j.issn.2095-8137.2021.362.
[44]
CUI Y, HUANG X, HUANG P, et al. Reward ameliorates depressive-like behaviors via inhibition of the substantia innominata to the lateral habenula projection[J/OL]. Sci Adv, 2022, 8(27): eabn0193 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269896. DOI: 10.1126/sciadv.abn0193.
[45]
ARJMAND S, LANDAU A M, VARASTEHMORADI B, et al. The intersection of astrocytes and the endocannabinoid system in the lateral habenula: On the fast-track to novel rapid-acting antidepressants[J]. Mol Psychiatry, 2022, 27(8): 3138-3149. DOI: 10.1038/s41380-022-01598-4.
[46]
DAI P, SHI Y, ZHOU X, et al. Identification of multimodal brain imaging biomarkers in first-episode drugs-naive major depressive disorder through a multi-site large-scale MRI consortium data[J]. J Affect Disord, 2025, 369: 364-372. DOI: 10.1016/j.jad.2024.10.006.
[47]
LIAO Q, ZHANG Z, YANG X, et al. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder[J]. J Affect Disord, 2024, 351: 259-267. DOI: 10.1016/j.jad.2024.01.173.
[48]
WANG X, XUE L, HUA L, et al. Structure-function coupling and hierarchy-specific antidepressant response in major depressive disorder[J]. Psychol Med, 2024, 54(10): 2688-2697. DOI: 10.1017/S0033291724000801.
[49]
XU M, LI X, TENG T, et al. Reconfiguration of structural and functional connectivity coupling in patient subgroups with adolescent depression[J/OL]. JAMA Netw Open, 2024, 7(3): e241933 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933730. DOI: 10.1001/jamanetworkopen.2024.1933.
[50]
SYDNOR V J, CIESLAK M, DUPRAT R, et al. Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala[J/OL]. Sci Adv, 2022, 8(25): eabn5803 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217085. DOI: 10.1126/sciadv.abn5803.
[51]
LAN M J, CHHETRY B T, LISTON C, et al. Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: an exploratory analysis[J]. Brain Stimul, 2016, 9(4): 577-583. DOI: 10.1016/j.brs.2016.02.011.
[52]
WANG Z, ZHANG D, GUAN M, et al. Increased thalamic gray matter volume induced by repetitive transcranial magnetic stimulation treatment in patients with major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1163067 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218132. DOI: 10.3389/fpsyt.2023.1163067.
[53]
BAEKEN C, VAN BEEK V, VANDERHASSELT M A, et al. Cortical thickness in the right anterior cingulate cortex relates to clinical response to left prefrontal accelerated intermittent theta burst stimulation: An exploratory study[J]. Neuromodulation, 2021, 24(5): 938-949. DOI: 10.1111/ner.13380.
[54]
NESTOR S M, MIR-MOGHTADAEI A, VILA-RODRIGUEZ F, et al. Large-scale structural network change correlates with clinical response to rTMS in depression[J]. Neuropsychopharmacology, 2022, 47(5): 1096-1105. DOI: 10.1038/s41386-021-01256-3.
[55]
PAOLINI M, HARRINGTON Y, COLOMBO F, et al. Hippocampal and parahippocampal volume and function predict antidepressant response in patients with major depression: A multimodal neuroimaging study[J]. J Psychopharmacol, 2023, 37(11): 1070-1081. DOI: 10.1177/02698811231190859.
[56]
TORRES I J, GE R, MCGIRR A, et al. Effects of intermittent theta-burst transcranial magnetic stimulation on cognition and hippocampal volumes in bipolar depression[J]. Dialogues Clin Neurosci, 2023, 25(1): 24-32. DOI: 10.1080/19585969.2023.2186189.
[57]
NODA Y, ZOMORRODI R, DASKALAKIS Z J, et al. Enhanced theta-gamma coupling associated with hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression[J]. Int J Psychophysiol, 2018, 133: 169-174. DOI: 10.1016/j.ijpsycho.2018.07.004.
[58]
DALHUISEN I, ACKERMANS E, MARTENS L, et al. Longitudinal effects of rTMS on neuroplasticity in chronic treatment-resistant depression[J]. Eur Arch Psychiatry Clin Neurosci, 2020, 271(1): 39-47. DOI: 10.1007/s00406-020-01135-w.
[59]
LI Y, LI L, PAN W. Repetitive transcranial magnetic stimulation (rTMS) modulates hippocampal structural synaptic plasticity in rats[J]. Physiol Res, 2019, 68(1): 99-105. DOI: 10.33549/physiolres.933772.
[60]
YUAN Q, LEI Y, YU K, et al. Repetitive transcranial magnetic stimulation and fluoxetine attenuate astroglial activation and benefit behaviours in a chronic unpredictable mild stress mouse model of depression[J]. World J Biol Psychiatry, 2024, 25(2): 82-94. DOI: 10.1080/15622975.2023.2279958.
[61]
CHEN Y H, ZHANG R G, XUE F, et al. Quetiapine and repetitive transcranial magnetic stimulation ameliorate depression-like behaviors and up-regulate the proliferation of hippocampal-derived neural stem cells in a rat model of depression: The involvement of the BDNF/ERK signal pathway[J/OL]. Pharmacol Biochem Behav, 2015, 136: 39-46 [2025-04-01]. https://linkinghub.elsevier.com/retrieve/pii/S0091305715300290. DOI: 10.1016/j.pbb.2015.07.005.
