分享:
分享到微信朋友圈
X
综述
多模态影像技术在脑白质高信号与冠状动脉粥样硬化关系的应用进展
赵继秀 孟莉

Cite this article as: ZHAO J X, MENG L. Application of multimodal imaging techniques in white matter hyperintensity and coronary atherosclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(7): 147-153, 159.本文引用格式:赵继秀, 孟莉. 多模态影像技术在脑白质高信号与冠状动脉粥样硬化关系的应用进展[J]. 磁共振成像, 2025, 16(7): 147-153, 159. DOI:10.12015/issn.1674-8034.2025.07.024.


[摘要] 脑白质高信号(white matter hyperintensities, WMH)是脑小血管疾病的典型影像学表现,与认知功能损害及痴呆风险有关。而冠状动脉粥样硬化(coronary atherosclerosis, CAS)作为心血管疾病的关键病理改变,对心脑血管系统的整体健康具有系统性影响。近年来,随着高分辨率MRI、冠状动脉CT血管造影(coronary computed tomography angiography, CCTA)等先进影像技术的应用,为深入探索CAS和WMH的病理机制及其相互关系提供了新的视角。本文重点阐述多模态影像技术在两者中的应用以及CAS与WMH在影像学特征上的相关性证据,为临床早期识别高风险人群和制订干预策略提供影像学依据。
[Abstract] White matter hyperintensities (WMH), a characteristic imaging manifestation of cerebral small vessel disease, are associated with cognitive impairment and dementia risk. Coronary atherosclerosis (CAS), as a crucial pathological feature of cardiovascular diseases, exerts systemic impacts on the overall health of the cardio-cerebrovascular system. In recent years, advanced imaging technologies such as high-resolution magnetic resonance imaging (MRI) and coronary computed tomography angiography (CCTA) have provided novel perspectives for in-depth exploration of the pathological mechanisms and interrelationships between CAS and WMH. This article focuses on elucidating the applications of multimodal imaging techniques in both conditions and synthesizing evidence regarding the correlations in imaging characteristics between CAS and WMH, aiming to provide imaging-based references for early clinical identification of high-risk populations and formulation of intervention strategies.
[关键词] 脑白质高信号;冠状动脉粥样硬化;磁共振成像;冠状动脉CT血管造影
[Keywords] white matter hyperintensity;coronary atherosclerotic plaque;magnetic resonance imaging;coronary CT angiography

赵继秀    孟莉 *  

青海大学附属医院影像中心,西宁 810000

通信作者:孟莉,E-mail: qh_mengli@126.com

作者贡献声明:孟莉设计本研究的方案,对稿件重要内容进行了修改;并获得了青海省“昆仑英才”行动计划项目和国家临床重点专科建设项目资助;赵继秀起草和撰写稿件,获取、分析和解释本研究的数据;对稿件进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 青海省“昆仑英才”行动计划项目 青人才字〔2024〕1号 国家临床重点专科建设项目 青卫健办〔2024〕90号
收稿日期:2025-04-29
接受日期:2025-07-06
中图分类号:R445.2  R743 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.024
本文引用格式:赵继秀, 孟莉. 多模态影像技术在脑白质高信号与冠状动脉粥样硬化关系的应用进展[J]. 磁共振成像, 2025, 16(7): 147-153, 159. DOI:10.12015/issn.1674-8034.2025.07.024.

0 引言

       脑白质高信号(white matter hyperintensities, WMH)是中老年人群常见的慢性退行性病变,其发病率随年龄增长而显著上升[1]。最新指南[2]提出50岁以上人群发病率约50%,90岁以上人群则高达95%。WMH与多种神经系统疾病的进展及不良预后密切相关[3],不仅是卒中后认知障碍的独立预测因子,还会增加卒中及痴呆的发生风险[4]。在阿尔茨海默病(Alzheimer's disease, AD)中,其体积增大与患者认知功能下降呈正相关[5],与运动功能的加速衰退显著相关 [6],且累及多个维度[7]。WMH的病理机制复杂且涉及多重因素,导致临床前期干预十分困难。

       冠状动脉粥样硬化(coronary atherosclerosis, CAS)是心血管疾病的核心病理阶段,会触发全身系统性反应。有研究[8]提出预计在2022至2050年间,中低收入国家动脉粥样硬化性冠状动脉疾病(atherosclerotic coronary artery disease, ACAD)死亡率将上升19.2%,中高收入国家上升4.2%。高血压等传统危险因素联合炎症、氧化应激等病理过程,促使粥样斑块形成,引发冠脉狭窄或闭塞,进而诱发急性冠脉综合征等严重的并发症[9],已成为全球重大疾病负担。

