分享:
分享到微信朋友圈
X
综述
急性高原反应所致脑改变的多模态MRI研究进展
郭雅 鲍海华 陶涛 温生宝 白艳玲 贺春兰

Cite this article as: GUO Y, BAO H H, TAO T, et al. Advances in multimodal MRI studies of brain alterations induced by acute mountain sickness[J]. Chin J Magn Reson Imaging, 2025, 16(7): 135-139, 146.本文引用格式:郭雅, 鲍海华, 陶涛, 等. 急性高原反应所致脑改变的多模态MRI研究进展[J]. 磁共振成像, 2025, 16(7): 135-139, 146. DOI:10.12015/issn.1674-8034.2025.07.022.


[摘要] 急性高原反应(acute mountain sickness, AMS)是高原病中最常见的类型,随着旅游业的蓬勃发展、军事任务的频繁执行以及户外探险活动的日益普及,进入高原地区的人群数量连续逐年增加,早期诊断AMS对预防疾病进展为严重甚至危及生命的阶段至关重要。近年来,神经影像学领域取得了显著的进展,为AMS的临床诊断及病理机制的深入剖析开辟了全新视野。本文就多模态MRI在脑容量、脑组织微结构损伤、脑血流灌注的最新应用进展总结,为AMS的诊断及机制探索提供新的新的视角。
[Abstract] Acute mountain sickness (AMS) is the most common form of altitude illness. With the booming tourism industry, frequent military operations, and increasing popularity of outdoor adventures, the number of individuals entering high-altitude regions has risen steadily, making early AMS diagnosis critical to preventing progression to severe, life-threatening stages. Recent advances in neuroimaging have opened new avenues for clinical diagnosis and in-depth analysis of AMS pathophysiology. This article reviews the latest applications of multimodal MRI in assessing brain volume, microstructural damage, and cerebral blood flow perfusion, offering novel perspectives for AMS diagnosis and mechanistic exploration.
[关键词] 急性高原反应;磁共振成像;脑容量;脑血流灌注
[Keywords] acute mountain sickness;magnetic resonance imaging;brain volume;cerebral perfusion

郭雅 1, 2   鲍海华 2*   陶涛 2, 4   温生宝 1, 2   白艳玲 2   贺春兰 3  

1 青海大学临床医学院,西宁 810000

2 青海大学附属医院医学影像中心,西宁 810000

3 青海大学附属医院检验科,西宁 810000

4 青海大学附属医院泌尿外科,西宁 810000

通信作者:鲍海华,E-mail: baohelen2@sina.com

作者贡献声明:鲍海华设计本综述的框架,参与并最终确定本综述的主题,对稿件重要内容进行了修改,获得了国家临床重点专科建设项目科研项目的资助;郭雅参与本综述主题的构思,起草和撰写稿件,获取、分析和解释本综述所纳入的文献;陶涛、温生宝、白艳玲、贺春兰获取、分析解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家临床重点专科建设项目 青海省卫生健康委员会办公室〔2024〕90号
收稿日期:2025-04-17
接受日期:2025-07-07
中图分类号:R445.2  R742 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.022
本文引用格式:郭雅, 鲍海华, 陶涛, 等. 急性高原反应所致脑改变的多模态MRI研究进展[J]. 磁共振成像, 2025, 16(7): 135-139, 146. DOI:10.12015/issn.1674-8034.2025.07.022.

0 引言

       高原病(high-altitude illnesses, HAI)是暴露于海拔2500 m以上低氧环境引发的适应不良反应,主要包括急性高原反应(acute mountain sickness, AMS)、高原肺水肿(high altitude pulmonary edema, HAPE)和高原脑水肿(high altitude cerebral edema, HACE)[1]。其中最常见的是AMS,通常在初次进入或从高海拔向更高海拔地区快速攀升时发生,主要表现为头痛、恶心、呕吐、食欲不振、头晕和疲劳[2, 3],这些症状多在到达高海拔后6~24小时内出现,但也可延迟到第三天[1]。HAPE和HACE是更严重的类型,可呈渐进性进展甚至危及生命,需紧急干预[4],AMS的发病率随之上升,其早期诊断与管理已成为医疗与科学领域的热点问题。随着旅游业、军事任务及户外探险活动的蓬勃发展,进入高原地区的人群显著增加,AMS发病率随之上升成为全球公共卫生关注的热点问题。其早期诊断及管理对预防疾病进展至关重要。AMS新兴研究方向[5](如细胞激活、氧化应激、生物标志物预测等)的深入以及多模态磁共振成像技术的应用为揭示AMS的病理生理机制提供了重要工具[6, 7, 8, 9, 10]。现有综述缺乏对多模态MRI在AMS诊断应用的系统性总结。本文将系统梳理AMS在疾病诊断、病理生理机制及多模态磁共振影像应用方面的研究进展。重点分析AMS不同诊断标准的适用性与局限性,探讨急性高原反应引发的脑血流、脑体积及颅内压的变化为AMS的临床诊断及诊疗方案提供借鉴,以推动AMS病理机制的深入探索及精准医学的发展。

