分享:
分享到微信朋友圈
X
综述
弱视患者脑功能改变的多模态MRI研究进展
贾金金 贾静 孙燕 严兴科

Cite this article as: JIA J J, JIA J, SUN Y, et al. Research progress of multimodal MRI technology on the changes in brain function of patients with amblyopia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 117-123.本文引用格式:贾金金, 贾静, 孙燕, 等. 弱视患者脑功能改变的多模态MRI研究进展[J]. 磁共振成像, 2025, 16(7): 117-123. DOI:10.12015/issn.1674-8034.2025.07.019.


[摘要] 弱视患者视功能损害与脑功能改变密切相关。MRI能够在无创条件下对大脑结构与功能进行精准成像,可深入解析弱视脑功能改变的特征和机制。本文总结了近年来多模态MRI技术研究弱视患者脑功能机制的文献资料,结构MRI显示,弱视患者视觉通路相关脑区灰质体积和皮层厚度减小;功能MRI通过任务态发现视觉皮层激活减少,静息态显示局部脑区神经元低频振幅(amplitudeo flow frequency fluctuation, ALFF)值及局部一致性(regional homogeneity, ReHo)值异常、初高级视觉通路功能连接改变以及默认网络、突显网络等脑功能网络的变化;扩散MRI发现白质纤维束各向异性分数(fractionl anisotropy, FA)减小、平均弥散度(mean diffusivity, MD)增加;磁共振波谱成像(magnetic resonance spectroscopy, MRS)显示视觉皮层γ-氨基丁酸(γ-aminobutyric acid, GABA)水平降低;基于动脉自旋标记(arterial spin labeling, ASL)脑灌注成像技术发现弱视患者部分脑区血流灌注减少。本文就上述内容展开综述,以期为弱视脑机制的研究提供更多参考。
[Abstract] The impairment of visual function in patients with amblyopia is closely related to the changes in brain function. MRI technology enables precise imaging of the brain's structure and function under non-invasive conditions, allowing for an in-depth analysis of the characteristics and mechanisms of the changes in brain function in amblyopia. This article summarizes the literature on the use of MRI technology in recent years to study the brain function mechanisms in patients with amblyopia. Structural MRI shows that the gray matter volume and cortical thickness in brain regions related to the visual pathway of amblyopic patients is reduced. Functional MRI, through task-based fMRI, reveals reduced activation of the visual cortex, and resting-state fMRI shows abnormalities in the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) values of neurons in local brain regions, changes in the functional connectivity of the primary and secondary visual pathways, as well as alterations in brain functional networks such as the default mode network and the salience network. Diffusion MRI reveals a decrease in the fractional anisotropy (FA) value and an increase in the mean diffusivity (MD) value of white matter fiber tracts. Magnetic resonance spectroscopy (MRS) shows a decrease in the γ-aminobutyric acid (GABA) level in the visual cortex. Based on the arterial spin labeling (ASL) cerebral perfusion imaging technique, it has been found that cerebral blood perfusion in certain brain regions of amblyopic patients is reduced. This article reviews the contents mentioned above, aiming to provide more references for the study of the brain mechanisms of amblyopia.
[关键词] 弱视;脑功能;磁共振成像;结构磁共振成像;功能磁共振成像
[Keywords] amblyopia;brain function;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging

贾金金 1   贾静 2   孙燕 3   严兴科 2*  

1 青海大学医学院中医系,西宁 810016

2 甘肃中医药大学针灸推拿学院,兰州 730000

3 兰州普瑞眼视光医院,兰州 730000

通信作者:严兴科,E-mail: yanxingke@126.com

作者贡献声明:严兴科设计本研究的方案,对稿件的重要内容进行了修改;贾金金起草和撰写稿件,获取、分析和解释本研究的数据,对稿件重要内容进行修改;贾静主要负责检索既往研究文献,分析或解释文献,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;孙燕获取、分析或解释本研究的数据,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82460971,82160935
收稿日期:2025-04-12
接受日期:2025-07-07
中图分类号:R445.2  R777.44 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.019
本文引用格式:贾金金, 贾静, 孙燕, 等. 弱视患者脑功能改变的多模态MRI研究进展[J]. 磁共振成像, 2025, 16(7): 117-123. DOI:10.12015/issn.1674-8034.2025.07.019.

0 引言

       弱视作为一种常见的视觉发育障碍性疾病,其发病与脑功能的改变存在着密切的联系[1]。患者脑功能改变严重影响视觉系统的正常发育与功能实现,使患者即使在眼部无明显器质性病变的情况下,依然难以获得清晰的视觉体验[2]。根据发病原因不同,弱视主要分为斜视性弱视(strabismic amblyopia, SA)、屈光参差性弱视(anisometropic amblyopia, AA)、屈光不正性弱视及形觉剥夺性弱视[3],目前针对SA和AA的脑功能影像学研究最多。

       上世纪60年代,HUBEL和WIESEL两位学者对弱视猫模型进行了神经电生理机制的研究,创新性提出“视皮层是弱视主要受损部位”的观点[4, 5]。自此,对弱视脑功能机制研究不断深入,发现其不仅是视皮层功能受损,从视皮层延伸至额、顶叶等高级认知功能脑区均发生不同程度的改变[6, 7]。随着神经影像学技术的发展,不同模态的磁共振成像(magnetic resonance imaging, MRI)技术也被应用到弱视的脑功能机制研究中,包括结构磁共振成像(structural MRI, sMRI)、功能磁共振成像(functional MRI, fMRI)、扩散磁共振成像(diffusion MRI, dMRI)、磁共振波谱成像(magnetic resonance spectroscopy, MRS)以及基于动脉自旋标记成像技术(arterial spin labeling, ASL)脑血流灌注成像等。本文基于以上MRI技术在弱视脑功能机制研究中的应用,从弱视患者脑部形态学、脑功能活动与连接、脑代谢水平及脑血流灌注方面进行综述,以期为弱视的脑机制研究提供更多见解。