       尽管CAS与WMH病变隶属不同系统,但二者通过血管系统和血液循环紧密关联。目前,已有相关综述阐述WMH或CAS相关病理机制。朱绍宁等[10]从冠脉斑块形成的病理特征、炎症-氧化应激及基因调控等多个维度,系统剖析了CAS的病理机制;周西瑞等[11]从血脑屏障障碍、小胶质细胞异常表达等多个方面,对WMH相关病理机制进行了阐述。同时,两者相关性研究也备受关注。研究证实,在无卒中、痴呆的老年人中,WMH的严重程度是未来CAS进展的独立预测因子[12];健康人群中,冠状动脉钙化(coronary artery calcification, CAC)的严重程度与WMH呈正相关[13]。然而,在影像领域二者相关性的应用仍较有限,相关综述也相对缺乏。影像新技术的不断发展及AI在医疗领域的广泛应用为WMH与CAS的临床辅助诊疗提供极大帮助。本综述阐述了CAS与WMH的共同病理机制及临床危险因素,分析了影像学技术在二者相关性研究中的辅助作用,旨在识别早期风险因素,为今后两者相关性研究提供新思路,并指导临床实践、提高诊疗效果。

1 WMH与CAS的概述及共同的病理机制

1.1 WMH及CAS的概述

       正常脑白质由神经纤维、少突胶质细胞和星形胶质细胞组成,负责神经信号传递与大脑区域功能协调。当这些结构受损,白质区水分子分布异常,从而在MRI上呈现出信号强度的改变。WMH作为脑小血管病(cerebral small vessel disease, CSVD)最常见的类型,在MRI上多双侧对称性分布[14],表现为脑白质区域点状、斑片状异常信号,T2加权成像(T2-weighted imaging, T2WI)及液体衰减反转恢复序列(fluid attenuated inversion recovery, FLAIR)上呈高信号,T1加权成像(T1-weighted imaging, T1WI)呈等信号或低信号[15, 16, 17]

       冠状动脉主干及其分支分布于心脏表面,发出细小分支深入心肌供血供氧。心脏收缩期心肌纤维收缩挤压致冠脉分支血流减缓,舒张期心肌疏松使血流加快。这种独特的解剖和特殊的血流动力学,使冠脉成为粥样硬化最早且最易受累的血管[18]。CAS是冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease, CAHD)的关键病理过程。病变初期血管内皮受损,脂类沉积于内膜下被巨噬细胞吞噬形成泡沫细胞,进而发展为粥样斑块[19]。斑块形成会使血管壁增厚、变硬,管腔狭窄堵塞,导致心肌灌注不足。

1.2 WMH与CAS共同病理机制

1.2.1 内皮功能障碍与炎症-氧化应激的协同机制

       血管内皮细胞释放的一氧化氮、前列环素等物质有维持血管张力、抑制血栓与炎症的作用[20]。而动脉粥样硬化、高血压等慢性疾病损伤内皮功能,导致一氧化氮生物利用度下降,伴随活性氧簇、内皮素-1等缩血管物质增多,引发血管舒缩失衡[21],导致内皮功能障碍,进一步推动病理进程。低密度脂蛋白在内皮下沉积并氧化为氧化型低密度脂蛋白,被巨噬细胞吞噬后形成泡沫细胞,成为动脉粥样硬化斑块基础[22];同时血管通透性增加,破坏血脑屏障,诱发脑白质低灌注[23]。其核心与氧化应激、慢性炎症及免疫激活有关[24, 25]。促炎因子激活内皮细胞,促进白细胞浸润与黏附分子表达,加剧血管损伤。在冠状动脉中加速脂质沉积与斑块形成,在脑小血管则导致血脑屏障破坏与白质缺血。免疫细胞异常活化后,巨噬细胞吞噬氧化型低密度脂蛋白推动动脉粥样硬化[22],脑内小胶质细胞过度激活引发神经炎症与髓鞘损伤[26]。氧化应激通过NADPH氧化酶和线粒体功能异常产生活性氧簇[27],既促进低密度脂蛋白氧化与斑块进展,又加重血脑屏障破坏和脑白质缺血。

1.2.2 慢性低灌注

       动脉粥样硬化是冠状动脉和脑内小血管低灌注的重要病理因素[28]。冠脉是最易发生粥样硬化的靶血管。同样,脑内小血管也会因动脉粥样硬化而出现管腔狭窄,影响脑部灌注。特别是脑白质区域的小血管,管径细、分支多,且终末段未形成吻合及侧支循环[29],更容易受到影响。此外,CAS引发的心肌缺血或心力衰竭导致心输出量减少[9]。长期心输出量不足会破坏脑循环自动调节功能[30],使脑内小血管缺血缺氧加剧,从而发生玻璃样变性、纤维素样坏死等,造成微血管闭塞和进行性灌注减低[31]