1 AMS诊断标准

       自我评估问卷是诊断AMS的常用工具,其中包括急性高山病-脑评分(the Acute Mountain Sickness-Cerebral score, AMS-C)、中国急性高原病评分(Chinese AMS Score, CAS)及2018年修订版路易斯湖评分系统(Lake Louise Score, LLS),不同问卷的诊断结果并不能直接互换。AMS-C是AMS脑部症状评估使用环境症状问卷的简化版本,包含11个条目,采用0~5评分,评分≥0.7时,提示AMS[11]。CAS中头痛、呕吐这两种非特异症状可单独诊断AMS,其他症状总分≥5分也可诊断,头痛症状不是必须[12]。LLS则基于头痛、胃肠道不适、疲劳或虚弱,以及头晕四项评分,当头痛评分≥1分,且总LLS分数≥3分时,可确诊为AMS [2]。根据LLS评分标准,分为轻度(3~5分)、中度(6~9分),重度(10~12分)。值得注意的是,2018年LLS版本中剔除了睡眠障碍这一项,理由是其在高原环境中普遍存在,特异性不足,睡眠问题及夜间血氧饱和度与AMS的相关性无统计学意义[13]。这一调整引发了学界的争议,急性高海拔暴露后睡眠质量较差[14],睡眠障碍被视为AMS的典型表现之一[15, 16, 17]。删除睡眠评分后,LLS的诊断标准与2018年之前的研究结果存在不一致,增加了研究间的差异性与比较难度。AMS-C评估更为全面,但耗时较长;LLS则简便实用、易于推广[18]。AMS-C对AMS诊断的准确性与 LLS 高度相似,MEIER等[19]研究显示在LLS>5时AMS-C与之高度相关,因此仅推荐在较低海拔4000 m以下使用。WU等[20]同时使用CAS和LLS评分,与LLS相比,CAS的敏感度接近100%,但假阳性率高,特异性不足。由于CAS仅在我国小范围使用,缺少充足的公开数据验证,因此在世界范围内还未得到公认。在临床与研究实践中应根据具体需求选择合适的评估工具,并注意新旧标准对结果解释的影响。

2 流行病学及病理生理

       AMS机制复杂且尚未完全阐明,其致精神改变的机制也难以捉摸[21],核心病理环节围绕高原缺氧引发的大脑生理适应[22],而后上调炎症信号通路导致高原病症[23]。低氧血症引起脑血流增加、毛细血管压升高及血-脑屏障通透性增强,从而导致脑水肿与颅内压升高。头痛是AMS的主要症状,与三叉神经血管激活及中枢神经对疼痛信号的整合密切相关,也可解释 AMS 伴随的恶心和呕吐等[1]。分子水平上,缺氧可能会激活炎症反应,AMS患者炎性因子(如 IL-6和TNF-α)水平升高,提示炎症参与其病理进程[24]。缺氧引起肝损伤[25],肺损伤[26, 27]和脑损伤[28],盐酸可以减轻并恢复触发的炎症因子平衡[26]。AMS的发生可能涉及多种神经过程,包括对高海拔环境中感觉信息的感知与处理、自主神经系统的激活,以及脑血流量调控障碍及脑脊液流出受限等均可导致颅内压升高[29]。此外,灰质和白质的肿胀、皮质形态变化也被认为与AMS相关,但不同成分对AMS的具体贡献仍存在争议[30]。总体而言,AMS的机制涉及大脑结构、功能和灌注的多重改变,这些因素相互作用,共同推动AMS的发生发展。其发生率受个体高原易感性[1]、上升速度[31]、交通方式[32]、进入高原的季节[33]、预适应水平[34]及海拔高度[3]等多因素影响。高海拔暴露前能量代谢的改变也被证明与AMS发生有关[35],能量代谢紊乱会削弱机体适应性,增加AMS风险[36]。已有研究建议通过增加碳水化合物和抗氧化剂的摄入、维持水电解质平衡、补充铁和维生素D[37, 38],以提高高原适应能力。随着高原停留时间的增加,细胞内水分、细胞外水分和全身水分显著下降,可能与AMS严重程度相关[39]。藏药干预亦可能在调节能量代谢和免疫功能方面发挥作用,有助于缓解AMS症状[40]

3 AMS脑容量的研究评估

3.1 常规MRI(T1、T2)

       缺氧状态下,脑细胞肿胀可导致T1WI和T2WI弛豫时间延长,表现为T1WI呈低信号,T2WI呈高信号。磁共振体素形态计量学(voxel-based morphometry, VBM)用于评估全脑结构差异,通过预处理高分辨率磁共振成像数据,准确测量脑结构的变化,已广泛应用于抑郁症[41]、阿尔茨海默病[42]、帕金森病[43]等各类神经精神疾病。脑体积增加通常伴随脑脊液体积的代偿性减少。LAWLEY等[44]研究表明,在急性常压低氧(12% O2)暴露10小时后,AMS受试者脑体积显著增加,尤其是灰质体积(gray matter volume, GMV),并与脑脊液体积的减少呈负相关。GMV和脑体积的增加可能引起颅内压升高,进一步导致颅内顺应性降低。值得注意的是,脑实质体积的增加可能通过颅内压升高,在头痛等症状的发生中发挥关键作用[44]。其他研究指出脑体积增加与白质体积的变化也密切相关。SAGOO等[45]发现,在持续22小时的常压低氧暴露后,总脑实质体积由基线的1253 mL增加至1282 mL,灰质与白质体积均增加。进一步分析显示,脑总体积增加与脑脊液体积减少显著相关,且白质体积的增加与LLS评分呈正相关。缺氧条件下脑体积的增加涉及灰质与白质的共同作用,并伴随脑脊液的减少,可能引发颅内压升高和颅内顺应性降低,为高原脑受损的机制提供了重要依据。现有研究在暴露时间、样本量和个体差异控制方面仍存在不足,未来研究进一步探索脑体积变化的动态机制,明确灰质与白质在AMS机制的不同作用。

