分享:
分享到微信朋友圈
X
综述
基于MRI的胶质淋巴系统在阿尔茨海默病中的研究进展
胡玉馨 苏云燕 姚辉 杨义文 严所钰

Cite this article as: HU Y X, SU Y Y, YAO Hui, et al. MRI-based research advances in the glymphatic system in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2025, 16(7): 109-116.本文引用格式:胡玉馨, 苏云燕, 姚辉, 等. 基于MRI的胶质淋巴系统在阿尔茨海默病中的研究进展[J]. 磁共振成像, 2025, 16(7): 109-116. DOI:10.12015/issn.1674-8034.2025.07.018.


[摘要] 随着全球老龄化进程加速,有关阿尔茨海默病(Alzheimer's disease, AD)的病理机制研究成为神经科学领域的核心议题。胶质淋巴系统(glymphatic system, GS)作为中枢神经系统的代谢废物清除网络,其功能障碍与AD的β-淀粉样蛋白(amyloid-beta, Aβ)沉积及Tau蛋白病理密切相关。可视化GS早期结构与功能的改变对于相关的神经退行性疾病的早期诊断以及开发新的治疗方案的开发有着重要的意义。近年来,多模态磁共振成像(magnetic resonance imaging, MRI)技术如:动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)、沿血管周围间隙扩散张量成像分析(diffusion tensor imaging analysis along the perivascular space, DTI-ALPS)、化学交换饱和转移成像(chemical-exchange-saturation-transfer MRI, CEST-MRI)以及静息态功能磁共振成像(resting state functional MRI, rs-fMRI)通过无创或微创方式逐步实现了GS结构与功能的可视化。本文综述了临床前与临床研究证据,并探讨了如何借助多模态MRI技术动态监测GS功能变化及其流入流出途径,以诊断及预测AD进展,试图阐明GS功能障碍可视化证据及寻找相关神经影像标志物,从而对AD 早期诊断及病理机制提供新思路。
[Abstract] With the acceleration of global aging, research on the pathogenesis of Alzheimer's disease (AD) has become a central issue in neuroscience. The glymphatic system (GS), a perivascular network responsible for the clearance of metabolic waste in the central nervous system, plays a key role in the accumulation of amyloid-beta (Aβ) and Tau pathology associated with AD. Early visualization of structural and functional changes in GS is important to diagnose some of the neurodegenerative diseases and develop new therapeutic options. In recent years, multimodal magnetic resonance imaging (MRI) techniques—including dynamic contrast-enhanced MRI (DCE-MRI), diffusion tensor imaging analysis along the perivascular space (DTI-ALPS), chemical-exchange-saturation-transfer MRI (CEST-MRI), and resting state functional MRI (rs-fMRI)—have gradually visualized the structure and function of GS in a noninvasive or minimally invasive way. In this paper, we review the preclinical and clinical research evidence and dynamically monitor the GS functional changes and influx-efflux pathways using multimodal MRI technology. By elucidating visualized evidence of GS dysfunction and identifying associated neuroimaging biomarkers, this work aims to provide novel insights into early AD diagnosis and the underlying pathological mechanisms.
[关键词] 阿尔茨海默病;胶质淋巴系统;磁共振成像;沿血管周围间隙扩散张量成像分析
[Keywords] Alzheimer's disease;glymphatic system;magnetic resonance imaging;diffusion tensor imaging analysis along the perivascular space

胡玉馨 1   苏云燕 1*   姚辉 2   杨义文 1   严所钰 1  

1 苏州大学附属第一医院放射科,苏州 215006

2 苏州大学附属第一医院普外科,苏州 215006

通信作者:苏云燕,E-mail:suyunyanhappy@163.com

作者贡献声明:苏云燕提出本综述的主题和设计文章框架,对稿件重要内容进行了修改,获得了国家自然科学基金项目、江苏省青年科技人才托举工程项目、苏州市卫生青年骨干人才“全国导师制项目”的资助:胡玉馨起草和撰写稿件,获取并分析本综述的文献;姚辉、杨义文、严所钰获取、分析本综述的文献,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本综述的所有方面负责,确保本综述的准确性和诚信。


基金项目: 国家自然科学基金项目 81701667 江苏省青年科技人才托举工程项目 TJ-2023-028 苏州市卫生青年骨干人才“全国导师制项目” Qngg2024001
收稿日期:2025-04-21
接受日期:2025-07-07
中图分类号:R445.2  R749.16 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.018
本文引用格式:胡玉馨, 苏云燕, 姚辉, 等. 基于MRI的胶质淋巴系统在阿尔茨海默病中的研究进展[J]. 磁共振成像, 2025, 16(7): 109-116. DOI:10.12015/issn.1674-8034.2025.07.018.

0 引言

       阿尔茨海默病(Alzheimer's disease, AD)是一种进展性神经退行性疾病,其核心病理特征为β-淀粉样蛋白(amyloid-beta, Aβ)的异常沉积与Tau蛋白过度磷酸化导致的神经纤维缠结(neurofibrillary tangles, NFTs)。Aβ级联假说一直以来被认为是AD的重要发病机制[1, 2, 3],但近年来胶质淋巴系统(glymphatic system, GS)的发现为AD病理机制提供了全新阐释视角。GS作为中枢神经系统的代谢废物清除网络,通过脑脊液(cerebrospinal fluid, CSF)与间质液(interstitial fluid, ISF)间的动态交换清除Aβ和Tau蛋白,其功能障碍被认为是AD病理进展的关键驱动因素之一[4, 5]。MRI技术的不断创新,为无创地可视化GS的结构、功能及其流入流出途径提供了突破性工具,揭示了其在AD中的关键作用。本文系统综述了基于MRI相关的AD、GS及其参与AD发病机制的相关研究,以期为AD未来的诊断和治疗提供新的思路。

1 GS的结构与功能

       传统观念认为淋巴系统不存在于中枢神经系统中,直到ILIFF等[6]在2012年通过向小鼠CSF中注射小分子荧光示踪剂,并利用双光子成像技术实验首次证实中枢神经系统中存在着类似于淋巴系统的结构,并将其命名为GS。GS是由星形胶质细胞终足上极性分布的水通道蛋白-4(aquaporin-4, AQP-4)介导的液体运输网络,通过CSF-ISF交换,清除中枢神经系统中的代谢废物(如Aβ、Tau)。GS主要由CSF、ISF、血管周围间隙(perivascular space, PVS)以及AQP-4组成[6]。PVS围绕着脑皮质动脉和穿通小动脉,内侧为血管平滑肌细胞,外侧为覆盖在血管表面的星形胶质细胞终足,AQP-4极性分布于终足上[7]。来自蛛网膜下腔的CSF在血管搏动的驱动下通过动脉周围间隙进入脑实质,与ISF混合并进行物质交换后携带代谢废物回流至静脉周围间隙,并最终汇入脑膜淋巴管。这些代谢废物通过脑膜淋巴管流至颈深淋巴结,在此清除后再次汇入循环系统[8, 9]图1)。