1.2.3 相关临床因素

       高血压、高血脂、糖尿病、年龄、性别和生活方式等亦是WMH与CAS的共同危险因素,通过内皮功能障碍、慢性炎症等机制致病。长期的高血压会增加血管壁应力,损伤内皮细胞,破坏血管屏障,进而引发动脉粥样硬化与炎症-氧化应激反应[23],推动WMH的发展。糖尿病因慢性高血糖导致代谢紊乱,非酶糖化反应生成晚期糖基化终末产物可损伤内皮、活化血小板等加速粥样硬化进程[32, 33]。年龄增长伴随血管老化,弹性下降,引发内皮功能障碍与血脑屏障损伤[34]。不良的生活习惯进一步加剧风险,如吸烟时尼古丁和焦油损伤血管内皮,诱发氧化应激[35],还会增加血液黏稠度[36],破坏血脑屏障;长期过量饮酒会升高血压,损伤脑小血管,增加WMH的风险[37];缺乏运动则减缓新陈代谢,加剧脂肪堆积,易诱发高血压、高血脂[38],进一步提升WMH和CAS的发病率。

2 多模态MRI技术在WMH中多维度应用及研究进展

       WMH作为CSVD的重要影像表现,其诊疗依赖MRI的多序列与多模态技术。结构MRI中,FLAIR序列对WMH显示最敏感[39],结合T1WI、T2WI可定性观察,而Fazekas评分[40]系统通过对脑室周围和深部WMH分别进行0~3级量化(如脑室周围WMH从无病灶到延伸至深部白质融合,深部WMH从无病灶到大量直径>25 mm的融合病灶),实现了严重程度评估的标准化。王晨等[41]用该评分系统评估发现,WMH严重程度与认知功能损伤负相关(P<0.05)、与神经功能损伤正相关(P<0.05)。另有研究[42]用该评分系统揭示慢性肾病与WMH存在显著关联[比值比(odds ratio, OR)=1.841,95%置信区间(confidence interval, CI):1.413~2.400],P<0.001]。功能MRI(functional magnetic resonance imaging, fMRI)通过静态功能连接、动态功能连接等多维度分析,发现WMH患者存在前额叶与颞叶等脑区功能连接减弱、功能连接动态切换紊乱、白质-灰质功能连接破坏及大脑网络拓扑结构改变[43, 44, 45],这些异常会影响注意力、记忆等认知功能,有望成为早期诊断相关认知障碍的辅助工具。

       动脉自旋标记(arterial spin labeling, ASL)可无创定量测量脑血流(cerebral blood flow, CBF),一项纵向队列研究[46]发现WMH体积与随访期脑血流下降相关(r=-1.96,P=0.004);且病灶严重程度与灌注降低显著关联(如深部WMH≥2分或室周WMH≥3者CBF明显降低)(P<0.05)[47],左侧额叶CBF下降还与执行功能早期损伤相关(P<0.05)[48]。扩散张量成像(diffusion tensor imaging, DTI)及其进阶技术扩散峰度成像(diffusion kurtosis imaging, DKI)则通过测量各向异性分数(fractional anisotropy, FA)、平均扩散率(mean diffusivity, MD)等参数,揭示WMH区域及周围“正常”白质的髓鞘损伤、轴突破坏等微观结构异常[49],其中DKI可检测早于FLAIR可见病灶进展的微结构改变[50],两者联合能更全面评估损伤机制。

       动态对比增强MRI(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)利用药代动力学模型定量计算血脑屏障通透性参数(如Ktrans、Ve),证实WMH区域及外观正常白质存在屏障损伤,近脑室周围WMH以微血管渗漏为主,深部WMH更与小动脉硬化缺血相关[51],为病理机制研究提供了新视角。正电子发射断层扫描-磁共振成像(positron emission tomography-magnetic resonance imaging, PET-MRI)整合代谢与解剖成像,通过18F-FDG PET等技术发现WMH患者代谢代偿能力与病灶负荷呈正相关(r=0.57,P<0.001)[52],且神经炎症区域与葡萄糖代谢减退区重叠并呈负相关[53],提示炎症驱动代谢损伤的机制。

       尽管各技术均有独特价值,但其局限性也较明显,如结构MRI缺乏功能信息,ASL空间分辨率不足,DTI/DKI易受运动伪影干扰,DCE-MRI模型与生理存在差异,PET-MRI示踪剂特异性待提升。未来,构建多模态MRI融合体系(整合结构、功能、灌注、代谢数据),结合AI优化成像序列与后处理流程,开展大样本纵向研究明确影像标志物与临床预后的关联,将推动WMH诊疗向精准化、个性化发展,为早期干预和机制探索提供更全面的依据。