3.2 颅内压

       颅内压(intracranial pressure, ICP)的测量方法分为有创和无创。尽管侵入性直接测量被视为评估ICP的金标准,但由于其操作复杂性和伦理约束,应用受限。基于MRI的无创ICP评估技术[46](MR-ICP)通过监测脑脊液与脑血流量的变化,结合颅内体积与压力的动态关系进行计算。具体而言,该技术通过测量脑脊液和血液的体积流量变化来推算体积的变化,并通过分析脑脊液流速来推导压力梯度的变化,从而间接评估颅内压。为无创监测提供了新的有效手段。

       缺氧可能直接引起脑动脉与脑静脉血容量的增加,并可能导致ICP升高,从而诱发AMS。LAWLEY等[44]研究发现,缺氧10小时后,MR-ICP增加与AMS评分之间存在显著正相关,进一步分析发现,诊断为AMS的个体,其MR-ICP的平均值显著升高,表明MR-ICP的变化可能与AMS的发生存在因果关系。高海拔AMS的个体易感性存在显著差异,部分人群更易因颅内顺应性降低而对脑肿胀耐受性较差。颅内和脊柱内顺应性较低可能是这些个体在高原环境下更易患AMS的关键因素。该技术依赖于复杂的计算模型,对脑脊液流速和血流量的测量精度要求较高,易受个体解剖差异和设备分辨率的限制,今后的研究应优化MR-ICP的算法模型,提高其对低顺应性人群的敏感性。

3.3 视神经鞘

       视神经鞘直径(optic nerve sheath diameter, ONSD)的变化近年来成为研究焦点,既往ONSD多通过超声检查进行测量,已有研究利用MRI对其作为ICP升高标志物的有效性进行了验证[47],该参数与危重患者的颅内压值相关,临床上发现与重症患者颅内压增高具有一定相关性[48]。STRAPAZZON等[49]在3830 m海拔高度之前和超过8天测量了健康低地居民的ONSD。ONSD在最初24小时内增加,并保持扩大直至高原暴露8天。健康个体在高海拔暴露后ONSD会增大,可能与高原引起的ICP升高和症状有关。VERGES等[50]研究发现在4350 m海拔6天后,整体ONSD在高原暴露前后没有显著差异表明群体水平的颅内压没有显著增加,但3名ONSD扩大的受试者存在更为严重的头痛症状,这可能与大幅减少脑脊液体积来缓冲脑实质体积增加并与ICP增高有关,推测ONSD的扩大可能与AMS症状及ICP升高存在关联,症状与ONSD变化之间虽未显示出明确的相关性,但在高原暴露早期,AMS症状较为严重的个体往往表现出ONSD的增加最大。这一现象提示ONSD增大可能间接反映了高原暴露初期ICP的升高。也有研究模拟4000 m高度,急性短期暴露于低压低氧会导致瞳孔缩小、虹膜弯曲降低[51]。ONSD测量具有操作简便、非侵入性和高重复性的优势,相较超声在分辨率和定量分析上更具潜力。ONSD可进一步阐明ICP升高在AMS发病过程中的作用,但是ONSD对ICP升高的特异性可能受眼部解剖结构、测量时间和个体差异的影响,与AMS症状的相关性尚需进一步验证。

4 AMS脑组织微结构损伤评估

4.1 DWI

       SAGOO等[45]观察到在暴露于11小时和22小时缺氧后,全脑平均表观弥散系数(apparent diffusion coefficient, ADC)显著上升,膝部及压部ADC显著上升,证实了区域水含量的增加,是脑水肿的间接测量。脑白质密度较低,对液体入侵的抵抗力较弱。白质体积的增加和ADC升高反映了细胞外水分的累积,但是BIN等[52]报道一名AMS患者在海拔4000 m停留6天后出现全身性强直-阵挛性癫痫,弥散加权成像(diffusion weighted imaging, DWI)显示胼胝体压部高信号,ADC为低信号,提示细胞毒性水肿。几个月后的该区域的异常信号消失,表明该改变具有可逆性。

       RUPP等[53]发现在常压模拟海拔4500 m环境中暴露10小时后,白质体积显著增加,同时发现ADC明显下降。急性低氧环境下脑总体积增大,灰质与白质均受到影响。胼胝体膝部及压部的ADC明显增加,但在AMS患者中,ADC却呈下降趋势。与SAGOO等观察到的ADC升高结果不同,提示低氧诱导的脑水肿机制可能因人群或暴露时间不同而异。LONG等[54]进一步发现,HACE胼胝体压部的ADC显著低于轻度患者,支持了这一观察结果。ADC的下降可能反映了脑能量代谢状态的恶化,并被认为是预测AMS症状发生的一个重要指标。ADC结果的不一致性(升高或下降)可能与缺氧暴露时间、个体差异及脑区域特异性有关,且对早期脑损伤的预测能力有限,未来研究设计应着重对相关影响条件的控制。