[62]
DRYSDALE A T, GROSENICK L, DOWNAR J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression[J]. Nat Med, 2017, 23(1): 28-38. DOI: 10.1038/nm.4246.
[63]
VOETTERL H, ALYAGON U, MIDDLETON V J, et al. Does 18 Hz deep TMS benefit a different subgroup of depressed patients relative to 10 Hz rTMS? The role of the individual alpha frequency[J]. Eur Neuropsychopharmacol, 2024, 89: 73-81. DOI: 10.1016/j.euroneuro.2024.09.007.
[64]
MOMI D, OZDEMIR R A, TADAYON E, et al. Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions[J/OL]. Sci Rep, 2021, 11: 12458 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203778. DOI: 10.1038/s41598-021-90663-z.
[65]
NING L, RATHI Y, BARBOUR T, et al. White matter markers and predictors for subject-specific rTMS response in major depressive disorder[J]. J Affect Disord, 2021, 299: 207-214. DOI: 10.1016/j.jad.2021.12.005.
[66]
GE R, HUMAIRA A, GREGORY E, et al. Predictive value of acute neuroplastic response to rTMS in treatment outcome in depression: A concurrent TMS-fMRI trial[J]. Am J Psychiatry, 2022, 179(7): 500-508. DOI: 10.1176/appi.ajp.21050541.
[67]
OATHES D J, ZIMMERMAN J P, DUPRAT R, et al. Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI[J]. Exp Brain Res, 2021, 239(4): 1165-1178. DOI: 10.1007/s00221-021-06036-5.
[68]
BRILEY P M, WEBSTER L, BOUTRY C, et al. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder[J/OL]. Psychiatry Res Neuroimaging, 2024, 342: 111846 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0925492724000696. DOI: 10.1016/j.pscychresns.2024.111846.
[69]
GE R, DOWNAR J, BLUMBERGER D M, et al. Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up[J]. Brain Stimul, 2020, 13(1): 206-214. DOI: 10.1016/j.brs.2019.10.012.
[70]
MORRISS R, BRILEY P M, WEBSTER L, et al. Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: A randomized controlled trial[J]. Nat Med, 2024, 30(2): 403-413. DOI: 10.1038/s41591-023-02764-z.
[71]
CUI H, DING H, HU L, et al. A novel dual-site OFC-dlPFC accelerated repetitive transcranial magnetic stimulation for depression: A pilot randomized controlled study[J]. Psychol Med, 2024, 54(14): 1-14. DOI: 10.1017/S0033291724002289.
[72]
ZHANG Y, MU N, QI S, et al. Improved brain functional network in major depressive disorder with suicidal ideation after individual target-transcranial magnetic stimulation treatment: A graph-theory analysis[J/OL]. Front Psychiatry, 2025, 16: 1486835 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794214. DOI: 10.3389/fpsyt.2025.1486835.
[73]
HAN X, ZHU Z, LUAN J, et al. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses[J/OL]. Eur J Radiol Open, 2023, 10: 100495 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311181. DOI: 10.1016/j.ejro.2023.100495.
[74]
TANG N, SUN C, WANG Y, et al. Clinical response of major depressive disorder patients with suicidal ideation to individual target-transcranial magnetic stimulation[J/OL]. Front Psychiatry, 2021, 12: 768819 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602581. DOI: 10.3389/fpsyt.2021.768819.
[75]
BARREDO J, BERLOW Y, SWEARINGEN H R, et al. Multimodal elements of suicidality reduction after transcranial magnetic stimulation[J]. Neuromodulation, 2021, 24(5): 930-937. DOI: 10.1111/ner.13376.
[76]
WU G R, BAEKEN C. Exploring potential working mechanisms of accelerated HF-rTMS in refractory major depression with a focus on locus coeruleus connectivity[J/OL]. Eur Psychiatry, 2024, 67(1): e70 [2025-04-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730058. DOI: 10.1192/j.eurpsy.2024.1769.
[77]
BARREDO J, BELLONE J A, EDWARDS M, et al. White Matter Integrity and Functional Predictors of Response to Repetitive Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder and Major Depression[J]. Depress Anxiety, 2019, 36(11): 1047-1057. DOI: 10.1002/da.22952.
[78]
TURA A, PROMET L, GOYA-MALDONADO R. Structural-functional connectomics in major depressive disorder following aiTBS treatment[J/OL]. Psychiatry Res, 2024, 342: 116217 [2025-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S016517812400502X. DOI: 10.1016/j.psychres.2024.116217.
[79]
CHEN D, LEI X, DU L, et al. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study[J]. J Psychiatr Res, 2022, 148: 88-94. DOI: 10.1016/j.jpsychires.2022.01.064.
[80]
PAN F, LI J, JIN S, et al. Investigating the predictive models of efficacy of accelerated neuronavigation-guided rTMS for suicidal depression based on multimodal large-scale brain networks[J/OL]. Int J Clin Health Psychol, 2025, 25(1): 100564 [2025-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999189. DOI: 10.1016/j.ijchp.2025.100564.
[81]
TAYLOR H, NICHOLAS P, HOY K, et al. Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation[J]. J Affect Disord, 2023, 329: 539-547. DOI: 10.1016/j.jad.2023.02.082.

上一篇 动态功能连接在青少年抑郁症中的研究进展
下一篇 基于MRI的胶质淋巴系统在阿尔茨海默病中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2