3 多模态影像技术在CAS研究中的应用

       临床评估CAS依赖多种影像技术。冠状动脉造影(coronary angiography, CAG)是评估的金标准,可直观显示狭窄程度与位置;血管内超声(intravascular ultrasound, IVUS)、近红外光谱-血管内超声联合成像技术(near-Infrared spectroscopy-intravascular ultrasound combined imaging technique, NIRS-IVUS)、光学相干断层扫描(optical coherence tomography, OCT)等可量化斑块负荷、识别斑块特性[54]。正电子发射断层扫描(positron emission tomography, PET)借助¹⁸F-FDG等分子探针,评估斑块炎症与代谢活性[55]。冠状动脉CT血管造影(coronary computed tomography angiography, CCTA)作为一线无创检查,可清晰呈现管腔狭窄与斑块形态[56]。近年来,基于机器学习的动脉粥样硬化成像定量CT(atherosclerosis quantitative computed tomography imaging, AI-QCT)技术实现了全心脏冠脉斑块表型的全自动分析,显著提升小斑块检出能力[57]。心脏磁共振(cardiovascular magnetic resonance, CMR)通过观察对比剂在心肌组织中的充盈与洗脱。识别缺血导致的心肌灌注异常,为心肌缺血性疾病提供关键诊疗依据。VINK等[58]证实非阻塞冠状动脉疾病患者存在心肌灌注异常,而WANG等[59]又证实了阻塞性冠脉疾病与心肌灌注异常的相关性(P<0.05)。

       多模态影像整合冠状动脉解剖、斑块特征与心肌功能信息,助力个性化治疗方案的制订、疗效检测与预后预测,但当前影像技术在临床应用仍存在局限。单一技术难以满足所有诊断需求,多技术联合增加成本与流程复杂性。新兴人工智能(artificial intelligence, AI)技术在算法普适性、数据标准化等方面还有待完善。未来,影像技术将朝着多模态融合、智能化与精准化方向发展。实现对CAS从形态到功能、从结构到代谢的全方位评估。

4 多模态影像技术在WMH与CAS相关性研究进展

4.1 WMH与CAS相关性研究现状

       随着神经影像学与心血管影像学技术的快速发展,两者的交叉研究领域取得了显著进展,不仅推动神经与心血管系统相关性研究的深入发展,更借助AI辅助手段开展深度学习与机器学习并构建预测模型,已成为当前学者的研究热点。

       研究者运用多模态影像技术,深入探索两者共同机制及相关性。多项研究发现,WMH体积与CAS的关键指标,即CAC进展密切相关。一项前瞻性研究证实,WMH体积与CAC进展存在显著关联(P=0.004)[13],可辅助预测亚临床CAS;横断面研究则从群体层面揭示了CAC与健康人群WMH显著相关,CAC评分越高,脑室周围和深部WMH风险越大[60]。此外,基于CCTA衍生的冠状动脉周围脂肪衰减指数(pericoronary fat attenuation index, pFAI)和CT血流储备分数(CT-fractional flow reserve, CT-FFR),可客观评估CAS病理生理学改变及严重程度。且相关研究显示,pFAI、CT-FFR和CAC风险分级均可独立预测WMH进展(P<0.05)[61]

       神经影像学与心血管影像学的交叉研究虽成果显著,但仍面临多重挑战。当前研究多为横断面或单中心前瞻性设计,难以厘清神经与心血管病变的因果关系;技术层面,多模态数据整合不足,AI模型普适性差且可解释性弱,限制临床应用;同时,研究侧重风险预测,基于影像标志物的干预研究匮乏,影像技术的实时性与便携性也无法满足动态监测需求。未来,可通过开展多中心长时程纵向研究,结合多组学解析致病机制;开发跨模态融合AI模型,扩大样本多样性提升泛化能力;推进干预性临床试验,以影像标志物为导向评估干预效果,推动影像组学与精准医学融合,助力神经-心血管疾病的精准防控。

4.2 多模态影像技术中WMH与CAS的联合应用研究

4.2.1 CCTA与MRI多序列的联合应用​

       多项研究借助CCTA定量评估CAS相关斑块特征,如斑块负荷、CAC、pFAI等指标,同时利用脑MRI多序列成像技术结合Fazekas分级标准评估WMH严重程度,深入探究两者相关性。CHOI等[13]研究发现,CAC的存在和严重程度与WMH体积增加有关,提示心脑血管病变存在关联及共病机制。有研究同样证实CAC评分与WMH体积呈显著剂量依赖性关联[60],其评分每增加1%,WMH体积相应增加2.96%;且CAC风险等级升高与全脑、胼胝体、额叶、顶叶和枕叶的WMH体积显著相关(P<0.05)[62],在老年人群中可作为WMH早期预测标志物。此外,冠心病病史、斑块负荷及pFAI>-70.1 HU均是中重度WMH 的独立危险因素[63],提示斑块生物学特性在心脑血管病变中发挥关键作用。值得关注的是,WMH体积与CAC水平呈正相关(P=0.010)[13],这对提示严重WMH患者进行冠状动脉病变筛查具有重要的临床价值。