4.2 SWI

       磁敏感加权成像(T2*-based susceptibility-weighted imaging, SWI)在脑水肿的急性期能够有效检测到微出血(cerebral microbleeds, CMB)[55],在评估高原脑损伤中发挥重要作用。CMB表现为T2梯度加权图像中小于10毫米的低信号圆形或椭圆形病灶,周围无水肿,通常由小动脉或毛细血管内红细胞渗漏引起[56]。在HACE存活者中,CMB主要见于胼胝体[54]。由于胼胝体供血的穿支动脉短小且缺乏交感神经支配,其对低氧环境尤为敏感。AMS的患者则未见CMB[57]。当患者出现CMB时提示预后不良,应当及时治疗[55]。该过程可能反映了由细胞毒性水肿发展至离子性和血管源性水肿,最终因血脑屏障受损发生出血性转化[58, 59]。SWI序列在HACE诊断中特异性较高,有助于早期病情评估和精准诊断,然而其对AMS的诊断价值有限,且CMB的发生机制及与缺氧暴露时间的关系尚不清楚。

5 脑血流灌注评估

5.1 MRV、MRA

       磁共振静脉成像(magnetic resonance venography, MRV)与磁共振血管成像(magnetic resonance angiography, MRA)分别用于评估脑静脉回流与动脉供血,其对高原环境下颅内血流动力学变化的影响至关重要。与脑脊液和脑体积变化相比,脑血流(cerebral blood flow, CBF)的流入与流出对颅内压的影响更为显著,即使轻微的不平衡也可能导致颅内压明显升高[60]。当高原低氧环境下CBF升高但静脉回流未能同步增加时,毛细血管与静脉压升高会限制CBF回流,诱发近端静脉淤血,进而加重脑组织肿胀,最终引起ICP升高并出现AMS症状。

       LAWLEY等[61]通过MRV揭示静脉评分与头痛强度的显著相关性,急性常压低氧10小时后,横窦较小的个体与高原头痛之间呈中度相关,且受试者常表现为单侧横窦优势。SAGOO等[45]研究显示在低氧环境22小时后,脑内深部小静脉受压、脑静脉容积减少,横窦容积呈下降趋势,但因样本量限制未达到统计学显著性。WILSON等[60]的研究进一步揭示颅内静脉系统与AMS易感性呈中度相关,横窦相对狭窄的个体更容易出现缺氧引起的头痛,可能与灰质体积增加有关。这种变化可能由静脉扩张引起,但目前尚无明确证据支持中心静脉压参与该过程。

       LIU等[62]通过MRA发现,进入高原第1天,无症状者和AMS的颈内动脉、基底动脉及大脑中动脉截面积均显著增加。SAGOO等[45]进一步报告,低氧环境下平均大脑中动脉血流速度在低氧2小时后达到峰值,血管直径变化趋势类似。随着海拔高度的增加,脑血管会出现不同程度的扩张且具有可逆性。脑血流量的增加主要由血管扩张引起,同时伴随血流速度的加快。因此在评估脑血流时,需同时考虑血流速度和血管直径的变化,现有研究样本量较小,未能充分揭示静脉容积与ICP升高的因果关系,对脑血流自动调节机制的评估不足。未来研究应增加样本量,结合ASL等技术量化血流改变以提高可靠性。

5.2 ASL

       3D伪连续动脉自旋标记技术(3D pseudo-continuous arterial spin labeling, 3D pCASL)是目前最常用于定量测量CBF的非侵袭性技术,在AMS研究中逐渐显现优势,通过射频脉冲标记动脉血内的水质子,获取绝对脑血流量的数据[63],从而反映脑组织的微循环状态。得益于3D全脑采集,该技术实现了区域特异性和组织特异性的精准测量。高原环境下,脑血流量的变化已成为研究重点。而LIU等[62]的研究表明,AMS受试者在高海拔两天后CBF显著升高,而非AMS受试者的CBF未见明显变化,此外,所有受试者返回常氧环境的海平面后,其CBF水平下降,甚至低于进入高海拔前的基础值。AMS可能是由于脑血流的动态自动调节的改变而导致的,随着时间的延长可以纠正自动调节的受损[64]。这一观察结果与VILLIEN等[65]的研究有所不同,这种差异可能与受试者返回平原后检测时间、运输方式或脱水状态等因素相关。在海平面环境下,静脉引流受限和CBF增加可能导致静脉充血和ICP升高,脑自动调节作用引起脑血管收缩,引发头痛。在VERGES等[50]的研究中,脑血流量的增加反而表明血管舒张,同时也未观察到其与脑容量之间的关系。ZHANG等[66]研究AMS的双侧大脑前动脉、大脑后动脉、小脑后下动脉和右侧大脑中动脉区域的皮质CBF值增高。右侧大脑中动脉区域的皮质CBF预测AMS的预测性能最好。ASL能定量评估缺氧引起的CBF变化及其与AMS的相关性,但是CBF变化的个体差异较大,受检测时间、脱水状态等因素影响,今后对静脉回流及ICP的直接关系尚需进一步研究。