图1  胶质淋巴系统循环路径示意图。脑脊液(CSF)自蛛网膜下腔流出后(黑箭),在动脉搏动的驱动下通过动脉周围血管周围间隙(PVS)(红色向内箭)的星形胶质细胞终足上的AQP-4流入脑实质;流入脑实质CSF在与间质液(ISF)混合后形成整体流,在脑内各个区域弥散分布(黑色虚线圆圈),最终携带脑内的代谢废物通过星形胶质细胞终足上AQP-4进入静脉周围血管间隙(紫色向外箭),并通过脑膜淋巴管回流入颈深淋巴结(绿箭)。
Fig. 1  Schematic diagram of glymphatic system circulation pathway. Cerebrospinal fluid (CSF) flows out of the subarachnoid space (black arrow) and enters the brain parenchyma via AQP-4 channels located on astrocytic endfeet within arterial perivascular spaces (PVS) (red inward-pointing arrow) , which is driven by arterial pulsations. Upon entering the parenchyma, CSF mixes with interstitial fluid (ISF) to form a bulk flow, which diffuses throughout whole brain regions (black dashed circle). This bulk flow ultimately transports metabolic waste products from the brain tissue into venous perivascular spaces via AQP-4 channels on astrocytic endfeet (purple outward-pointing arrow). Finally, the fluid drains back into the systemic circulation through meningeal lymphatic vessels and is transported to the deep cervical lymph nodes (green arrow). created with Biorender.

2 AD中GS结构及功能异常

       AD的确切发病机制尚未完全明确,但主要的病理机制包括脑内Aβ异常沉积形成的淀粉样斑块以及Tau蛋白异常磷酸化导致的NFTs[10, 11]。Aβ级联假说认为,淀粉样前体蛋白APP在β和γ分泌酶的切割作用下产生Aβ,其异常聚集形成的斑块被认为是AD的始动因素[12, 13, 14]。NFTs作为AD的第二大病理特征[1],主要由Tau蛋白聚集体构成。在AD中,Tau蛋白过度磷酸化形成的NFTs破坏了微管的稳定性,损害了轴突运输,最终造成神经元的不可逆性损伤[15, 16, 17]。早期研究已证实,注射至脑实质内的Aβ可沿血管旁通路被清除[18],ILIFF等[6]发现在AQP-4敲除(AQP-4 -/-)小鼠中,Aβ清除效率下降55%,直接证明AQP-4介导的GS对Aβ清除至关重要。随后的研究发现,这种Aβ清除的减慢可能是由于AQP-4的缺失造成血管周围CSF流入脑组织的速度减慢[19, 20]。Tau蛋白作为AD的另一特征,研究证实AQP-4的缺乏同样会导致Tau蛋白沉积增加[21]。衰老是AD的重要危险因素之一[22],同时衰老也与GS的功能下降有一定联系。SIMON等[23]发现微血管周围AQP-4定位丢失程度随着衰老增加,并且这种丢失会损害CSF-ISF的交换,导致小鼠大脑中Aβ沉积的增加。并且有研究发现,与年轻小鼠相比,衰老小鼠中CSF流向颈部淋巴结的时间出现明显延迟[24],我们据此推测衰老小鼠的GS清除功能可能也出现了明显的下降。该现象不仅在动物模型中得到了验证,在轻度认知障碍(mild cognitive impairment, MCI)与AD患者的相关研究中也获得了支持性证据[25, 26]。脉络丛作为GS的又一组成成分,主要负责产生CSF与清除脑内代谢废物[27],其结构与功能异常近年也被认为与AD中GS异常存在相关性。多项研究显示,AD患者的脉络丛容积(choroid plexus volume, CPV)相比健康对照组明显增大,且与年龄、认知功能、Aβ等AD相关因素均表现出相关性[28, 29, 30]。在一项前瞻性队列研究中,研究者观察到在MCI阶段就存在CPV的扩大,并指出这种CPV的改变独立于脑萎缩来影响认知表现[31]。组织学研究进一步发现AD模型小鼠脉络丛上皮细胞AQP表达下调,伴随炎性因子浸润,从而损伤CSF分泌与溶质清除[32, 33]。上述动物实验与临床研究为GS异常早期推动AD发生的理论提供了新的解剖学与组织学证据。

3 MRI在探究AD GS功能中的应用

       GS的代谢清除功能高度依赖于CSF与ISF间的动态循环,这一特性使得在活体研究中直接观测其动态过程面临重大技术挑战[34, 35]。在此背景下,发展无创性精准评估GS结构与功能的检测技术成为当前研究的重要突破口。MRI技术凭借其多模态成像能力和亚毫米级空间分辨率优势,为深入解析GS的病理生理机制提供了重要研究手段。

       值得注意的是,现代MRI技术通过整合多种创新成像模式,能够多维度揭示GS的功能特征:动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)可精确定量血脑屏障通透性[36];沿血管周围间隙扩散张量成像分析(diffusion tensor imaging analysis along the perivascular space, DTI-ALPS)可无创示踪脑脊液流动模式[37];化学交换饱和转移成像(chemical-exchange-saturation-transfer MRI, CEST-MRI)能特异性检测代谢产物的空间分布[38];静息态功能磁共振成像(resting state functional MRI, rs-fMRI)通过捕捉低频BOLD信号波动,可间接评估神经网络活动与脑脊液循环的耦合关系[39]。随着这些技术手段的协同应用,GS功能障碍与AD病理进展的内在关联正在被逐步揭示。

3.1 DCE-MRI

       DCE-MRI通过动态追踪外源性对比剂,如钆基造影剂(gadolinium-based contrast agents, GBCA)在组织内的分布与清除过程,实现CSF流动的时空动态可视化。该技术通过分析对比剂浓度变化,可定量评估血脑屏障通透性及CSF-ISF循环效率[36, 40],目前已成为研究GS功能的重要工具。有学者在对颅内肿瘤的研究中发现DCE-MRI还可以定量测量跨膜水流动速率(kio),并且这种速率的改变极有可能是由AQP-4所介导,未来能否将该成像方法用于检测AQP-4的功能来达到间接反映GS功能可能是一个新的研究方向。并且这种对于kio的测量仅需在临床常规使用的MRI扫描方法中添加一个水交换DCE-MRI序列,未来有很强的临床应用前景[41]。尽管DCE-MRI在GS研究中展现出独特价值,但仍受限于传统场强MRI(如1.5 T/3 T)对微米级PVS的流体动力学特征解析能力不足和对比剂沉积引发的神经毒性风险。7 T及以上超高场强MRI的临床应用显著提升了DCE-MRI的成像性能。其亚毫米级空间分辨率不仅能清晰显示脉络丛、室管膜等CSF循环关键结构,还可检测早期血脑屏障渗漏等细微病理改变[42]。在AD疾病模型中,7 T DCE-MRI已成功捕捉到CSF流入脑实质减少的动力学特征,为GS功能障碍与AD病理关联提供了直接影像证据。动物实验证实,通过直接向AD模型小鼠蛛网膜下腔注射GBCA,可高灵敏度示踪CSF-ISF交换过程,其脑实质内CSF流入量显著降低[43]。然而鞘内注射的侵入性以及造成钆性脑病的可能,用于人体的相关研究较少。ZHOU等[44]发现人体中可能也存在相应的改变。他们对患者进行鞘内注射造影剂后测定了淋巴通路和假定脑膜淋巴管(putative meningeal lymphatic vessels, pMLVs)中6个位置的信号单位比(signal unit ratio, SUR),将SUR从基线到39小时的百分比变化定义为淋巴通路和pMLVs的清除率,结果发现淋巴通路和pMLVs的清除率均与衰老相关,构建了年龄与淋巴系统功能减退之间的联系,进一步补充了衰老作为AD重要致病因素的可能机制及与GS之间的可能联系。静脉注射GBCA虽创伤性较小,但受血脑屏障限制,难以有效渗透至脑实质,其成像灵敏度显著低于鞘内注射。有研究表明静脉注射更适用于结构成像,而对GS动态清除功能的量化分析灵敏度不足[45]。具有血脑屏障穿透能力的纳米级靶向探针,或开发基于CEST的内源性对比成像技术可能是未来研究的方向。