       当前CCTA与MRI多序列联合应用虽取得一定成果,但仍存在诸多局限。研究多为横断面设计,仅能发现CCTA指标与WMH的相关性,无法确定究竟是冠状动脉病变引发WMH,还是共同危险因素导致两者并存,且缺乏长期随访数据来追踪动态演变;样本代表性不足,多聚焦特定群体,青年及不同地域、种族人群数据少;技术缺乏统一标准,不同研究扫描参数与序列有差异,且混杂因素控制不全。未来,可开展多中心纵向队列研究,运用相应方法探究因果机制;扩大样本范围,引入高分辨率MRI区分WMH亚型;制订统一技术标准,借助深度学习实现自动化分析;设计干预性试验,探索基于联合评估的有效防治策略,从而推动该技术在临床实践中的广泛应用。

4.2.2 多模态影像联合应用​

       正电子发射断层扫描–计算机断层扫描(positron emission tomography-computed tomography, PET-CT)借助特定放射性示踪剂,来反映冠脉血管壁的代谢活性。当粥样硬化斑块内的炎症细胞对葡萄糖的摄取量增加时,18F-氟脱氧葡萄糖(18F-Fluorodeoxyglucose, 18F-FDG)便会在斑块部位浓聚,进而可通过PET显像识别出具有高代谢活性的易损斑块。诸多研究显示,18F-FDG PET不仅能够检测CAS患者冠状动脉周围脂肪组织(pericoronary adipose tissue, PCAT)的周围炎症,更关键的是,它能通过提供冠状动脉炎症的定量测量指标—血管周围脂肪衰减指数(fat Attenuation index, FAI),展现出超越传统风险因素和CCTA指数对不良临床事件预测的价值[64, 65]。PET/MRI融合了PET的分子功能显像以及MRI高软组织分辨能力和多参数成像特性,可清晰显示血管壁结构。一次扫描即可同步获取心脏及血管的解剖、功能以及分子代谢信息,在评估CAS方面具备独特优势。WURSTER等[66]利用PET/MRI的[18F]氟化物和钆布特醇双探针来预测不良冠状动脉事件,得出同时使用这两种双探针联合PET/MRI在临床实践中具有可行性,且可能有助于识别CAS高危患者的结论。还有研究运用氯化铷-82(Rubidium-82 chloride, 82Rb)心脏PET/CT和脑部MRI定量评估心脑系统之间的相互关系,发现冠脉细小分支导致的心肌低灌注与WMH有关[67],据此推测心脑血管系统之间存在显著的相互关系,尤其是在深部灰质改变方面。

       PET-CT及PET/MRI在CAS及WMH评估中优势显著,但实际应用较为局限。技术方面,PET-CT示踪剂特异性差,易出现假阳性;PET/MRI扫描耗时长、成本高、操作复杂,临床推广困难。且现有研究多聚焦单一示踪剂或AI参数,缺乏多模态信息整合,难以明晰病理机制。未来可开展长期研究,提升结论普适性;研发新型示踪剂,优化设备性能,降低使用门槛;借助融合多模态影像与临床数据,挖掘精准预测标志物,明确检测指标与疾病进展的因果关系,助力个性化诊疗。

4.3 AI在WMH与CAD研究中的应用价值​

4.3.1 自动化影像分析

       近年来,在医学影像领域,AI技术(尤其是深度学习算法)在CAS与WMH的研究和应用中优势显著。其通过卷积神经网络等架构,可自动化分割、精准量化CCTA、MRI等多模态影像数据,快速识别CCTA中斑块形态、大小及MRI中WMH分布范围,并输出体积、密度等关键指标;机器学习算法还能从海量数据中提取深层特征,结合深度学习放射组学技术量化影像纹理、形态等特征,揭示CAS与WMH的病理关联。此外,多模态数据结合AI算法构建的模型,可整合临床危险因素与影像特征,预测心脑血管事件风险,辅助制订早期干预策略。ALVEN等[68]开发的全自动深度学习模型,精准分割冠脉斑块与动脉腔,性能与专家相当;基于大型多中心队列研究的定量冠状动脉斑块分析(artificial intelligence-quantitative coronary plaque analysis, AI-QCPA),通过建立年龄和性别特异性列线图,实现个体斑块体积量化、疾病负担评估与风险分层[69]。研究还发现,基于深度学习预测,冠脉斑块体积处于≥75个百分位的患者发生心肌梗死风险最高[70]。机器学习算法更是提取斑块形态学特征构建预测模型,在评估斑块风险表型上有较高准确性[71],能挖掘潜在易损性斑块,辅助临床制订个性化治疗方案,在临床风险评估中极具价值。