6 小结

       HAI的研究随着磁共振成像技术的发展和对AMS病理生理机制的深入探讨,取得了显著进展。AMS的早期诊断和动态监测对防止疾病的进展具有一定的临床意义。通过分析多模态MR在AMS中的应用,尚存在以下不足:(1)技术敏感性与特异性不平衡,如SWI对HACE特异性高但对AMS诊断价值有限;(2)个体差异显著,包括颅内顺应性、脑血流自动调节能力及解剖结构差异等导致的研究结果存在差异;(3)多模态影像整合不足,单一技术难以全面揭示AMS缺氧脑损伤的复杂机制,缺乏深入的纵向研究对大脑结构功能异常与AMS发生机制的关系。未来研究我们应聚焦于开发多模态影像整合分析平台,结合结构、功能和血流动力学数据来提高诊断的准确度,同时开展大样本、多中心研究,控制个体差异,明确MR技术在AMS的适用性,并基于机器学习开发预测模型,利用影像学指标预测AMS易感性和HACE风险,为精准诊断和干预提供支持。

[1]
GATTERER H. Altitude illnesses[J/OL]. Nat Rev Dis Primers, 2024, 10(1): 43 [2025-04-15]. https://doi.org/10.1038/s41572-024-00526-w. DOI: 10.1038/s41572-024-00526-w.
[2]
ROACH R C, HACKETT P H, OELZ O, et al. The 2018 Lake Louise Acute Mountain Sickness Score[J]. High Alt Med Biol, 2018, 19(1): 4-6. DOI: 10.1089/ham.2017.0164.
[3]
LUKS A M, HACKETT P H. Medical Conditions and High-Altitude Travel[J]. N Engl J Med, 2022, 386(4): 364-373. DOI: 10.1056/NEJMra2104829.
[4]
MALLET R T, BURTSCHER J, PIALOUX V, et al. Molecular Mechanisms of High-Altitude Acclimatization[J/OL]. Int J Mol Sci, 2023, 24(2): 1698 [2025-04-15]. https://www.mdpi.com/1422-0067/24/2/1698. DOI: 10.3390/ijms24021698.
[5]
ZHOU Y, DING H, LIANG H, et al. Global research trends and emerging hotspots in acute high altitude illness: a bibliometric analysis and review (1937-2024)[J/OL]. Rev Environ Health, 2025 [2025-04-17]. https://doi.org/10.1515/reveh-2024-0144. DOI: 10.1515/reveh-2024-0144.
[6]
LI W, ZHANG M, HU Y, et al. Acute mountain sickness prediction: a concerto of multidimensional phenotypic data and machine learning strategies in the framework of predictive, preventive, and personalized medicine[J]. EPMA J, 2025, 16(2): 265-284. DOI: 10.1007/s13167-025-00404-9.
[7]
SHEN T C, LIN M C, LIN C L, et al. Acute mountain sickness on Jade Mountain: Results from the real-world practice (2018-2019)[J]. J Formos Med Assoc, 2024, 123(11): 1161-1166. DOI: 10.1016/j.jfma.2024.01.030.
[8]
GOVES J S L, JOYCE K E, BROUGHTON S, et al. Pulse oximetry for the prediction of acute mountain sickness: A systematic review[J]. Exp Physiol, 2024, 109(12): 2057-2072. DOI: 10.1113/EP091875.
[9]
LI X, ZHU B, DONG N, et al. Early Detection of High‐Altitude Hypoxic Brain Injury by In Vivo Electrochemistry[J/OL]. Angew Chem Int Ed, 2025, 64(4): e202416395 [2025-04-17]. https://onlinelibrary.wiley.com/doi/10.1002/anie.202416395. DOI: 10.1002/anie.202416395.
[10]
WANG B, CHEN S, SONG J, et al. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications[J/OL]. Front Physiol, 2024, 15: 1397280 [2025-04-17]. https://www.frontiersin.org/articles/10.3389/fphys.2024.1397280/full. DOI: 10.3389/fphys.2024.1397280.
[11]
BERKEMEIER Q, FIGUEIREDO P, LANDSPURG S, et al. Elevated sympathoadrenal response following active ascent to 3, 600m is not associated with acute mountain sickness[J/OL]. Physiology, 2024, 39(S1): 2508 [2025-04-22]. https://journals.physiology.org/doi/10.1152/physiol.2024.39.S1.2508. DOI: 10.1152/physiol.2024.39.S1.2508.
[12]
刘鑫源, 罗勇军. 急性高原(山)病诊断标准的演变历程及最新进展[J]. 解放军预防医学杂志, 2019, 37(10): 188-192. DOI: 10.13704/j.cnki.jyyx.2019.10.070.
LIU X Y, LUO Y J. Advances and Evolution in the Diagnostic Criteria of Acute Mountain Sickness[J]. J Prev Med Chin PLA, 2019, 37(10): 188-192. DOI: 10.13704/j.cnki.jyyx.2019.10.070.
[13]
ANDERSON P J, WOOD-WENTZ C M, BAILEY K R, et al. Objective Versus Self-Reported Sleep Quality at High Altitude[J]. High Alt Med Biol, 2023, 24(2): 144-148. DOI: 10.1089/ham.2017.0078.
[14]
MAHAT B, THAPA B, BANERJEE I, et al. Sleep Quality Among Pilgrims at High Altitude: A Cross-Sectional Study From Gosaikunda Lake, Nepal (4380 m)[J/OL]. Cureus, 2024, 16(10): e72604 [2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/39610624/. DOI: 10.7759/cureus.72604.
[15]
CHEN R, WANG Y, ZHANG C, et al. Assessment of Acute Mountain Sickness Using 1993 and 2018 Versions of the Lake Louise Score in a Large Chinese Cohort[J]. High Alt Med Biol, 2021, 22(4): 362-368. DOI: 10.1089/ham.2021.0031.
[16]