1 弱视脑功能机制的sMRI研究

       sMRI利用MRI获取高分辨率解剖图像,用于观察大脑灰质、白质和脑脊液的分布,提供大脑结构的静态信息。其中,基于体素的形态学测量(voxel-based morphometry, VBM)和表面的形态学测量(surface-based morphometry, SBM)技术揭示了弱视患者脑灰质体积(gray matter volume, GMV)及皮层厚度的改变。

1.1 VBM的脑灰质体积研究

       VBM以体素为单位对脑结构分割处理,进一步量化分析脑GMV或密度,以识别脑部细微的形态学改变[8]。研究显示,弱视患者外侧膝状体(lateral geniculate body, LGN)的GMV和密度较正常对照显著减少[9]。作为视觉传导通路的第三级神经元,LGN是视觉信息传递与精细化加工的关键枢纽[10]。SU等[11]的研究结果发现SA患者右颞上回、小脑前叶和后叶、双侧海马旁回和左前扣带回皮层平均GMV显著减少,且与患者斜视程度呈负相关,提示这些脑区体积的减少可能是SA患者眼球运动障碍的病理基础。XIAO等[12]研究发现,SA和AA儿童除双侧距状皮层外,左侧梭状回、颞下回及额中回的GMV亦较正常对照减少,这些脑区作为腹侧视觉通路的核心组成部分,主要负责对物体的特征识别。另有研究显示,单眼弱视患者与空间视觉相关脑区的GMV减少,这为弱视患者立体视觉缺陷提供相关解剖学证据[13]。此外,有研究显示AA患儿右侧小脑第4/5小叶GMV的增加与右侧额中回功能活动降低呈负相关,小脑可与额叶眼动区相互作用参与眼球运动的控制,提示弱视患者大脑重塑过程中的代偿可塑性[14]

1.2 SBM的皮层厚度研究

       较VBM技术而言,SBM更侧重量化大脑皮层表面的几何特征,如皮层厚度、曲率参数及表面积等[15]。LIANG等[16]发现成人AA患者双侧V1区皮质厚度减少、平均曲率增加,且双侧V1区皮质厚度与屈光参差程度呈负相关,此外,左侧V2、腹侧V3、V4和颞中区(MT/V5)皮层厚度也薄于正常对照,这为高级视皮层厚度的异常提供证据。然而,另一项 SBM 研究显示,AA儿童双侧楔叶和左侧舌回皮质厚度较正常对照明显增加,且皮层厚度的改变与弱视眼视力损害程度呈正相关[17]。楔叶和舌回位于枕叶内侧,负责对V1区视觉信息进一步整合和处理,该增厚现象在成人AA患者中未观察到,但类似弱视患儿视皮层增厚现象在盲人视皮层研究中存在[18, 19]。研究表明皮质变薄是儿童和青少年大脑发育的形态学特征[20],其中又以枕叶、颞叶和额叶表现的最为明显[21, 22],弱视儿童在视觉发育关键期内的异常视觉经验可能干扰了视皮层突触修剪及冗余神经元凋亡的正常进程,导致皮质减薄受阻[23]。此外,李亚东等[24]发现AA儿童在额、顶、颞叶的皮层厚度和折叠模式亦存在异常。

       针对SA儿童的脑结构研究显示,患者在左顶内沟、顶枕沟、颞上/中回及右腹前运动皮质、前岛叶等脑区皮质厚度减少[25],这些脑区与背侧视觉通路相关脑区分布较一致。郑丽琴[26]也发现SA患者枕中回的结构损害程度明显高于AA组,而枕中回是背侧通路处理视觉空间信息的关键脑区,结合SA儿童的立体视功能的缺陷,提示背侧视觉通路可能是SA患者特异性损伤的靶点。

       以上基于VBM和SBM的研究表明,弱视患者脑灰质体积及皮层厚度的改变主要集中于枕叶视觉皮层以及与腹侧、背侧视觉通路相关的脑区。而弱视患者枕叶视皮层皮质厚度研究结果的差异可能与受试者的年龄有关。

2 弱视脑功能机制的BOLD-fMRI研究

       基于血氧水平依赖(blood oxygenation level dependent,BOLD)的任务态fMRI(task-based fMRI, tb-fMRI)与静息态fMRI(resting-state fMRI, rs-fMRI)通过捕捉神经血管耦合机制下血氧代谢的动态变化,无创反映局部脑区功能活动及功能连接等改变[27],已成为弱视患者脑功能机制研究的核心工具。

2.1 tb-fMRI的局部脑区活动研究

       tb-fMRI在BOLD信号采集过程中给予受试者特定的任务刺激后,观察大脑激活情况,以即时反映大脑的功能活动[28]。目前基于tb-fMRI对弱视患者脑功能的研究多以棋盘格任务或正弦光栅刺激作为实验范式。有研究利用棋盘格对AA和SA患者进行视觉刺激实验,发现弱视组的纹状皮层(V1区)和纹外皮层区激活水平低于正常视力组,其中AA儿童V1区激活减少更显著,而SA儿童双侧纹状外皮层激活减少更明显[29]。GUPTA等[30]同样发现使用弱视眼观察棋盘格任务时,患者枕叶视觉区激活减少,经治疗后双侧枕叶纹状区和纹外区活动增强。基于正弦光栅刺激的tb-fMRI研究也得到类似视觉皮层激活减少的结果[31]。此外,研究显示弱视患者在执行视觉任务时LGN激活降低[32],结合其结构的改变,表明该核团可能在弱视脑功能机制中起关键作用。

       基于tb-fMRI的研究表明弱视患者存在视皮层功能的抑制。但因设备要求、受试者配合度等要求,近年tb-fMRI在弱视脑功能研究中逐渐减少,尤其在儿童群体中常因配合问题导致实验中断。

2.2 rs-fMRI的局部脑活动和功能连接研究

       相较于tb-fMRI,rs-fMRI具有简便、易实施的优点[33],其通过捕捉静息状态下BOLD信号的低频振荡相位,可显示弱视患者局部脑区活动、脑区间功能连接及脑功能网络的改变。