       已有研究通过整合3D T1和3DT2-FLAIR图像数据,借助深度学习算法实现了WMH的自动分割,结果表明,该模型在不同MRI系统及多样化采集参数下,均展现出卓越的稳健性与通用性[72],为大规模队列研究中WMH的精准分割提供了可靠的技术方案。KIM等[73]学者采用二维U型网络(2D U-shaped network, 2D UNet)和挤压激发(Squeeze-and-Excitation UNet, SE-UNet)模型进行WMH分割训练,数据显示,UNet自动分割结果与手动分割的WMH体积具有显著相关性(r=0.917,P<0.001),而SE-UNet模型的相关性更为突出(r=0.933,P<0.001)。该团队基于庞大的MRI数据集,成功开发并验证了深度学习算法在急性脑梗死患者 WMH 分割中的应用价值。​

       AI技术在CAS与WMH研究中展现出强大的自动化分析与预测能力,但仍存局限。数据层面,多数研究依赖特定机构回顾性数据,样本来源单一、异质性不足,缺乏多中心、多设备、多扫描参数下的统一标注,导致模型泛化能力弱,难以适应复杂临床场景。算法方面,现有深度学习模型虽可精准分割量化影像,但多聚焦单一模态或病变,对CCTA、MRI等多模态数据融合分析不足,无法深入解析两者协同病理机制。未来可构建多中心、多模态、多场景标准化数据库,实现数据共享,提升模型泛化能力;开发可解释性AI算法,结合注意力机制等技术,明确影像与疾病关联,增强临床可信度;推动AI与临床深度融合,设计干预性研究,验证其在个性化治疗、风险监测中的价值,加速技术转化。

4.3.2 多模态数据整合与风险预测

       随着医学影像技术和AI的快速发展,基于影像组学与临床数据整合的研究为心脑血管疾病风险评估提供了新方向。通过影像组学技术可精准提取冠脉斑块的钙化体积、脂质比例等特征,并与WMH体积进行关联分析,挖掘两者潜在的病理联系。在此基础上构建预测模型,将CAS严重程度与WMH负荷纳入考量,实现对认知衰退或卒中风险的有效评估。为心脑血管疾病的早期预警、个性化诊疗和病理机制研究开辟新路径。

       近年来多项研究聚焦于影像组学特征与冠状动脉疾病标志物对WMH进展的预测价值,为临床综合评估提供新方向。HOU等[74]通过双中心试点研究,运用多种机器学习算法评估影像组学特征预测WMH进展的有效性,发现整合CT-FFR、pFAI及两项影像组学特征的混合模型预测性能最佳,受试者工作特征曲线下面积(area under the curve, AUC)达0.893(95% CI:0.815~0.956)。JIN等[60]基于CCTA衍生的CAC,构建结合酗酒史、pFAI、CT-FFR 及CAC风险分级的logistic回归模型,在训练集和验证集分别取得AUC=0.878(95% CI:0.790~0.938)和AUC=0.845(95% CI:0.734~0.953)的优异表现,且证实CAC风险等级与WMH体积显著正相关(P<0.05)。另有研究对健康高危成年人分析发现,冠状动脉斑块的存在和体积与WMH总体积呈正相关,其中脑室周围WMH与冠状动脉病变关联性最强[75]

       影像组学与临床数据整合虽为心脑血管疾病风险评估提供新方向,但研究多基于小样本、单中心数据,缺乏多模态影像及多样化人群覆盖,特征提取不全面;模型多关注相关性,对多模态影像融合与病理机制解析不足;尤其外部验证有限。未来可通过构建多中心多模态队列、运用因果推断等技术解析机制、开展前瞻性验证并推动临床转化、建立标准化体系,实现从风险预测到机制干预的精准医学目标。

5 小结与展望

       MRI凭借强大的软组织分辨力,结合各类结构与功能序列及衍生的影像新技术,可清晰捕捉WMH的细微病变特征,从微观层面精准剖析白质损伤的程度与分布。以CT为主的多模态影像技术,在CAS斑块分析中,不仅展现出极高的敏感性,还能广泛覆盖多种发病机制,为斑块的形态学评估提供精确数据支撑。本综述旨在探讨WMH与CAS之间的相关性,通过逐一分析现有影像技术从多个维度对二者进行综合评估。同时,重点阐述多模态影像技术在WMH与CAS联合研究中的重要贡献,结合近年来AI辅助技术与影像组学进展,构建精准预测模型,为揭示两者相关病理机制及后续研究提供有效的影像技术手段。