RICHALET J P, JULIA C, LHUISSIER F J. Evaluation of the Lake Louise Score for Acute Mountain Sickness and Its 2018 Version in a Cohort of 484 Trekkers at High Altitude[J]. High Alt Med Biol, 2021, 22(4): 353-361. DOI: 10.1089/ham.2020.0226.
[17]
WOOLCOTT O O. The Lake Louise Acute Mountain Sickness Score: Still a Headache[J]. High Alt Med Biol, 2021, 22(4): 351-352. DOI: 10.1089/ham.2021.0110.
[18]
SAVIOLI G, CERESA I F, GORI G, et al. Pathophysiology and Therapy of High-Altitude Sickness: Practical Approach in Emergency and Critical Care[J/OL]. J Clin Med, 2022, 11(14): 3937 [2025-04-17]. https://www.mdpi.com/2077-0383/11/14/3937. DOI: 10.3390/jcm11143937.
[19]
MEIER D, COLLET T H, LOCATELLI I, et al. Does This Patient Have Acute Mountain Sickness?: The Rational Clinical Examination Systematic Review[J/OL]. JAMA, 2017, 318(18): 1810 [2025-02-27]. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.16192. DOI: 10.1001/jama.2017.16192.
[20]
WU Y, ZHAO W, LIU B, et al. Assessment of Acute Mountain Sickness: Comparing the Chinese AMS Score to the Lake Louise Score[J/OL]. High Alt Med Biol, 2024: ham.2023.0033 [2025-02-27]. https://www.liebertpub.com/doi/10.1089/ham.2023.0033. DOI: 10.1089/ham.2023.0033.
[21]
LIU B, YUAN M, YANG M, et al. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions[J]. High Alt Med Biol, 2024, 25(1): 26-41. DOI: 10.1089/ham.2022.0136.
[22]
陈玲, 吴世政, 罗凤鸣. 急性高山病的分子机制研究及管理现状[J]. 四川大学学报(医学版), 2024, 55(6): 1418-1423. DOI: 10.12182/20241160603.
CHEN L, WU S Z, LUO F M. Status of Research on Molecular Mechanisms and Management of Acute Mountain Sickness[J]. J Sichuan Univ ( Med Sci ), 2024, 55(6): 1418-1423. DOI: 10.12182/20241160603.
[23]
PHAM K, FROST S, PARIKH K, et al. Inflammatory gene expression during acute high‐altitude exposure[J]. J Physiol, 2022, 600(18): 4169-4186. DOI: 10.1113/JP282772.
[24]
GUO H, WANG Q, LI T, et al. IL-2, IL-17A and TNF‐α hold potential as biomarkers for predicting acute mountain sickness prior to ascent[J/OL]. Cytokine, 2024, 181: 156694 [2025-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S1043466624001972. DOI: 10.1016/j.cyto.2024.156694.
[25]
XIONG Y, WANG Y, XIONG Y, et al. Protective effect of Salidroside on hypoxia‐related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways[J]. Food Sci Nutr, 2021, 9(9): 5060-5069. DOI: 10.1002/fsn3.2459.
[26]
WANG Z, GUO Q, MA J, et al. Protective effect of salidroside on lung tissue in rats exposed rapidly to high altitude[J]. J Zhejiang Univ (Med Sci), 2022, 51(4): 422-429. DOI: 10.3724/zdxbyxb-2022-0157.
[27]
SONG D, ZHAO M, FENG L, et al. Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production[J/OL]. Biomed Pharmacother, 2021, 142: 111949 [2025-04-21]. https://linkinghub.elsevier.com/retrieve/pii/S0753332221007319. DOI: 10.1016/j.biopha.2021.111949.
[28]
JIANG S, FAN F, YANG L, et al. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway[J/OL]. Eur J Pharmacol, 2022, 925: 175015 [2025-04-21]. https://linkinghub.elsevier.com/retrieve/pii/S001429992200276X. DOI: 10.1016/j.ejphar.2022.175015.
[29]
ZHANG X, ZHANG J. The human brain in a high altitude natural environment: A review[J/OL]. Front Hum Neurosci, 2022, 16: 915995 [2025-04-15]. https://www.frontiersin.org/articles/10.3389/fnhum.2022.915995/full. DOI: 10.3389/fnhum.2022.915995.
[30]
WILSON M H. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure[J]. J Cereb Blood Flow Metab, 2016, 36(8): 1338-1350. DOI: 10.1177/0271678X16648711.
[31]
POUDEL S, WAGLE L, GHALE M, et al. Risk factors associated with high altitude sickness among travelers: A case control study in Himalaya district of Nepal[J/OL]. PLoS Global Public Health, 2025, 5(2): e0004241 [2025-04-17]. https://dx.plos.org/10.1371/journal.pgph.0004241. DOI: 10.1371/journal.pgph.0004241.
[32]
BURTSCHER J, GATTERER H, NIEDERSEER D, et al. Flying to high-altitude destinations[J]. Minerva Med, 2025, 116(1): 43-61. DOI: 10.23736/S0026-4806.24.09286-3.
[33]
ZHAO H, WANG H, WANG C, et al. Demographic features in patients with acute mountain sickness[J/OL]. Eur J Intern Med, 2025: S0953620525001244 [2025-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S0953620525001244. DOI: 10.1016/j.ejim.2025.03.030.