2.2.1 rs-fMRI的局部脑区活动研究

       低频振幅(amplitudeo flow frequency fluctuation, ALFF)和局部一致性(regional homogeneity, ReHo)是弱视脑功能研究中量化局部脑区神经元活动的两种常用方法。ALFF通过测量静息状态下0.01~0.08 Hz频段BOLD自发信号波动强度来反映脑区的功能活动[34]。CHEN等[35]在研究中发现成人弱视患者角回、小脑、颞中回和扣带回的ALFF值降低,其中小脑的自发性功能活动减弱与视力缺陷相关,而颞中回自发性功能活动与立体视缺陷相关。骆瑶[36]则在研究中表明AA儿童组左侧额下回眶部和中央前回、右侧颞下回、枕上回、梭状回和丘脑以及双侧楔前叶等脑区ALFF值降低,这些脑区与腹侧视觉通路存在密切联系。MA等[37]同样在研究中发现AA儿童腹侧视觉通路内局部脑区的ALFF值降低。ZHANG等[38]发现单眼弱视儿童在与视觉、感觉、运动和注意控制等功能有关的10个脑区存在不同程度的ALFF的改变。SA患者同样存在额叶、楔叶及小脑等视觉和运动相关脑区功能活动的异常,提示其在控制眼球运动、调节视觉融合功能和维持视觉稳态等方面存在功能障碍[39, 40]

       ReHo通过计算静息态下大脑局部区域与其邻近脑区体素之间BOLD信号的一致性,来反映局部脑区神经元活动的同步性[41]。研究发现AA患者右楔前叶、左内侧前额叶、左额下回及左小脑的ReHo值降低,提示视觉运动处理能力下降,而双侧中央后回和前回结合区、左中央旁小叶、左颞上回、左梭状回等脑区的ReHo值升高,表明躯体感觉皮层、运动区及听觉区存在功能活动的代偿[42]。TAN等[43]在研究发现SA儿童右侧小脑、左额上回及左壳核的平均ReHo值降低,在右舌回、双侧顶上小叶及右顶下小叶等脑区的ReHo值升高,提示SA患者存在眼位不正、双眼运动协调性障碍及多模态感觉整合的代偿。SHAO等[44]的发现成人AA患者在舌回、枕中回、楔前叶等枕叶脑区ReHo值升高,而YANG等[45]则发现成人SA患者舌回、楔叶、枕上回ReHo值降低,推测弱视的类型、病程及严重程度可能影响研究结果。

2.2.2 rs-fMRI的脑区间功能连接研究

       rs-fMRI技术衍生的功能连接(functional connectivity, FC)[46]、功能连接密度(functional connectivity density, FCD)[47]及基于体素镜像同伦连接(voxel-mirrored homotopic connectivity, VMHC)[48]等一系列分析方法,可描述弱视患者静息状态下脑区间的功能连接与网络属性。DING等[49]研究发现,AA与混合性弱视儿童双侧V1区与下顶叶-角回的交汇处及小脑的FC值显著降低;DAI等[6]表明,左眼AA儿童的双侧V1区与右角回、额中回连接减弱,成人AA研究亦显示双侧V1与额中回有效连接降低[50];LIU等[51]发现成人SA患者V1区与双侧角回、舌回的FC值降低。角回与额中回作为联合皮层,均参与多模态信息整合及感觉认知功能中的注意调控[52, 53]。以上研究结果均显示弱视患者V1区和其他脑区之间FC的改变。

       WANG等[54]通过计算大脑短程(区域内)和长程(区域间)FCD图谱,发现AA儿童左颞下/梭状回、前外侧前额叶皮层和顶枕皮层的短程FCD降低,表明其背侧视觉通路存在区域内连接受损。另一项FCD研究显示SA儿童小脑、额叶、丘脑等脑区长短程FC均发生显著变化,涉及视觉、认知及情绪功能[55]。叶玉娟等[56]发现AA儿童腹侧视觉通路内枕颞叶功能连接升高,这可能是视觉输入不足的功能代偿结果。此外,LIANG等[57]采用VMHC方法发现,AA和SA患者舌回半球间同步性显著增强且与患者的立体视锐度呈正相关,AA患者梭状回VMHC增强幅度更高且与屈光参差程度呈正相关,提示AA和SA患者高级视觉脑区半球间协调功能受损,而不同类型弱视存在半球间FC机制差异。以上研究均表明弱视患者高级视觉脑区间FC的变化情况。

2.2.3 rs-fMRI的脑功能网络研究

       除视觉相关脑区FC改变外,弱视患者高级脑功能网络连接亦存在异常。王浩然等[58]采用多变量模式分析发现,AA儿童默认网络内部及其与背侧注意网络、额顶控制网络之间的静息态FC减弱,提示其内外导向认知的动态平衡能力受损。另有研究显示,SA与AA儿童突显网络内部的连通性较正常对照组相比增强,AA组儿童感觉运动网络与听觉网络内FC较与SA组增强,而SA组初级视觉网络与中央执行网络间的连接较AA组明显受损[26]

       综上,基于rs-fMRI的研究表明,弱视脑功能的改变不仅涉及视觉皮层和背腹侧视觉通路,还累及默认网络、突显网络等高级脑功能网络;其损伤并非局限于多个脑区的单独改变,还表现为脑区间FC的异常。这种脑功能活动及连接的变化,可能是弱视患者视功能损害及高级认知功能异常的病理基础。

3 弱视脑功能机制的dMRI研究

       dMRI是一种利用水分子扩散特性成像的MRI技术[59]。目前评估弱视患者脑白质纤维束结构及其完整性的主要方法有扩散张量成像(diffusion tensor imaging, DTI)和扩散光谱成像(diffusion spectrum imaging, DSI)。

3.1 DTI的脑白质研究

       DTI通过捕捉不同方向水分子扩散的方向与速率获取常用参数,包括各向异性分数(fractionl anisotropy, FA)和平均弥散度(mean diffusivity, MD)。其中,FA用于衡量水分子扩散的各向异性程度,该值越大表明白质纤维方向性越显著;MD反映整体扩散率,该值越大说明水分子扩散越活跃。FA减少或MD增加提示脑白质纤维组织减少、髓鞘形成不足或结构退化[60, 61]