       多模态影像技术已成为心脑共同病理机制研究的核心工具,极大推动了WMH与CAS关联性研究的进展。然而,当前研究仍面临不足:其一,WMH与CAS相互作用的分子生物学机制在两者病理进程中的协同作用仍存在研究盲区;其二,研究样本局限性显著,多数研究聚焦于小样本或特定人群,缺乏对不同种族遗传背景、年龄分层及基础疾病人群心脑血管影像表型差异的系统性分析。未来该领域研究将呈现多向突破:在机制研究上,融合多学科技术挖掘心脑血管共病分子机制,为靶向治疗奠基;在临床转化方面,开展大规模前瞻性队列研究,结合多模态影像特征与临床数据构建个性化风险评估模型;同时,借助AI与机器学习分析影像数据,开发智能化诊断工具,并加强跨学科合作,形成协同创新模式,为心脑血管疾病的精准防治开辟新路径。

[1]
DE KORT F A S, VINKE E J, VAN DER LELIJ E J, et al. Cerebral white matter hyperintensity volumes: Normative age- and sex-specific values from 15 population-based cohorts comprising 14, 876 individuals[J/OL]. Neurobiol Aging, 2025, 146: 38-47 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39602940/. DOI: 10.1016/j.neurobiolaging.2024.11.006.
[2]
OTTAVI T P, PEPPER E, BATEMAN G, et al. Consensus statement for the management of incidentally found brain white matter hyperintensities in general medical practice[J]. Med J Aust, 2023, 219(6): 278-284. DOI: 10.5694/mja2.52079.
[3]
CARVALHO DE ABREU D C, PIERUCCINI-FARIA F, SON S, et al. Is white matter hyperintensity burden associated with cognitive and motor impairment in patients with Parkinson's disease? A systematic review and meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 161: 105677 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38636832/. DOI: 10.1016/j.neubiorev.2024.105677.
[4]
FILLER J, GEORGAKIS M K, DICHGANS M. Risk factors for cognitive impairment and dementia after stroke: a systematic review and meta-analysis[J/OL]. Lancet Healthy Longev, 2024, 5(1): e31-e44 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38101426/. DOI: 10.1016/S2666-7568(23)00217-9.
[5]
YI F Y, WANG J R, LIN M Q, et al. Correspondence between white matter hyperintensities and regional grey matter volumes in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2024, 16: 1429098 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39351014/. DOI: 10.3389/fnagi.2024.1429098.
[6]
ZHAO X Y, ZUO M Y, ZHAN F F, et al. Cognition mediates the relationship between white matter hyperintensity and motor function in patients with cerebral small vessel disease: a cross-sectional study[J]. Quant Imaging Med Surg, 2024, 14(10): 7306-7317. DOI: 10.21037/qims-24-1058.
[7]
CLANCY U, GILMARTIN D, JOCHEMS A C C, et al. Neuropsychiatric symptoms associated with cerebral small vessel disease: a systematic review and meta-analysis[J]. Lancet Psychiatry, 2021, 8(3): 225-236. DOI: 10.1016/S2215-0366(20)30431-4.
[8]
ZAMAN S, WASFY J H, KAPIL V, et al. The Lancet Commission on rethinking coronary artery disease: moving from ischaemia to atheroma[J]. Lancet, 2025, 405(10486): 1264-1312. DOI: 10.1016/S0140-6736(25)00055-8.
[9]
MĂNESCU I B, PÁL K, LUPU S, et al. Conventional biomarkers for predicting clinical outcomes in patients with heart disease[J/OL]. Life (Basel), 2022, 12(12): 2112 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36556477/. DOI: 10.3390/life12122112.
[10]
朱绍宁, 胡舜英. 冠状动脉粥样硬化性心脏病炎症机制及抗炎治疗研究进展[J]. 中华老年多器官疾病杂志, 2024, 23(3): 225-228. DOI: 10.11915/j.issn.1671-5403.2024.03.048.
ZHU S N, HU S Y. Research progress in inflammation-related mechanism and anti-inflammation therapy for coronary artery disease[J]. Chin J Mult Organ Dis Elder, 2024, 23(3): 225-228. DOI: 10.11915/j.issn.1671-5403.2024.03.048.
[11]
周西瑞, 喻志源, 骆翔. 脑白质高信号的研究进展[J]. 神经损伤与功能重建, 2020, 15(8): 464-465, 468. DOI: 10.16780/j.cnki.sjssgncj.20200186.
ZHOU X R, YU Z Y, LUO X. Research progress of high signal in white matter[J]. Neural Inj Funct Reconstr, 2020, 15(8): 464-465, 468. DOI: 10.16780/j.cnki.sjssgncj.20200186.
[12]
KNEIHSL M, GATTRINGER T, HOFER E, et al. Cerebral white matter hyperintensities indicate severity and progression of coronary artery calcification[J/OL]. Sci Rep, 2024, 14(1): 4664 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38409473/. DOI: 10.1038/s41598-024-55305-0.