       PVS的传统定义基于静脉注射GBCA后的信号特征,即脑实质中未被强化的线状或管状结构[46]。后续研究则发现PVS在T2加权3D-FLAIR图像序列上表现为明显高信号[47],从而明确了利用MRI对于PVS进行成像的基础。AD患者在多个脑结构中(如白质、基底神经节等)都表现出明显PVS的扩张与增多[48]。MCI作为AD的前期阶段,患者就可在相关脑区表现出PVS的显著扩张与密度增大,这表明在AD早期就可发生PVS的异常改变[49]。另外,有研究证实与年龄相关的血脑屏障的改变会导致PVS的增宽或功能障碍[50],而血脑屏障的改变则被证实与AD相关[51],由此我们可以进一步推测PVS改变与GS功能异常相关。无论是动物研究还是对于人体的研究都充分证明了GS功能异常在AD中的重要作用,这可能为未来对AD的诊疗提供新的靶点。

3.2 DTI-ALPS技术

       DTI-ALPS是一种基于DTI的无创评估GS功能的技术,由TAOKA等于2017年首次提出并应用于AD患者研究。该技术的原理在于量化深髓静脉PVS内液体扩散的各向异性特征。具体而言,在侧脑室体部层面,深髓静脉(X轴)PVS内液体扩散模式,可以通过投射纤维(Z轴)与联络纤维(Y轴)水分子扩散率差异来计算,公式为:

       其中Dxproj为投射纤维的 X 轴的平均扩散率、Dxassoc为联络纤维的X轴平均扩散率、Dyproj为投射纤维的 Y 轴平均扩散率、Dzaccoc为联络纤维在Z轴的平均扩散率[52, 53]。ZHANG等[54]在此基础上提出了一个简化的计算方案,即修正的ALPS指数:

       该公式不依赖磁敏感加权成像,实现了基于DTI的GS功能直接评估。对比研究显示不仅ALPS-index与mALPS-index间有很强的关联性(r=0.901,P<0.001),且两者均与传统鞘内注射对比剂成像的结果表现出强关联性(r=-0.772~-0.844,P<0.001),验证了其评估GS功能的可靠性,其无创性有很强的临床应用价值。基于ALPS-index的临床研究发现,作为AD的临床前阶段,MCI患者已表现出GS功能的显著异常。HUANG等[55]通过整合横断面及纵向队列数据,首次系统性分析了GS功能障碍与AD病理标志物以及临床病情发展的时序关系。研究采用DTI-ALPS量化GS功能,发现AD患者的ALPS-index显著低于MCI及认知正常(cognitively normal, CN)组,且Aβ阳性(A+)群体较阴性(A-)群体更低。更重要的是,GS功能异常呈现明确的疾病阶段依赖性:从临床前AD(A+CN)、前驱期AD(A+MCI)到AD痴呆阶段,ALPS-index依次递减,且其变化早于脑脊液Aβ42水平下降及Aβ-PET阳性显像。他们由此建立的疾病进程模型再次证实GS功能异常在出现明显的Aβ病理沉积前已显著存在,这一发现进一步支持GS功能衰退是AD病理级联反应的早期事件的理论。

       纵向分析进一步证实,基线ALPS-index可预测AD病理与临床进展:较低的ALPS-index与更快的Aβ-PET沉积速率、海马等AD特征脑区萎缩加速及更高的临床恶化风险相关[55]。此结果与KAMAGATA等[56]的研究相呼应,其发现AD患者ALPS-index显著降低,同时伴随血管周围间隙体积分数(perivascular space volume fraction, PVSVF)及白质自由水体积(free water in white matter, FW-WM)升高。基于DTI计算脑实质中自由水的体积分数[57]和ALPS-index[53]被用于间接评估血管周围网络活动。值得注意的是,MCI患者仅表现为白质PVSVFs的升高,这提示我们GS功能障碍在AD早期可能以PVS的改变为主,而功能活性(ALPS-index)的显著下降则提示疾病的进一步进展。上述研究共同证实了GS功能障碍与AD严重程度密切相关,并且证明了无创MRI参数ALPS-index作为早期诊断标志物的可行性,但是其中Kamagata的横断面研究样本量较小,未来还需要扩大样本量来进一步分析GS障碍的不同阶段与AD发展之间的关系并充分评估ALPS-index的早期诊断可靠性。后续研究进一步拓展其应用范围,如STEWARD等[58]等将 ALPS-index联合MMSE量表进行分析,HSU等[59]进一步将ALPS-index与PET成像所显示的Aβ、Tau蛋白的沉积与MMSE进行对比分析,构建了影像学特征-病理标志物-临床症状之间的联系,进一步证实了利用MRI来测量GS从而对AD进行诊断的可行性。SACCHI等[1]指出AD患者不仅表现为PVS扩张、FW-WM升高,还表现出CSF-AQP4的升高[exp(b)=2.05,P=0.005],提示GS功能障碍的多维度作用。LIU等[60]则结合MRI标志物进一步从基因层面对AQP-4所造成的GS功能异常提出了一种解释。他们研究发现AQP-4单核苷酸多态性(single-nucleotide polymorphisms, SNPs)(如rs72878794和rs9951307)通过影响FW的动态变化从而导致认知功能进行性下降,且FW与DTI-ALPS间存在显著关联(r=-0.428,P<0.001)。这不仅提出了从AQP-4 SNPs角度来探索GS功能变化影响AD发展的新方法,也提示DTI-ALPS可以联合其他指标协同应用来对疾病的发展进行预测。并且对于其他中枢神经系统疾病的研究指出DTI-ALPS指数与皮层厚度[61]及丘脑体积(r=0.201,P=0.014)[62]均呈现显著正相关,且这些区域均为AD敏感区,未来值得研究者们进一步探索。由于目前大多DTI-ALPS成像局限于侧脑室周围,无法做到对于全脑GS的评估,因此仍存在较大的局限性。其次,受限于成像时间较长、对于ROI选定的主观性较强等因素,该成像方法对于疾病的诊断仍缺乏统一可行的标准,未来还需进一步改进开发更为高效、全面、敏感的相关成像方法。