       ALLEN等[62]对比AA、SA患者与正常对照组的前视觉通路白质微观结构,发现两种类型弱视患者视神经与视束的FA均显著低于对照组,提示其结构完整性降低,且AA患者的前视觉通路结构异常较SA更严重。GÜMÜSTAS等[63]发现单眼弱视患者视觉通路的前交叉区FA降低,而双眼弱视组视神经交叉区FA与正常对照组无差异,推测可能与单眼弱视的双眼视网膜输入差异有关。宋海燕等[64]通过DTI和弥散张量束成像发现,弱视患者视辐射(optic radiation,OR)的FA值和体素数较对照组显著降低,这与LIANG[16]的研究结果一致。ALLEN等[65]发现弱视患者OR的MD明显增加,提示其OR轴突密度降低。XIE等[66]的研究结果则显示,弱视儿童与正常对照组OR的平均FA值无明显差异,且两组均存在左高于右的FA不对称性,但正常对照组后OR的体素高于弱视组,表明正常儿童的OR发育更好。

       LI等[67]研究发现,AA患者左下纵束(inferior longitudinal fasciculus, ILF)、右上纵束(superior longitudinal fasciculus, SLF)和左额枕下束(inferior fronto-occipital fasciculus, IFOF)的FA值显著降低,且与视力呈正相关。ILF作为腹侧通路核心纤维束连接枕叶与颞前皮层,SLF作为背侧通路枢纽整合额-顶-枕-颞叶,其结构损伤提示腹背侧视觉通路信息传递的异常。DUAN等[68]同样表明,SA患者ILF的MD异常升高,右侧枕骨垂直束(vertical occipital fasciculus, VOF)亦出现类似改变。VOF作为连接背腹侧视觉通路的关键纤维桥,其完整性破坏可能是造成SA患者视觉整合功能缺损的重要原因[69]

3.2 DSI的结构网络研究

       DSI是dMRI技术的扩展,其在传统dMRI基础上能更精确地描述水分子在各个方向上的扩散分布,提供更详细的组织微观结构信息,尤其在追踪复杂纤维束时更具有优势,弥补了传统DTI的不足[70]。TSAI等[71]运用DSI发现,弱视成人患者关联纤维的左弓状束、左额叶斜束、左穹窿及IFOF、听觉神经的左侧丘脑辐射及跨半球连接纤维(胼胝体膝回和颞中回纤维)的广义FA均显著低于正常对照,表明弱视相关白质损伤不仅局限于视觉相关通路,还累及视听整合及手眼协调相关纤维束,为弱视患者的高级认知功能异常提供了解剖学依据。

       综合DTI和DSI的研究发现,弱视患者脑白质微结构的损伤呈现出沿视觉信息传导的层级化累及特征,影响整个视觉神经通路的完整性。损伤首先波及视神经与视束(视网膜至中枢的初级通道),其结构的异常可直接导致视觉信息传递效率下降;继而累及视交叉纤维,干扰了双眼视觉信号的协同处理;更通过OR纤维束向高级视觉中枢延伸,影响背侧与腹侧视觉通路的纤维网络。

4 弱视脑功能机制的MRS研究

       MRS是利用磁共振现象和化学位移作用对体内特定原子核及其化合物定量分析的无创性检查技术,主要用于检测特定区域的化学成分和代谢状态[72]。γ-氨基丁酸(γ-aminobutyric acid, GABA)作为中枢神经系统中主要的抑制性神经递质,与视觉系统内兴奋性神经递质保持平衡对抗的关系,在视觉皮质可塑性中发挥关键作用[73],弱视的视觉缺陷可能源于初级视觉皮层中GABA的异常抑制。

       MUKERJI等[74]利用MRS发现,AA弱视患者的双眼视力差异与视觉皮层中GABA浓度呈负相关,且双眼间抑制与视觉皮层GABA水平的关系存在差异:视觉皮层中GABA水平与弱视眼对健眼的感知抑制呈正相关,而与健眼对弱视眼的抑制呈负相关。另有研究发现弱视程度越深,视觉皮层GABA水平越低,提示严重弱视患者的视觉皮层因GABA水平降低导致弱视眼对健眼的抑制作用减弱,从而破坏双眼之间的平衡[75]。心理物理学研究也证实,弱视眼的抑制作用弱于健眼,而健眼的抑制能力与正常视力者相当[76]。因此,通过提升视觉皮层内GABA水平来增强弱视眼对健眼的抑制能力,可能成为未来治疗研究的热点。此外,KONUS等[77]研究发现AA儿童枕叶皮层中N-乙酰天冬氨酸/肌酸比值低于正常受试者(N-乙酰天冬氨酸作为神经元完整性标志物,其降低提示神经元丢失或功能障碍[78]),但因样本量较小上述研究结果差异未具有统计学意义。

       综上,MRS研究提示弱视患者视皮层内存在代谢异常,研究认为人脑代谢产物的改变常早于结构变化[79],但目前关于弱视MRS的研究有限,但随着对弱视脑功能探索的深入,MRS有望对弱视的发病机制提供更多依据。

5 弱视脑功能机制的脑血流灌注研究

       ASL是MRI中用于评估组织血流灌注的功能成像技术,其核心原理是利用动脉血中的水分子作为内源性示踪剂,通过标记动脉血中的氢质子来测量脑血流量[80]。与使用外源性对比剂的传统灌注加权成像(perfusion-weighted imaging, PWI)不同,ASL完全无创且无需注射对比剂。

       王依格[81]利用ASL技术评估成人弱视患者脑血流动力学发现,与对照组相比,弱视组基底节尾状核及伏隔核平均脑血流量升高、右侧尾状核腹侧脑血容量升高,提示弱视患者基底核区脑血流灌注发生代偿性改变。此外,研究还发现弱视组枕中回、枕下回、岛叶等脑区的动脉通过时间降低,这反映其血流量下降,提示视觉、默认网络等功能区的神经活动可能受损。ASL技术通过动态观察脑血流灌注为弱视研究提供新视角,有望突破传统临床评估的局限性,值得进一步研究。