[34]
WALDNER N F, HARTMANN S E, MURALT L, et al. Oxygen saturation and acute mountain sickness during repeated altitude exposures simulating high-altitude working schedules[J/OL]. Sci Rep, 2025, 15(1): 12987 [2025-04-18]. https://www.nature.com/articles/s41598-025-97554-7. DOI: 10.1038/s41598-025-97554-7.
[35]
SIBOMANA I, FOOSE D P, RAYMER M L, et al. Urinary Metabolites as Predictors of Acute Mountain Sickness Severity[J/OL]. Front Physiol, 2021, 12: 709804 [2025-04-17]. https://www.frontiersin.org/articles/10.3389/fphys.2021.709804/full. DOI: 10.3389/fphys.2021.709804.
[36]
KOKLESOVA L, MAZURAKOVA A, SAMEC M, et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine[J]. EPMA J, 2022, 13(2): 177-193. DOI: 10.1007/s13167-022-00281-6.
[37]
GOLUBNITSCHAJA O, KAPINOVA A, SARGHEINI N, et al. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation[J]. EPMA J, 2024, 15(2): 163-205. DOI: 10.1007/s13167-024-00358-4.
[38]
XIAO Y, XIAO X, ZHANG X, et al. Mediterranean diet in the targeted prevention and personalized treatment of chronic diseases: evidence, potential mechanisms, and prospects[J]. EPMA J, 2024, 15(2): 207-220. DOI: 10.1007/s13167-024-00360-w.
[39]
ZHOU S, DONG H, HUANG P, et al. Changes in body composition during acute exposure to high altitude is related to acute mountain sickness[J/OL]. Travel Med Infect Dis, 2025, 64: 102815 [2025-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S1477893925000213. DOI: 10.1016/j.tmaid.2025.102815.
[40]
ZHU H, YANG Y, LI Z, et al. An integrated network pharmacology and metabolomics approach to reveal the immunomodulatory mechanism of Brassica rapa L. (Tibetan Turnip) in fatigue mice[J]. Food Funct, 2022, 13(21): 11097-11110. DOI: 10.1039/D2FO02308C.
[41]
蒋思雨, 董丽平, 童萍, 等. 伴躯体症状抑郁症患者磁共振脑灰质体积异常表现[J]. 中国神经精神疾病杂志, 2024, 50(1): 17-22. DOI: 10.3969/j.issn.1002-0152.2024.01.003.
JIANG S Y, DONG L P, TONG P, et al. Abnormal gray matter volume of MRI in the somatic symptoms of depression[J]. Chin J Nerv Ment Dis, 2024, 50(1): 17-22. DOI: 10.3969/j.issn.1002-0152.2024.01.003.
[42]
王燕, 赵魁, 朱紫琳, 等. 阿尔茨海默病患者大脑形态学及结构协变网络的改变[J]. 磁共振成像, 2024, 15(8): 52-58. DOI: 10.12015/issn.1674-8034.2024.08.008.
WANG Y, ZHAO K, ZHU Z L, et al. Altered brain morphometry and structural covariant networks based on cortical thickness in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 52-58. DOI: 10.12015/issn.1674-8034.2024.08.008.
[43]
陈苗, 张岗, 王文佳, 等. 合成MRI联合VBM脑分区在早期帕金森病诊断中的应用[J]. 磁共振成像, 2023, 14(10): 20-25. DOI: 10.12015/issn.1674-8034.2023.10.004.
CHEN M, ZHANG G, WANG W J, et al. Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(10): 20-25. DOI: 10.12015/issn.1674-8034.2023.10.004.
[44]
LAWLEY J S, ALPERIN N, BAGCI A M, et al. Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension[J]. Ann Neurol, 2014, 75(6): 890-898. DOI: 10.1002/ana.24171.
[45]
SAGOO R S, HUTCHINSON C E, WRIGHT A, et al. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema[J]. J Cereb Blood Flow Metab, 2017, 37(1): 319-331. DOI: 10.1177/0271678X15625350.
[46]
ALPERIN N J, LEE S H, LOTH F, et al. MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study[J]. Radiology, 2000, 217(3): 877-885. DOI: 10.1148/radiology.217.3.r00dc42877.
[47]
SAHU S, PANDA N, SWAIN A, et al. Assessment of the Accuracy of Ultrasonographically Measured Optic Nerve Sheath Diameter as a Surrogate for the Detection of Intracranial Hypertension Compared to Optic Nerve Sheath Diameter Measured by MRI: A Prospective Observational Study[J/OL]. Cureus, 2024, 16(12): e76655 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/39886717/. DOI: 10.7759/cureus.76655.
[48]
KULA A Y, POLAT Y B, ATASOY B, et al. Non-invasive estimation of cerebrospinal fluid pressure in idiopathic intracranial hypertension: magnetic resonance imaging analysis of optic nerve and eyeball[J]. Acta Neurol Belg, 2025, 125(1): 61-68. DOI: 10.1007/s13760-024-02620-y.
[49]
STRAPAZZON G, BRUGGER H, DAL CAPPELLO T, et al. Factors associated with optic nerve sheath diameter during exposure to hypobaric hypoxia[J]. Neurology, 2014, 82(21): 1914-1918. DOI: 10.1212/WNL.0000000000000457.