3.3 CEST-MRI

       CEST-MRI是一种基于内源性分子质子交换的无创成像技术。其原理是通过选择性射频脉冲饱和特定代谢物(如蛋白质、糖原)中可交换质子的信号,这些质子通过化学交换转移至自由水分子,导致自由水信号发生可检测的衰减[63, 64]。通过分析水信号的变化,可间接实现对脑内极微量物质(浓度低至毫摩尔级)的定量成像,在评估酶活性、组织pH值、代谢产物分布等方面具有独特优势[65, 66, 67]

       CHEN等[68]首次将CEST-MRI拓展至GS研究领域,开发了淋巴系统特异性CEST(Lym-CEST)技术。通过检测淋巴液与血液、CSF间的CEST信号差异,研究者成功实现活体小鼠脑内淋巴引流的动态示踪。在颈淋巴结深部结扎模型中,结扎组小鼠表现为CEST信号强度异常改变(如脂质、Aβ信号增强),并伴随空间认知功能显著下降。组织学检验证实结扎组小鼠脑内淀粉样蛋白沉积显著增加。该研究成功实现了淋巴中多种蛋白(如脂质、Aβ)内源性成像,突破了传统临床MRI序列无法检测此类分子的技术瓶颈,不仅验证了淋巴液作为内源性对比剂的可行性,还提供了一种探索淋巴系统功能障碍与部分中枢神经系统疾病发病机制联系的新方法。OHNO等[69]利用CEST-MRI的超高灵敏度特性,实现了活体小鼠脑内甘氨酸分布的无创检测。同时他们还利用Lym CEST成像发现在正常小鼠中,甘氨酸在丘脑的浓度显著高于皮质(P<0.0001),而AD小鼠的皮质(P<0.05)和丘脑区(P<0.0001)甘氨酸浓度明显下降,海马区则无异常表现。这一发现提示,GS功能障碍可能通过区域特异性代谢失衡参与AD病理。随后的学者不断拓展CEST-MRI的应用,如LIU等提出谷氨酸作为早期AD标志物[70],XU等开发的Angiopep-2(ANG)靶向CEST技术能够明显提高CEST比率(CEST ratio, CESTR)(如12个月大的C57小鼠的注射前CESTR为1.20±0.38,而注射后CESTR为2.08±0.41(P=0.0079)并且与注射ANG前、注射磷酸缓冲盐溶液等对照组相比,AD小鼠Aβ沉积区域的信号强度均有显著升高(均为P<0.001)[71]。这些进展表明CEST-MRI不仅能动态量化GS清除效率,还可通过特异性分子探针实现精准靶向成像。但是目前应用于人体GS检查的CEST-MRI相关研究还较少,缺乏相关实验数据的支持。

3.4 rs-fMRI

       除结构性成像技术外,rs-fMRI通过捕捉低频(<0.1 Hz)血氧水平依赖(blood oxygen level-dependent, BOLD)信号的自发波动,为间接评估GS功能提供了全新视角[72, 73, 74]。其核心假设在于:神经元活动与CSF-ISF循环之间存在动态耦合,而GS功能障碍可能通过破坏这种神经-液体交互加剧AD病理进程。KIVINIEMI等[75]于2016年利用超高速rs-fMRI技术首次揭示,低频BOLD信号波动与CSF流动节律存在显著时空同步性。这一现象提示,脑实质中神经元电活动的周期性振荡可能驱动CSF-ISF循环,而GS则通过调控液体交换参与神经代谢稳态的维持。该研究为rs-fMRI作为GS功能评估工具奠定了理论基础。HAN等[76]通过多中心神经影像数据分析发现:BOLD-CSF耦合强度与AD病理相关,健康人群中BOLD信号与CSF流入信号呈现强耦合,而AD患者此耦合强度降低,且该耦合度与皮质Aβ沉积水平呈负相关(Spearman's r=0.20,P=0.019);BOLD-CSF耦合强度基线值与2年内MMSE评分的下降幅度呈负相关(Spearman's r=-0.20,P=0.013),可区分AD不同临床阶段。同时他们进一步提出全脑血氧水平依赖(global of blood oxygen level-dependent, global BOLD)信号所反映的睡眠依赖型脑活动,可能通过调节自主神经驱动的动脉搏动和呼吸,进而影响 CSF流动及GS的清除功能。同时研究者还发现与全脑BOLD信号相关的神经和生理变化可能与淋巴清除相关并对此提出了2种猜想,但尚缺乏相关佐证性试验。我们猜想全脑BOLD信号的减弱或可反映“神经元活动-液体循环”双向调控网络的失代偿,从而影响Aβ等毒性代谢产物的清除,最终导致AD的发生与进展,未来仍需验证。rs-fMRI具有全脑覆盖,无创便捷的优势,但HAN等的研究仍存在一定的局限:rs-fMRI所检测的BOLD-CSF耦合是GS功能的间接反映指标,而非对于液体流动的直接测量;同时仍需AD谱系疾病的大样本纵向研究,以明确rs-fMRI标志物的预测效能。