6 小结

       MRI技术的应用使弱视的脑功能机制研究得到突破性进展。结构MRI发现视觉皮层灰质体积和皮层厚度的异常,这可能是其发病机制之一;功能MRI揭示初高级视觉通路局部脑活动、功能连接以及脑功能网络改变,这可能是导致弱视视功能损害与高级认知功能异常的重要原因;扩散MRI显示弱视患者白质纤维束微结构的变化;MRS与脑灌注成像技术提示弱视患者局部脑区代谢及血流灌注的异常,但目前二者在弱视脑功能机制研究中的应用有限,需更多的研究来验证。此外,AA与SA因视网膜输入起源的差异,其脑结构和脑功能呈现不尽相同的改变特征,具体而言,SA由双眼眼轴不同轴引起的双眼异常相互作用所致,脑功能异常多集中于双眼整合及视觉运动等脑区;而AA因单眼输入差异导致皮层优势柱失衡,其在初高级视觉联合区的神经活动常发生改变,故对于不同类型的弱视患者在临床干预时需制订个体化策略。

       通过对现有文献报道的整理分析,笔者认为目前的研究仍存在一些不足:(1)对于弱视的脑功能机制研究多为单一亚型的小样本分析,研究方法同质性不足,导致研究结论可重复性受限。(2)当前研究大多聚焦于发病机制的探讨,缺乏治疗前后脑结构与功能重塑的动态研究。当前MRI技术正经历方法学的革新,超高场强MRI联合多模态成像技术的应用,为解析弱视患者的脑功能改变提供新范式。此外,开放科学框架下的大规模多中心数据共享也为揭示弱视脑机制开辟了新维度。通过整合多模态神经影像技术,纵向剖析弱视治疗前后脑功能重塑机制,并揭示脑结构与功能的协同变化及其与临床疗效的联系,能够为进一步阐明弱视的脑功能机制提供新见解,最终推动基于脑功能可塑性的精准治疗发展。