[50]
VERGES S, RUPP T, VILLIEN M, et al. Multiparametric Magnetic Resonance Investigation of Brain Adaptations to 6 Days at 4350 m[J/OL]. Front Physiol, 2016, 7: 303 [2025-04-15]. http://journal.frontiersin.org/Article/10.3389/fphys.2016.00393/abstract. DOI: 10.3389/fphys.2016.00393.
[51]
XIE Y, SUN Y, SHAO Y, et al. Impact of Acute Short-Term Hypobaric Hypoxia on Anterior Chamber Geometry[J]. J Glaucoma, 2025, 34(2): 136-143. DOI: 10.1097/IJG.0000000000002498.
[52]
BIN C H, LEE S J. Teaching Neuro Images : Reversible splenial cytotoxic edema in acute mountain sickness[J/OL]. Neurology, 2011, 77(16): e94 [2025-04-15]. https://www.neurology.org/doi/10.1212/WNL.0b013e318233b326. DOI: 10.1212/WNL.0b013e318233b326.
[53]
RUPP T, JUBEAU M, LAMALLE L, et al. Cerebral Volumetric Changes Induced by Prolonged Hypoxic Exposure and Whole-Body Exercise[J]. J Cereb Blood Flow Metab, 2014, 34(11): 1802-1809. DOI: 10.1038/jcbfm.2014.148.
[54]
LONG C, BAO H. Study of high-altitude cerebral edema using multimodal imaging[J/OL]. Front Neurol, 2023, 13: 1041280 [2025-04-15]. https://www.frontiersin.org/articles/10.3389/fneur.2022.1041280/full. DOI: 10.3389/fneur.2022.1041280.
[55]
龙昌友, 鲍海华. 高原脑水肿的多模态MRI表现[J]. 磁共振成像, 2023, 14(2): 21-26, 55. DOI: 10.12015/issn.1674-8034.2023.02.004.
LONG C Y, BAO H H, Multimodal MRI manifestations of high altitude cerebral edema[J]. Chin J Magn Reson Imaging, 2023, 14(2): 21-26, 55. DOI: 10.12015/issn.1674-8034.2023.02.004.
[56]
WANG H, ZHANG C, QIU Y, et al. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench[J/OL]. Aging and disease, 2021, 12(8): 1898 [2025-04-15]. http://www.aginganddisease.org/EN/10.14336/AD.2021.0514. DOI: 10.14336/AD.2021.0514.
[57]
KALLENBERG K, DEHNERT C, DÖRFLER A, et al. Microhemorrhages in Nonfatal High-Altitude Cerebral Edema[J]. J Cereb Blood Flow Metab, 2008, 28(9): 1635-1642. DOI: 10.1038/jcbfm.2008.55.
[58]
TURNER R E F, GATTERER H, FALLA M, et al. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?[J]. J Appl Physiol, 2021, 131(1): 313-325. DOI: 10.1152/japplphysiol.00861.2019.
[59]
BILLER A, BADDE S, HECKEL A, et al. Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain[J/OL]. Nat Commun, 2021, 12(1): 5987 [2025-04-15]. https://www.nature.com/articles/s41467-021-26116-y. DOI: 10.1038/s41467-021-26116-y.
[60]
WILSON M H, IMRAY C H E. The cerebral venous system and hypoxia[J]. J Appl Physiol, 2016, 120(2): 244-250. DOI: 10.1152/japplphysiol.00327.2015.
[61]
LAWLEY J S, OLIVER S J, MULLINS P G, et al. Investigation of Whole-Brain White Matter Identifies Altered Water Mobility in the Pathogenesis of High-Altitude Headache[J]. J Cereb Blood Flow Metab, 2013, 33(8): 1286-1294. DOI: 10.1038/jcbfm.2013.83.
[62]
LIU W, LIU J, LOU X, et al. A longitudinal study of cerebral blood flow under hypoxia at high altitude using 3D pseudo-continuous arterial spin labeling[J/OL]. Sci Rep, 2017, 7(1): 43246 [2025-04-15]. https://www.nature.com/articles/srep43246. DOI: 10.1038/srep43246.
[63]
FALCON C, MONTESINOS P, VÁCLAVŮ L, et al. Time‐encoded ASL reveals lower cerebral blood flow in the early AD continuum[J]. Alzheimer's Dement, 2024, 20(8): 5183-5197. DOI: 10.1002/alz.14059.
[64]
LIANG Y, GAO Z Z, CHEN H Y, et al. Assessment of Dynamic Cerebral Autoregulation During Long‐Term Exposure to High Altitude in Normal Subjects by Ultrasonography[J]. J Ultrasound Med, 2024, 43(8): 1441-1448. DOI: 10.1002/jum.16467.
[65]
VILLIEN M, BOUZAT P, RUPP T, et al. Changes in cerebral blood flow and vasoreactivity to CO2 measured by arterial spin labeling after 6 days at 4350m[J]. Neuroimage, 2013, 72: 272-279. DOI: 10.1016/j.neuroimage.2013.01.066.
[66]
ZHANG H, FENG J, ZHANG S Y, et al. Predicting acute mountain sickness using regional sea-level cerebral blood flow[J]. Biomed Environ Sci, 2024, 37(8): 887-896. DOI: 10.3967/bes2024.100.

上一篇 轻度创伤性脑损伤的多模态MRI研究进展
下一篇 多模态磁共振成像技术在慢性高原病脑部形态及功能改变中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2