3.5 其他新技术及新技术联合

       为系统比较上述主要成像技术在评估GS功能中的特点,表1总结了DCE-MRI、DTI-ALPS、CEST-MRI及rs-fMRI四种关键技术的原理、优势、局限性、适用场景、主要研究对象与样本量以及主要技术结论,更为直接、清晰地展现了不同技术间的对比。除上述技术外,更多新的成像技术正逐步应用于GS相关的AD研究中。磁共振弹性成像(magnetic resonance elastography, MRE)是一种基于剪切波在软组织中位移从而量化软组织生物力学参数的一种新型成像技术,为评估衰老大脑和多种神经退行性疾病提供了另一独特的力学视角[77, 78]。现有研究已经通过MRE证实AD中存在脑组织特征性软化[78],这种软化可能源于星形胶质细胞增生与Aβ42的沉积[79]。随后的学者联合分析MRE获得的生物力学参数和反映GS功能的ALPS-index并发现ALPS-index与MRE特征性参数剪切模量表现为独立正相关(β=0.300,P=0.029)[80]。这提示我们脑实质微环境结构的完整性是GS正常清理脑内代谢废物的重要基础,而MRE参数可能作为早期微环境改变的敏感标志物,未来还需结合大样本AD等疾病模型验证其预测价值。WEN等[81]提出了一种动态扩散加权成像(dynamic diffusion-weighted imaging, dynDWI)结合手指光电容积描记技术,该技术可以通过血管旁CSF检测颅内心脏冲动从软脑膜动脉到穿透小动脉的传播。他们对受试者的CSF动力学进行高时间分辨率成像,并通过交叉相关分析量化了从蛛网膜下腔至皮质的冲动传播时间。结果显示,传播时间随年龄变化呈现双峰型变化,即45岁前该时间随年龄增长而延长,45岁后随年龄增长而缩短,这可能反映了小动脉顺应性的双峰样变化。dynDWI可以非侵入性展现CSF的微秒级动态变化,并且该变化存在一定的年龄依赖性,未来有望用于探究CSF变化与AD之间的病理生理机制。受限于技术、成像时间等因素,现有的MRI技术向临床应用转化仍存在一定的限制。并且经由MRI评估的GS功能还缺乏直接的病理学证据作为支撑。同时,由于软硬件之间的区别,多中心研究在信号采集、疾病相关信号的收集分析仍存在一定难度[82, 83],数据的可靠性仍有待进一步提高。针对多中心数据异质性问题,SAITO等[84]利用Combined Association Test(COMAT)模型通过标准化数据采集协议与机器学习驱动的异质性校正,提升ALPS-index等标志物的可重复性,为日后无创成像广泛应用的标准化提供了一种新的思路。此外,还有学者提出了一种脑脊液流动研究分析的全新框架——脑脊液伪扩散空间统计(CSF pseudo-diffusion spatial statistics, CΨSS),这一框架结合了低b值dMRI技术和先进的图像处理方法,能够在全脑体素级层面分析脑脊液的流动,并且具有更高的空间分辨率和更低的成像时间要求,在未来的临床应用中具有巨大潜力[85]。近期多模态MRI与AI联合的相关研究为疾病的诊断提供了新思路。HU等[86]整合sMRI和rs-fMRI两种模态数据,通过深度学习模型实现91.49%的AD诊断准确率,明显优于单一模态方法的准确率(sMRI 87.23%,rs-fMRI 78.72%)。SONG等[87]提出一个深度学习模型 s2MRI-ADNet,该模型采用双通道学习策略,仅基于基线sMRI数据即可构建AD的多形性表征及捕捉AD中的异常信息(P<0.0001),并且在与多数据库间交叉验证时均展现出了其在AD诊断中良好的稳定性、可重复性及普遍性[88]。也就是说,未来基于MRI的GS障碍在AD中的研究也可以人工智能为契机,开展多中心研究,纳入脑结构和功能的数据,扩大数据通量,从而实现GS研究从机制探索迈向临床的转化。

表1  不同成像技术对比
Tab. 1  Comparison of different imaging technologies

4 总结与展望

       GS功能障碍作为AD上游病理机制的重要假说,其与Aβ沉积、Tau传播及认知衰退的关联为AD早期诊断提供了全新视角。多模态MRI技术通过无创量化GS功能,已展现出在AD临床前阶段识别病理改变的潜力。目前,对于外周淋巴系统的成像技术也在不断发展,近红外荧光淋巴管造影术利用荧光造影剂可实现淋巴管的实时观察[89],并且可视化搏动能够反映相应血管的功能[90],较传统淋巴闪烁扫描技术能提供更丰富的信息[91]。光声成像作为一种用于显示淋巴管的光创超声技术,拥有广阔的应用前景。GS在脑内结构特殊,目前成像多依赖于MRI;作为外周淋巴系统的类似结构,未来是否可将外周淋巴成像技术迁移至GS研究,值得探索。开发血脑屏障穿透性探针可能突破现有DCE-MRI的人体应用限制,实现对于GS流动的实时成像。基于GS清除机制的干预策略(如AQP-4调节剂)或从病理机制层面为AD治疗提供新的方向,从而实现GS研究从机制探索迈向临床转化,最终为AD早期诊断与精准干预以及新型治疗方式的开发提供可靠工具。