[1]
WANG G, LIU L. Amblyopia: progress and promise of functional magnetic resonance imaging[J]. Graefes Arch Clin Exp Ophthalmol, 2023, 261(5): 1229-1246. DOI: 10.1007/s00417-022-05826-z.
[2]
BIRCH E E, DUFFY K R. Leveraging neural plasticity for the treatment of amblyopia)[J]. Surv Ophthalmol, 2024, 69(5): 818-832. DOI: 10.1016/j.survophthal.2024.04.006.
[3]
WANG Y, WU Y, LUO L, et al. Structural and functional alterations in the brains of patients with anisometropic and strabismic amblyopia: a systematic review of magnetic resonance imaging studies[J]. Neural Regen Res, 2023, 18(11): 2348-2356. DOI: 10.4103/1673-5374.371349.
[4]
STACY A K, VAN HOOSER S D. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus[J]. Curr Top Behav Neurosci, 2022, 53: 3-35. DOI: 10.1007/7854_2021_297.
[5]
WEN W, WANG Y, ZHOU J, et al. Loss and enhancement of layer-selective signals in geniculostriate and corticotectal pathways of adult human amblyopia[J/OL]. Cell Rep, 2021, 37(11): 110117 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/34910903/. DOI: 10.1016/j.celrep.2021.110117.
[6]
DAI P, ZHANG J, WU J, et al. Altered Spontaneous Brain Activity of Children with Unilateral Amblyopia: A Resting State fMRI Study[J/OL]. Neural Plast, 2019, 2019: 3681430 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6683781/. DOI: 10.1155/2019/3681430.
[7]
罗可. 儿童屈光参差性弱视治疗后脑结构与功能改变的MRI研究[D]. 甘肃中医药大学, 2023.
LUO K. An MRI study on brain structural and functional alterations after treatment in children with anisometropic amblyopia[D]. Gansu Univercity of Chinese Medicine, 2023.
[8]
KRÜGER J, OPFER R, SPIES L, et al. Voxel-based morphometry in single subjects without a scanner-specific normal database using a convolutional neural network[J]. Eur Radiol, 2024, 34(6): 3578-3587. DOI: 10.1007/s00330-023-10356-1.
[9]
BARNES G R, LI X, THOMPSON B, et al. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes[J]. Invest Ophthalmol Vis Sci, 2010, 51(3): 1432-1438. DOI: 10.1167/iovs.09-3931.
[10]
DUFFY K R, CROWDER N A, HEYNEN A J, et al. Comparative analysis of structural modifications induced by monocular retinal inactivation and monocular deprivation in the developing cat lateral geniculate nucleus[J]. J Comp Neurol, 2023, 531(12): 1244-1260. DOI: 10.1002/cne.25493.
[11]
SU T, ZHU P W, LI B, et al. Gray matter volume alterations in patients with strabismus and amblyopia: voxel-based morphometry study[J/OL]. Sci Rep, 2022, 12(1): 458 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8748957/. DOI: 10.1038/s41598-021-04184-w.
[12]
XIAO J X, XIE S, YE J T, et al. Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry[J]. Am J Ophthalmol, 2007, 143(3): 489-493. DOI: 10.1016/j.ajo.2006.11.039.
[13]
LI Q, JIANG Q, GUO M, et al. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study[J]. Br J Ophthalmol, 2013, 97(4): 524-529. DOI: 10.1136/bjophthalmol-2012-302218.
[14]
LU W, YU X, ZHAO L, et al. Enhanced Gray Matter Volume Compensates for Decreased Brain Activity in the Ocular Motor Area in Children with Anisometropic Amblyopia[J/OL]. Neural Plast, 2020, 2020: 8060869 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/32377181/. DOI: 10.1155/2020/8060869.
[15]
TANG Y, LIU R. Surface-Based Morphometry Findings Reveal Structural Alterations of the Brain in Meige Syndrome[J]. Can J Neurol Sci, 2024, 12: 1-9. DOI: 10.1017/cjn.2024.326.
[16]
LIANG M, XIAO H, XIE B, et al. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study[J/OL]. BMC Neurosci, 2019, 20(1): 39 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6679496/. DOI: 10.1186/s12868-019-0524-6.
[17]
梁明龙. 儿童及成人屈光参差性弱视脑功能结构改变的磁共振成像对比研究[D]. 第三军医大学, 2017.
LIANG M L. Functional and structural brain alterationsin children and adults with anisometropic amblyopia: a comparative MRI study, Third Military Medical University, 2017.
[18]
ANKEETA A, KUMARAN S S, SAXENA R, et al. Structural and white matter changes associated with duration of Braille education in early and late blind children[J/OL]. Vis Neurosci, 2021, 38: E011 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/34425936/. DOI: 10.1017/S0952523821000080.
[19]
HOU F, LI H, LI P, et al. Grey Matter Hypertrophy and Atrophy in Early-Blind Adolescents: A Surface-Based Morphometric Study[J/OL]. Dis Markers, 2022, 2022: 8550714 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9090530/. DOI: 10.1155/2022/8550714.
[20]
VAN DRUNEN L, DOBBELAAR S, CRONE E A, et al. Genetic and environmental influences on structural brain development from childhood to adolescence: A longitudinal twin study on cortical thickness, surface area, and subcortical volume[J/OL]. Dev Cogn Neurosci, 2024, 68: 101407 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11225697/. DOI: 10.1016/j.dcn.2024.101407.
[21]
PARKER N, PATEL Y, JACKOWSKI A P, et al. Assessment of Neurobiological Mechanisms of Cortical Thinning During Childhood and Adolescence and Their Implications for Psychiatric Disorders[J]. JAMA Psychiatry, 2020, 77(11): 1127-1136. DOI: 10.1001/jamapsychiatry.2020.1495.
[22]
ZHOU Z, WEI D, LIU W, et al. Gene transcriptional expression of cortical thinning during childhood and adolescence[J]. Hum Brain Mapp, 2023, 44(10): 4040-4051. DOI: 10.1002/hbm.26328.
[23]
QIN W, LIU Y, JIANG T, et al. The development of visual areas depends differently on visual experience[J/OL]. PloS One, 2013, 8(1): e53784 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3538632/. DOI: 10.1371/journal.pone.0053784.
[24]
李亚东, 郑广瑛, 张晓盼, 等. 屈光参差性弱视儿童大脑皮层形态学的研究[J]. 临床放射学杂志, 2025, 44(3): 518-521. DOI: 10.13437/j.cnki.jcr.2025.03.032.
LI Y D, ZHENG G Y, ZHANG X P, et al. Study on the morphology of cerebral cortex in children with anisometropic amblyopia[J]. Journal of Clinical Radiology, 2025, 44(3): 518-521. DOI: 10.13437/j.cnki.jcr.2025.03.032.
[25]
YIN X, CHEN L, MA M, et al. Altered Brain Structure and Spontaneous Functional Activity in Children With Concomitant Strabismus[J/OL]. Front Hum Neurosci, 2021, 15: 777762 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8634149/. DOI: 10.3389/fnhum.2021.777762.
[26]
郑丽琴. 单眼弱视儿童脑结构与功能改变的磁共振成像研究[D]. 电子科技大学, 2021.
ZHENG L Q. Magnetic resonance imaging study of brain structure and function in children with monocular amblyopia[D]. University of Electronic Science and Technology of China, 2021.
[27]
CHEN J J, GAUTHIER C J. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI[J/OL]. Front Physiol, 2021, 12: 657362 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8027080/. DOI: 10.3389/fphys.2021.657362.
[28]
KWON D. Brain imaging: fMRI advances make scans sharper and faster[J]. Nature, 2023, 617(7961): 640-642. DOI: 10.1038/d41586-023-01616-7.
[29]
WANG X, CUI D, ZHENG L, et al. Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia[J]. Mol Vis, 2012, 18: 909-919.
[30]
GUPTA S, KUMARAN S S, SAXENA R, et al. BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy[J]. Int Ophthalmol, 2016, 36(4): 557-568. DOI: 10.1007/s10792-015-0159-2.
[31]
ALGAZE A, ROBERTS C, LEGUIRE L, et al. Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study[J]. J AAPOS, 2002, 6(5): 300-308. DOI: 10.1067/mpa.2002.124902.
[32]
MIKI A, LIU G T, GOLDSMITH Z G, et al. Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging[J]. Ophthalmologica, 2003, 217(5): 365-369. DOI: 10.1159/000071353.
[33]
HUANG S, HAO S, SI Y, et al. Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex[J]. J Affect Disord, 2024, 358: 399-407. DOI: 10.1016/j.jad.2024.03.166.
[34]
WEN Z, KANG Y, ZHANG Y, et al. Disrupted dynamic amplitude of low-frequency fluctuations in patients with active thyroid-associated ophthalmopathy[J/OL]. Front Cell Dev Biol, 2023, 11: 1174688 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10213541/. DOI: 10.3389/fcell.2023.1174688.
[35]
CHEN X, LIAO M, JIANG P, et al. Abnormal spontaneous brain functional activity in adult patients with amblyopia: a resting-state functional magnetic resonance imaging study[J]. Journal of biomedical engineering, 2022, 39(4): 759-766.
[36]
骆瑶. 基于fMRI技术对屈光参差性和形觉剥夺性弱视的研究[D]. 郑州大学, 2022.
LUO Y. Study on anisometropia and form deprivation amblyopia based on fMRI technique[D]. Zhengzhou University, 2022.
[37]
MA C, JIA J, YE Y J, et al. Effects of acupuncture on vision and visual function in children with anisometropic amblyopia[J]. Zhongguo Zhen Jiu, 2024, 44(2): 153-157. DOI: 10.13703/j.0255-2930.20230313-0003.
[38]
ZHANG X, LIU L, LI Y, et al. Altered local spontaneous brain activity pattern in children with right-eye amblyopia of varying degrees: evidence from fMRI[J]. Neuroradiology, 2023, 65(12): 1757-1766. DOI: 10.1007/s00234-023-03221-x.
[39]
MIN Y L, SU T, SHU Y Q, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2018, 14: 2351-2359. DOI: 10.2147/NDT.S171462.
[40]
闵幼兰. 基于低频振幅成像技术的斜弱视患者自发性脑活动改变的研究[D]. 南昌大学, 2020.
MIN Y L. Altered spontaneous brain activity patterns in strabismus withamblyopia patients using amplitude of low-frequency fluctuation[D]. Nanchang University, 2020.
[41]
ZHANG R, REN J, LEI X, et al. Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 134: 111066 [2025-04-18]. https://doi.org/10.1016/j.pnpbp.2024.111066. DOI: 10.1016/j.pnpbp.2024.111066.
[42]
LIN X, DING K, LIU Y, et al. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state fMRI[J/OL]. PloS One, 2012, 7(8): e43373 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3427333/. DOI: 10.1371/journal.pone.0043373.
[43]
TAN S W, CAI G Q, LI Q Y, et al. Altered Brain Activity in Strabismic Amblyopic Children as Determined by Regional Homogeneity: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Neurosci, 2022, 16: 879253 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9201242/. DOI: 10.3389/fnins.2022.879253.
[44]
SHAO Y, LI Q H, LI B, et al. Altered brain activity in patients with strabismus and amblyopia detected by analysis of regional homogeneity: A resting-state functional magnetic resonance imaging study[J]. Mol Med Rep, 2019, 19(6): 4832-4840. DOI: 10.3892/mmr.2019.10147.
[45]
YANG X, LU L, LI Q, et al. Altered spontaneous brain activity in patients with strabismic amblyopia: A resting-state fMRI study using regional homogeneity analysis[J]. Exp Ther Med, 2019, 18(5): 3877-3884. DOI: 10.3892/etm.2019.8038.
[46]
QI X, FANG J, SUN Y, et al. Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder[J/OL]. Diagnostics (Basel), 2023, 13(7): 1292 [2025-04-18]. https://pmc.ncbi.nlm.nih.-gov/articles/PMC10093329/. DOI: 10.3390/diagnostics13071292.
[47]
LONG Z, SHUANGKUN W, TIAN T, et al. Abnormal dynamics of functional connectivity density and effective connectivity in overactive bladder[J]. Neurourol Urodyn, 2024, 43(8): 1784-1792. DOI: 10.1002/nau.25569.
[48]
CHEN J, HAO J, LIU J, et al. Alternations of interhemispheric functional connectivity in patients with acute acquired concomitant esotropia: a resting state fMRI study using voxel-mirrored homotopic connectivity[J/OL]. Front Neurosci, 2025, 18: 1515675 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11743661/. DOI: 10.3389/fnins.2024.1515675.
[49]
DING K, LIU Y, YAN X, et al. Altered functional connectivity of the primary visual cortex in subjects with amblyopia[J/OL]. Neural Plast, 2013, 2013: 612086 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3697400/. DOI: 10.1155/2013/612086.
[50]
DAI P, ZHOU X, OU Y, et al. Altered effective connectivity of children and young adults with unilateral amblyopia: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2021, 15: 657576. [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8290343/. DOI: 10.3389/fnins.2021.657576.
[51]
LIU L Q, LI Q Y, ZHANG Z H, et al. Altered functional connectivity of primary visual cortex in adults with strabismus and amblyopia: a resting-state fMRI study[J/OL]. J Integr Neurosci, 2022, 21(1): 4 [2025-04-18]. https://www.imrpress.com/journal/JIN/21/1/10.31083/j.jin2101004. DOI: 10.31083/j.jin2101004.
[52]
SEGHIER M L. Multiple functions of the angular gyrus at high temporal resolution[J]. Brain Struct Funct, 2023, 228(1): 7-46. DOI: 10.1007/s00429-022-02512-y.
[53]
WANG Y, GUAN H, MA L, et al. Learning to read may help promote attention by increasing the volume of the left middle frontal gyrus and enhancing its connectivity to the ventral attention network[J]. Cereb Cortex, 2023, 33(5): 2260-2272. DOI: 10.1093/cercor/bhac206.
[54]
WANG T, LI Q, GUO M, et al. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state[J]. Brain Res, 2014, 1563: 41-51. DOI: 10.1016/j.brainres.2014.03.015.
[55]