[1]
SACCHI L, D'AGATA F, CAMPISI C, et al. A "glympse" into neurodegeneration: Diffusion MRI and cerebrospinal fluid aquaporin-4 for the assessment of glymphatic system in Alzheimer's disease and other dementias[J/OL]. Hum Brain Mapp, 2024, 45(12): e26805 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39185685/. DOI: 10.1002/hbm.26805.
[2]
ZHANG Y, CHEN H Q, LI R, et al. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 248 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37386015/. DOI: 10.1038/s41392-023-01484-7.
[3]
ZHANG Q, YAN Y. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer's disease: a narrative review[J]. Neural Regen Res, 2023, 18(12): 2582-2591. DOI: 10.4103/1673-5374.373680.
[4]
沈文卓, 李勇刚. 脑类淋巴系统磁共振成像的临床应用及研究进展[J]. 磁共振成像, 2024, 15(3): 212-217. DOI: 10.12015/issn.1674-8034.2024.03.03.
SHEN W Z, LI Y G. Advances in the clinical application of MRI in the glymphatic system of the brain[J]. Chin J Magn Reson Imaging, 2024, 15(3): 212-217. DOI: 10.12015/issn.1674-8034.2024.03.035.
[5]
THIPANI MADHU M, BALAJI O, KANDI V, et al. Role of the glymphatic system in Alzheimer's disease and treatment approaches: a narrative review[J/OL]. Cureus, 2024, 16(6): e63448 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39077280/. DOI: 10.7759/cureus.63448.
[6]
ILIFF J J, WANG M, LIAO Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β[J/OL]. Sci Transl Med, 2012, 4(147): 147ra111 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/22896675/. DOI: 10.1126/scitranslmed.3003748.
[7]
LEE D H, LEE E C, PARK S W, et al. Pathogenesis of cerebral small vessel disease: role of the glymphatic system dysfunction[J/OL]. Int J Mol Sci, 2024, 25(16): 8752 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39201439/. DOI: 10.3390/ijms25168752.
[8]
LI X Y, WANG S M, ZHANG D J, et al. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs[J/OL]. Proc Natl Acad Sci U S A, 2024, 121(45): e2400024121 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39485799/. DOI: 10.1073/pnas.2400024121.
[9]
CHACHAJ A, GĄSIOROWSKI K, SZUBA A, et al. The Lymphatic System In The Brain Clearance Mechanisms-New Therapeutic Perspectives For Alzheimer's Disease[J]. Curr Neuropharmacol, 2023, 21(2): 380-391. DOI: 10.2174/1570159X20666220411091332.
[10]
LIU H C, CHEN H H, HO C S, et al. Investigation of the Number of Tests Required for Assaying Plasma Biomarkers Associated with Alzheimer's Disease Using Immunomagnetic Reduction[J]. Neurol Ther, 2021, 10(2): 1015-1028. DOI: 10.1007/s40120-021-00280-1.
[11]
CHATTERJEE P, PEDRINI S, STOOPS E, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease[J/OL]. Transl Psychiatry, 2021, 11(1): 27 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/33431793/. DOI: 10.1038/s41398-020-01137-1.
[12]
ULLAH K, ALMUTAIRI M H, ABBAS M N, et al. Discovery of Selective β-Secretase (BACE-1) Inhibitors by the Solid-Phase Synthesis of Small Molecular-sized Peptides[J]. Curr Alzheimer Res, 2024, 21(10): 723-734. DOI: 10.2174/0115672050336253241227102506
[13]
TOSAT-BITRIÁN C, BUESO DE BARRIO J A, STEWART M H, et al. Membrane-targeted quantum dot-based BACE1 activity sensors for In vitro and In cellulo assays[J]. ACS Appl Mater Interfaces, 2024, 16(46): 63186-63194. DOI: 10.1021/acsami.4c12560.
[14]
GALEANA-ASCENCIO R A, MENDIETA L, LIMON D I, et al. β-secretase-1: In silico drug reposition for Alzheimer's disease[J/OL]. Int J Mol Sci, 2023, 24(9): 8164 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37175873/. DOI: 10.3390/ijms24098164.
[15]
ROTH A, SANDER A, OSWALD M S, et al. Comprehensive characterization of CK1δ-mediated tau phosphorylation in Alzheimer's disease[J/OL]. Front Mol Biosci, 2022, 9: 872171 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/36203870/. DOI: 10.3389/fmolb.2022.872171.
[16]
FROUDIST-WALSH S, XU T, NIU M, et al. Gradients of neurotransmitter receptor expression in the macaque cortex[J]. Nat Neurosci, 2023, 26(7): 1281-1294. DOI: 10.1038/s41593-023-01351-2.
[17]
SEPLOVICH G, BOUCHI Y, DE RIVERO VACCARI J P, et al. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease[J]. Neural Regen Res, 2025, 20(6): 1644-1664. DOI: 10.4103/NRR.NRR-D-24-00107.
[18]
HASEGAWA I, HIRAYOSHI Y, MINATANI S, et al. In vivo dynamic movement of polymerized amyloid β in the perivascular space of the cerebral cortex in mice[J]. Int J Mol Sci, 2022, 23(12): 6422 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35742862/. DOI: 10.3390/ijms23126422.
[19]
KATO D, KAMEDA H, KINOTA N, et al. Loss of aquaporin-4 impairs cerebrospinal fluid solute clearance through cerebrospinal fluid drainage pathways[J/OL]. Sci Rep, 2024, 14(1): 27982 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39543281/. DOI: 10.1038/s41598-024-79147-y.
[20]
ABBRESCIA P, SIGNORILE G, VALENTE O, et al. Crucial role of Aquaporin-4 extended isoform in brain water Homeostasis and Amyloid-β clearance: implications for Edema and neurodegenerative diseases[J/OL]. Acta Neuropathol Commun, 2024, 12(1): 159 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39385254/. DOI: 10.1186/s40478-024-01870-4.
[21]
HARRISON I F, ISMAIL O, MACHHADA A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model[J]. Brain, 2020, 143(8): 2576-2593. DOI: 10.1093/brain/awaa179.
[22]
GAIKWAD S, SENAPATI S, HAQUE M A, et al. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: evidence from clinical and preclinical studies[J]. Alzheimers Dement, 2024, 20(1): 709-727. DOI: 10.1002/alz.13490.
[23]
SIMON M, WANG M X, ISMAIL O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice[J/OL]. Alzheimers Res Ther, 2022, 14(1): 59 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35473943/. DOI: 10.1186/s13195-022-00999-5.
[24]
SARKER A, SUH M, CHOI Y, et al. Intrathecal [64Cu]Cu-albumin PET reveals age-related decline of lymphatic drainage of cerebrospinal fluid[J/OL]. Sci Rep, 2023, 13(1): 12930 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37558700/. DOI: 10.1038/s41598-023-39903-y.
[25]
ZHOU L, YANG W, LIU Y, et al. Moderating effect of education on glymphatic function and cognitive performance in mild cognitive impairment[J/OL]. Front Aging Neurosci, 2024, 16: 1399943 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/38756534/. DOI: 10.3389/fnagi.2024.1399943.
[26]
YE C, WANG S, NIU L, et al. Unlocking potential of oxytocin: improving intracranial lymphatic drainage for Alzheimer's disease treatment[J]. Theranostics, 2024, 14(11): 4331-4351. DOI: 10.7150/thno.98587.
[27]
GIÃO T, TEIXEIRA T, ALMEIDA M R, et al. Choroid plexus in Alzheimer's disease-the current state of knowledge[J/OL]. Biomedicines, 2022, 10(2): 224 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35203434/. DOI: 10.3390/biomedicines10020224.
[28]
JIANG J, ZHUO Z, WANG A, et al. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum[J/OL]. Alzheimers Res Ther, 2024, 16(1): 149 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/38961406/. DOI: 10.1186/s13195-024-01520-w.
[29]
CHOI J D, MOON Y, KIM H J, et al. Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum[J]. Radiology, 2022, 304(3): 635-645. DOI: 10.1148/radiol.212400.
[30]
OTA M, SATO N, NAKAYA M, et al. Relationship between the tau protein and choroid plexus volume in Alzheimer's disease[J]. Neuroreport, 2023, 34(11): 546-550. DOI: 10.1097/WNR.0000000000001923.
[31]
UMEMURA Y, WATANABE K, KASAI S, et al. Choroid plexus enlargement in mild cognitive impairment on MRI: a large cohort study[J]. Eur Radiol, 2024, 34(8): 5297-5304. DOI: 10.1007/s00330-023-10572-9.
[32]
MUNICIO C, CARRERO L, ANTEQUERA D, et al. Choroid Plexus Aquaporins in CSF Homeostasis and the Glymphatic System: Their Relevance for Alzheimer's Disease[J/OL]. Int J Mol Sci, 2023, 24(1): 878 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/36614315/. DOI: 10.3390/ijms24010878.
[33]
ČARNA M, ONYANGO I G, KATINA S, et al. Pathogenesis of Alzheimer's disease: Involvement of the choroid plexus[J]. Alzheimers Dement, 2023, 19(8): 3537-3554. DOI: 10.1002/alz.12970.
[34]
KAMAGATA K, SAITO Y, ANDICA C, et al. Noninvasive Magnetic Resonance Imaging Measures of Glymphatic System Activity[J]. J Magn Reson Imaging, 2024, 59(5): 1476-1493. DOI: 10.1002/jmri.28977.
[35]
LEE M K, CHO S J, BAE Y J, et al. MRI-Based Demonstration of the Normal Glymphatic System in a Human Population: A Systematic Review[J/OL]. Front Neurol, 2022, 13: 827398 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35693018/. DOI: 10.3389/fneur.2022.827398.
[36]
XU Z, JI Y, WEN C, et al. Tracer kinetic model detecting heterogeneous blood-brain barrier permeability to water and contrast agent in Alzheimer's disease and dementia with lewy bodies[J/OL]. Alzheimers Dement, 2025, 21(2): e14529 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39936244/. DOI: 10.1002/alz.14529.
[37]
BARISANO G, LYNCH K M, SIBILIA F, et al. Imaging perivascular space structure and function using brain MRI[J/OL]. Neuroimage, 2022, 257: 119329 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35609770/. DOI: 10.1016/j.neuroimage.2022.119329.
[38]
SIMEGN G L, SUN P Z, ZHOU J, et al. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: a contemporary review[J/OL]. NMR Biomed, 2025, 38(1): e5294 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39532518/. DOI: 10.1002/nbm.5294.
[39]
MOHAMMADIAN F, ZARE SADEGHI A, NOROOZIAN M, et al. Quantitative assessment of resting-state functional connectivity MRI to differentiate amnestic mild cognitive impairment, late-onset Alzheimer's disease from normal subjects[J]. J Magn Reson Imaging, 2023, 57(6): 1702-1712. DOI: 10.1002/jmri.28469.
[40]
TAOKA T, NAGANAWA S. Glymphatic imaging using MRI[J]. J Magn Reson Imagin, 2020, 51(1): 11-24. DOI: 10.1002/jmri.26892.
[41]
BAI R, JIA Y, WANG B, et al. In vivo spatiotemporal mapping of proliferation activity in gliomas via water-exchange dynamic contrast-enhanced MRI[J]. Theranostics, 2025, 15(10): 4693-4707. DOI: 10.7150/thno.108479.
[42]
HOFFMANN A, ALMIRI W, MORDASINI P, et al. 7T MRI as a powerful tool to detect small and medium size vessel CNS vasculitis[J]. AJNR Am J Neuroradiol, 2025, 46(6): 1283-1286. DOI: 10.3174/ajnr.A8627.
[43]
PENG W, ACHARIYAR T M, LI B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease[J]. Neurobiol Dis, 2016, 93: 215-225. DOI: 10.1016/j.nbd.2016.05.015.
[44]
ZHOU Y, CAI J, ZHANG W, et al. Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human[J]. Ann Neurol, 2020, 87(3): 357-369. DOI: 10.1002/ana.25670.
[45]
BERGER F, KUBIK-HUCH R A, NIEMANN T, et al. Gadolinium distribution in cerebrospinal fluid after administration of a gadolinium-based MR contrast agent in humans[J]. Radiology, 2018, 288(3): 703-709. DOI: 10.1148/radiol.2018171829.
[46]
YU L, HU X, LI H, et al. Perivascular spaces, glymphatic system and MR[J/OL]. Front Neurol, 2022, 13: 844938 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35592469/. DOI: 10.3389/fneur.2022.844938.
[47]
DEIKE-HOFMANN K, REUTER J, HAASE R, et al. Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted[J]. Invest Radiol, 2019, 54(4): 229-237. DOI: 10.1097/RLI.0000000000000533.
[48]
CHEN W, SONG X, ZHANG Y, et al. Assessment of the Virchow-Robin Spaces in Alzheimer disease, mild cognitive impairment, and normal aging, using high-field MR imaging[J]. AJNR Am J Neuroradiol, 2011, 32(8): 1490-1495. DOI: 10.3174/ajnr.A2541.
[49]
ZHANG X, WANG Y, JIAO B, et al. Glymphatic system impairment in Alzheimer's disease: associations with perivascular space volume and cognitive function[J]. Eur Radiol, 2024, 34(2): 1314-1323. DOI: 10.1007/s00330-023-10122-3.
[50]
GOUVEIA-FREITAS K, BASTOS-LEITE A J. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology[J]. Neuroradiology, 2021, 63(10): 1581-1597. DOI: 10.1007/s00234-021-02718-7.
[51]
WANG Q, HUANG X, SU Y, et al. Activation of wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer's disease[J]. Brain, 2022, 145(12): 4474-4488. DOI: 10.1093/brain/awac236.
[52]
LIANG T, CHANG F, HUANG Z, et al. Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space (DTI- ALPS) in dementia patients[J/OL]. Br J Radiol, 2023, 96(1146): 20220315 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37066824/. DOI: 10.1259/bjr.20220315.
[53]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[54]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/34118396/. DOI: 10.1016/j.neuroimage.2021.118257.
[55]
HUANG S, ZHANG Y, GUO Y, et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease[J]. Alzheimers Dement, 2024, 20(5): 3251-3269. DOI: 10.1002/alz.13789.
[56]
KAMAGATA K, ANDICA C, TAKABAYASHI K, et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease[J/OL]. Neurology, 2022, 99(24): E2648-E2660 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/36123122/. DOI: 10.1212/WNL.0000000000201300.
[57]
杜晓岚, 段曦瑞, 李国臣, 等. 磁共振成像技术在人脑胶质淋巴系统研究的现状与挑战[J]. 磁共振成像, 2024, 15(11): 180-184. DOI: 10.12015/issn.1674-8034.2024.11.028.
DU X L, DUAN X R, LI G C, et al. Current status and challenges of MRI technology in the study of the glymphatic system in the human brain[J]. Chin J Magn Reson Imaging, 2024, 15(11): 180-184. DOI: 10.12015/issn.1674-8034.2024.11.028.
[58]
STEWARD C E, VENKATRAMAN V K, LUI E, et al. Assessment of the DTI-ALPS Parameter Along the Perivascular Space in Older Adults at Risk of Dementia[J]. J Neuroimaging, 2021, 31(3): 569-578. DOI: 10.1111/jon.12837.
[59]
HSU J L, WEI Y C, TOH C H, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease[J]. Ann Neurol, 2023, 93(1): 164-174. DOI: 10.1002/ana.26516.
[60]
LIU L, ZENG Q, LUO X, et al. Association between single nucleotide polymorphisms in the aquaporin-4 gene and longitudinal changes in white matter free water and cognitive function in non-demented older adults[J/OL]. Hum Brain Mapp, 2025, 46(4): e70171 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40016624/. DOI: 10.1002/hbm.70171.
[61]
SHAO Z, GAO X, CEN S, et al. Unveiling the link between glymphatic function and cortical microstructures in post-traumatic stress disorder[J]. J Affect Disord, 2024, 365: 341-350. DOI: 10.1016/j.jad.2024.08.094.
[62]
DENG Z, WANG W, NIE Z, et al. Increased glymphatic system activity and thalamic vulnerability in drug-naive somatic depression: evidenced by DTI-ALPS index[J/OL]. Neuroimage Clin, 2025, 46: 103769 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40120532/ DOI: 10.1016/j.nicl.2025.103769.
[63]
SU H, CHAN K W Y. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo[J]. ACS nano, 2024, 18(50): 33775-33791. DOI: 10.1021/acsnano.4c05923.
[64]