SHI Y D, GE Q M, LIN Q, et al. Functional connectivity density alterations in children with strabismus and amblyopia based on resting-state functional magnetic resonance imaging (fMRI)[J/OL]. BMC Ophthalmol, 2022, 22(1): 49 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8808980/. DOI: 10.1186/s12886-021-02228-3.
[56]
叶钰娟, 贾静, 孙燕, 等. 针刺对屈光参差性弱视患儿脑部what视觉通路功能连接改变的影响[J]. 中医杂志, 2023, 64(20): 2101-2108. DOI: 10.13288/j.11-2166/r.2023.20.010.
YE Y J, JIA J, SUN Y, et al. Effects of acupuncture on functional connectivity changes of what visual pathway in the brain in cchildren with monocular refractive amblyopia[J]. Journal of Traditional Chinese Medicine, 2023, 64(20): 2101-2108. DOI: 10.13288/j.11-2166/r.2023.20.010.
[57]
LIANG M, XIE B, YANG H, et al. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study[J]. Neuroradiology, 2017, 59(5): 517-524. DOI: 10.1007/s00234-017-1824-0.
[58]
王浩然. 基于静息态fMRI的屈光参差性弱视儿童脑网络功能连接变化的研究[D]. 天津医科大学, 2018.
WANG H R. A resting-state fMRI study of network functional connectivity changes in children with anisometropic amblyopia[D]. Tianjin Medical University, 2018.
[59]
ZHANG H, LIU K, BA R, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping[J]. Neuro Oncol, 2023, 25(6): 1146-1156. DOI: 10.1093/neuonc/noad003.
[60]
ROKEM A, TAKEMURA H, BCOK A S, et al. The visual white matter: The application of diffusion MRI and fiber tractography to vision science[J/OL]. J Vis, 2017, 17(2): 4 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5317208/. DOI: 10.1167/17.2.4.
[61]
BEHLER A, MÜLLER H P, LUDOLPH A C, et al. Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development[J/OL]. Int J Mol Sci, 2023, 24(3): 1911 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9915541/. DOI: 10.3390/ijms24031911.
[62]
ALLEN B, SCHMITT M A, KUSHNER B J, et al. Retinothalamic White Matter Abnormalities in Amblyopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 921-929. DOI: 10.1167/iovs.17-22930.
[63]
GÜMÜSTAS S, ALTINTAS Ö, ANIK Y, et al. Anterior visual pathways in amblyopia: quantitative assessment with diffusion tensor imaging[J]. J Pediatr Ophthalmol Strabismus, 2013, 50(6): 369-374. DOI: 10.3928/01913913-20131125-04.
[64]
宋海燕, 齐顺, 唐鹤菡, 等. 屈光参差性弱视视放射发育的磁共振DTI及DTT研究[J]. 四川大学学报(医学版), 2010, 41(4): 648-651. DOI: 10.13464/j.scuxbyxb.2010.04.046.
SONG H Y, QI S, TANG H H, et al. MR DTI and DTT study on the development of optic radiation in patients with anisometropia amblyopia[J]. Journal of Sichuan University Medical (science edition), 2010, 41(4): 648-651. DOI: 10.13464/j.scuxbyxb.2010.04.046.
[65]
ALLEN B, SCHMITT M A, KUSHNER B J, et al. Retinothalamic White Matter Abnormalities in Amblyopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 921-929. DOI: 10.1167/iovs.17-22930.
[66]
XIE S, GONG G L, XIAO J X, et al. Underdevelopment of optic radiation in children with amblyopia: a tractography study[J]. Am J Ophthalmol, 2007, 143(4): 642-646. DOI: 10.1016/j.ajo.2006.12.009.
[67]
LI Q, ZHAI L, JIANG Q, et al. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia[J]. Neurosci Lett, 2015, 597: 7-12. DOI: 10.1016/j.neulet.2015.04.027.
[68]
DUAN Y, NORCIA A M, YEATMAN J D, et al. The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5152-5160. DOI: 10.1167/iovs.15-17097.
[69]
JITSUISHI T, HIRONO S, YAMAMOTO T, et al. White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex[J/OL]. Sci Rep, 2020, 10(1): 820 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6972933/. DOI: 10.1038/s41598-020-57837-7.
[70]
SONG S, JEAN S, DENG D, et al. Diffusion spectrum imaging based semi-automatic optic radiation tractography for vision preservation in SEEG-guided radiofrequency thermocoagulation[J]. Seizure, 2024, 114: 61-69. DOI: 10.1016/j.seizure.2023.11.014.
[71]
TSAI T H, SU H T, HSU Y C, et al. White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis[J]. Br J Ophthalmol, 2019, 103(4): 511-516. DOI: 10.1136/bjophthalmol-2017-311733.
[72]
WANG J, JI B, LEI Y, et al. Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal-to-noise ratio and speed of MRS[J]. Med Phys, 2023, 50(12): 7955-7966. DOI: 10.1002/mp.16831.
[73]
NGUYEN B N, SRINIVASAN R, MCKENDRICK A M. Short-term homeostatic visual neuroplasticity in adolescents after two hours of monocular deprivation[J]. IBRO Neurosci Rep, 2023, 14: 419-427. DOI: 10.1016/j.ibneur.2023.04.003.
[74]
MUKERJI A, BYRNE K N, YANG E, et al. Visual cortical γ-aminobutyric acid and perceptual suppression in amblyopia[J/OL]. Front Hum Neurosci, 2022, 16: 949395 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9479630/. DOI: 10.3389/fnhum.2022.949395.
[75]
IP I B, CLARKE W T, WYLLIE A, et al. The relationship between visual acuity loss and GABAergic inhibition in amblyopia[J]. Imaging Neurosci (Camb), 2024, 2: 1-18. DOI: 10.1162/imag_a_00256.
[76]
GONG L, REYNAUD A, WANG Z, et al. Interocular Suppression as Revealed by Dichoptic Masking Is Orientation-Dependent and Imbalanced in Amblyopia[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(14): 28 [2025-04-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7774058/. DOI: 10.1167/iovs.61.14.28.
[77]
KONUS I, OZSOY E, TURKCUOGLU P, et al. Evaluation of Metabolite Changes in the Occipital Cortex of Patients with Idiopathic Infantile Nystagmus or Bilateral Ametropic Amblyopia by Magnetic Resonance Spectroscopy[J]. Korean J Ophthalmol, 2019, 33(5): 406-413. DOI: 10.3341/kjo.2019.0022.
[78]
HONG S, TOMAR J S, SHEN J. Metabolic coupling between glutamate and N-acetylaspartate in the human brain[J]. J Cereb Blood Flow Metab, 2024, 44(9): 1608-1617. DOI: 10.1177/0271678X241239783.
[79]
陈烽烽, 王维娜, 龚启勇, 等. 抑郁症的质子磁共振波谱(1H-MRS)研究进展[J]. 四川医学, 2018, 39(8): 958-963. DOI: 10.16252/j.cnki.issn1004-0501-2018.08.030.
CHENG F F, WANG W N, GONG Q Y, et al. Research progress on proton magnetic resonance spectroscopy (1H-MRS) of depression[J]. Sichuan Medical Journal, 2018, 39(8): 958-963. DOI: 10.16252/j.cnki.issn1004-0501-2018.08.030.
[80]
TASO M, ARAMENDÍA-VIDAURRETA V, ENGLUND E K, et al. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain[J]. Magn Reson Med, 2023, 89(5): 1754-1776. DOI: 10.1002/mrm.29609.
[81]
王依格. 成人弱视患者局部脑功能及血流灌注改变的磁共振成像研究[D]. 北京协和医学院, 2022.
WANG Y G. Study on regional brain function and cerebral perfusion changes in adult amblyopia patients[D]. Peking Union Medical College, 2022.

上一篇 基于MRI的胶质淋巴系统在阿尔茨海默病中的研究进展
下一篇 早产儿精细动作相关脑皮层发育的MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2