BIE C, VAN ZIJL P, XU J, et al. Radiofrequency labeling strategies in chemical exchange saturation transfer MRI[J/OL]. NMR Biomed, 2023, 36(6): e4944 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37002814/. DOI: 10.1002/nbm.4944.
[65]
SUN P Z, XIAO G, ZHOU I Y, et al. A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI[J]. Contrast Media Mol Imaging, 2016, 11(3): 195-202. DOI: 10.1002/cmmi.1680.
[66]
HUANG J, VAN ZIJL P C M, HAN X, et al. Altered D-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI[J/OL]. Sci Adv, 2020, 6(20): eaba3884 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/32426510/. DOI: 10.1126/sciadv.aba3884.
[67]
XU X, CHAN K W Y, KNUTSSON L, et al. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer[J]. Magn Reson Med, 2015, 74(6): 1556-1563. DOI: 10.1002/mrm.25995.
[68]
CHEN Y, DAI Z, FAN R, et al. Glymphatic system visualized by chemical-exchange-saturation-transfer magnetic resonance imaging[J]. ACS Chem Neurosci, 2020, 11(13): 1978-1984. DOI: 10.1021/acschemneuro.0c00222.
[69]
OHNO K, OHKUBO M, ZHENG B, et al. GlyCEST: magnetic resonance imaging of glycine-distribution in the normal murine brain and alterations in 5xFAD mice[J/OL]. Contrast Media Mol Imaging, 2021: 8988762 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35046756/ DOI: 10.1155/2021/8988762.
[70]
LIU Y, LI J, JI H, et al. Comparisons of glutamate in the brains of Alzheimer's disease mice under chemical exchange saturation transfer imaging based on machine learning analysis[J/OL]. Front Neurosci, 2022, 16: 838157 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35592256/ DOI: 10.3389/fnins.2022.838157.
[71]
XU L, LAI L, WEN Y, et al. Angiopep-2, an MRI Biomarker, Dynamically Monitors Amyloid Deposition in Early Alzheimer?s Disease[J]. ACS Chem Neurosci, 2023, 14(2): 226-234. DOI: 10.1021/acschemneuro.2c00513.
[72]
LI Y, LIN S, GUO Z, et al. Decoupling of global signal and cerebrospinal fluid inflow is associated with cognitive decline in patients with obstructive sleep apnoea[J]. Sleep Med, 2025, 129: 330-338. DOI: 10.1016/j.sleep.2025.03.009.
[73]
WANG Z, SONG Z, ZHOU C, et al. Reduced coupling of global brain function and cerebrospinal fluid dynamics in parkinson's disease[J]. J Cereb Blood Flow Metab, 2023, 43(8): 1328-1339. DOI: 10.1177/0271678X231164337.
[74]
JIANG D, LIU L, KONG Y, et al. Regional Glymphatic Abnormality in Behavioral Variant Frontotemporal Dementia[J]. Ann Neurol, 2023, 94(3): 442-456. DOI: 10.1002/ana.26710.
[75]
KIVINIEMI V, WANG X, KORHONEN V, et al. A Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?[J]. J Cereb Blood Flow Metab, 2016, 36(6): 1033-1045. DOI: 10.1177/0271678X15622047.
[76]
HAN F, CHEN J, BELKIN-ROSEN A, et al. Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to Alzheimer disease-related pathology[J/OL]. PLoS Biol, 2021, 19(6): e3001233 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/34061820/ DOI: 10.1371/journal.pbio.3001233.
[77]
TWOHY K E, KRAMER M K, DIANO A M, et al. Mechanical properties of the cortex in older adults and relationships with personality traits[J/OL]. Hum Brain Mapp, 2025, 46(2): e70147 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39916406/. DOI: 10.1002/hbm.70147.
[78]
PAVULURI K, HUSTON J, EHMAN R L, et al. Associations between vascular health, brain stiffness and global cognitive function[J/OL]. Brain Commun, 2024, 6(2): fcae073 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/38505229/. DOI: 10.1093/braincomms/fcae073.
[79]
HALL C M, LASLI S, SERWINSKI B, et al. Hippocampus of the APPNL-G-F mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis[J/OL]. Front Aging Neurosci, 2023, 15: 1212212 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37547743/. DOI: 10.3389/fnagi.2023.1212212.
[80]
JOO B, WON S Y, SINKUS R, et al. Viscoelastic property of the brain assessed with magnetic resonance elastography and its association with glymphatic system in neurologically normal individuals[J]. Korean J Radiol, 2023, 24(6): 564-573. DOI: 10.3348/kjr.2022.0992.
[81]
WEN Q, MUSKAT J, BABBS C F, et al. Dynamic diffusion-weighted imaging of intracranial cardiac impulse propagation along arteries to arterioles in the aging brain[J/OL]. J Cereb Blood Flow Metab, 2025: 271678X251320902 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/39947901/. DOI: 10.1177/0271678X251320902.
[82]
CHASE H W, HAFEMAN D M, GHANE M, et al. Reproducible effects of sex and acquisition order on multiple global signal metrics: implications for functional connectivity studies of phenotypic individual differences using fMRI[J/OL]. Brain Behav, 2025, 15(4): e70141 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40200728/. DOI: 10.1002/brb3.70141.
[83]
NUTTALL R, EL MIR A, JÄGER C, et al. Broadly applicable methods for the detection of artefacts in electroencephalography acquired simultaneously with hemodynamic recordings[J/OL]. Methodsx, 2023, 11: 102376 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37767154/. DOI: 10.1016/j.mex.2023.102376.
[84]
SAITO Y, KAMAGATA K, ANDICA C, et al. Multisite harmonization of diffusion tensor image analysis along the perivascular space using the COMBined association test[J]. Jpn J Radiol, 2023, 41(10): 1072-1083. DOI: 10.1007/s11604-023-01432-z.
[85]
NAZERI A, DEHKHARGHANIAN T, LINDSAY K E, et al. The Spatial Patterns and Determinants of Cerebrospinal Fluid Circulation in the Human Brain.[J/OL]. bioRxiv, 2023, 15: 2023.08.13.553149 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37645835/. DOI: 10.1101/2023.08.13.553149.
[86]
HU Y, WEN C, CAO G, et al. Brain network connectivity feature extraction using deep learning for Alzheimer's disease classification[J/OL]. Neurosci Lett, 2022, 782: 136673 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/35513242/. DOI: 10.1016/j.neulet.2022.136673.
[87]
SONG Z, LI H, ZHANG Y, et al. s2MRI-ADNet: an interpretable deep learning framework integrating euclidean-graph representations of Alzheimer's disease solely from structural MRI[J]. MAGMA, 2024, 37(5): 845-857. DOI: 10.1007/s10334-024-01178-3.
[88]
BEVILACQUA R, BARBAROSSA F, FANTECHI L, et al. Radiomics and Artificial Intelligence for the Diagnosis and Monitoring of Alzheimer's Disease: A Systematic Review of Studies in the Field[J/OL]. J Clin Med, 2023, 12(16): 5432 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/37629474/. DOI: 10.3390/jcm12165432.
[89]
CHEON H, LEE S H, KIM S A, et al. In vivo dynamic and static analysis of lymphatic dysfunction in lymphedema using near-infrared fluorescence indocyanine green lymphangiography[J]. Arterioscler Thromb Vasc Biol, 2023, 43(10): 2008-2022. DOI: 10.1161/ATVBAHA.123.319188.
[90]
SUAMI H, HEYDON-WHITE A, MACKIE H, et al. A new indocyanine green fluorescence lymphography protocol for identification of the lymphatic drainage pathway for patients with breast cancer-related lymphoedema[J/OL]. BMC cancer, 2019, 19(1): 985 [2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/31640623/. DOI: 10.1186/s12885-019-6192-1.
[91]
VAN HEUMEN S, RIKSEN J J M, BRAMER W M, et al. Imaging of the lymphatic vessels for surgical planning: a systematic review[J]. Ann Surg Onco, 2023, 30(1): 462-479. DOI: 10.1245/s10434-022-12552-7.

上一篇 结构-功能磁共振成像在rTMS治疗重度抑郁障碍作用机制中的研究进展
下一篇 弱视患者脑功能改变的多模态MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2