[13]
CHOI J, KIM J Y, KWON H J, et al. Association of cerebral white matter hyperintensities with coronary artery calcium in a healthy population: a cross-sectional study[J/OL]. Sci Rep, 2022, 12(1): 21562 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36513747/. DOI: 10.1038/s41598-022-25654-9.
[14]
陈玮琪, 徐佳洁, 陆瑶, 等. 中国脑小血管病的神经影像学诊断标准及名词标准化定义: 来自中国卒中学会的专家共识[J]. 中国卒中杂志, 2024, 19(4): 376-404. DOI: 10.3969/j.issn.1673-5765.2024.04.002.
CHEN W Q, XU J J, LU Y, et al. Neuroimaging diagnostic criteria and standardized definition of terms for small vessel disease in China: expert consensus from the Chinese stroke association[J]. Chin J Stroke, 2024, 19(4): 376-404. DOI: 10.3969/j.issn.1673-5765.2024.04.002.
[15]
叶瑾怡, 王赞, 龚宇田, 等. 脑小血管病研究的神经影像学标准STRIVE-2: 自2013年以来的新进展[J]. 中国卒中杂志, 2023, 18(10): 1160-1174. DOI: 10.3969/j.issn.1673-5765.2023.10.009.
YE J Y, WANG Z, GONG Y T, et al. Neuroimaging standards for research into cerebral small vessel disease(STRIVE-2): advances since 2013[J]. Chin J Stroke, 2023, 18(10): 1160-1174. DOI: 10.3969/j.issn.1673-5765.2023.10.009.
[16]
CHEN X D, WANG J H, SHAN Y L, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication[J]. J Neurol, 2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.
[17]
SHINDO A, ISHIKAWA H, II Y, et al. Clinical features and experimental models of cerebral small vessel disease[J/OL]. Front Aging Neurosci, 2020, 12: 109 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/32431603/. DOI: 10.3389/fnagi.2020.00109.
[18]
VELICAN C, VELICAN D. Some particular aspects of the microarchitecture of human coronary arteries[J]. Atherosclerosis, 1979, 33(2): 191-200. DOI: 10.1016/0021-9150(79)90116-3.
[19]
XU X L, HUA Y, WANG L L, et al. Correlation between risk factors of cerebrovascular disease and calcified plaque characteristics in patients with atherosclerotic severe carotid stenosis[J]. Neurol Res, 2020, 42(1): 83-89. DOI: 10.1080/01616412.2019.1710403.
[20]
YANG F, YANG M Y, LE J Q, et al. Protective effects and therapeutics of ginsenosides for improving endothelial dysfunction: from therapeutic potentials, pharmaceutical developments to clinical trials[J]. Am J Chin Med, 2022, 50(3): 749-772. DOI: 10.1142/S0192415X22500318.
[21]
KAMARUDDIN N A, HAKIM ABDULLAH M N, TAN J J, et al. Vascular protective effect and its possible mechanism of action on selected active phytocompounds: a review[J/OL]. Evid Based Complement Alternat Med, 2022, 2022: 3311228 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/35469164/. DOI: 10.1155/2022/3311228.
[22]
SHIMAI R, HANAFUSA K, NAKAYAMA H, et al. Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages[J/OL]. Sci Rep, 2023, 13: 12740 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37544935/. DOI: 10.1038/s41598-023-39904-x.
[23]
SOLÉ-GUARDIA G, CUSTERS E, DE LANGE A, et al. Association between hypertension and neurovascular inflammation in both normal-appearing white matter and white matter hyperintensities[J/OL]. Acta Neuropathol Commun, 2023, 11(1): 2 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36600303/. DOI: 10.1186/s40478-022-01497-3.
[24]
CLARO V, FERRO A. Netrin-1: Focus on its role in cardiovascular physiology and atherosclerosis[J/OL]. JRSM Cardiovasc Dis, 2020, 9: 2048004020959574 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/33282228/. DOI: 10.1177/2048004020959574.
[25]
PARK S, LEE I K. Progression of multifaceted immune cells in atherosclerotic development[J]. J Lipid Atheroscler, 2019, 8(1): 15-25. DOI: 10.12997/jla.2019.8.1.15.
[26]
CHEN Y-C, CHANG S C, LEE Y S, et al. TOMM40 genetic variants cause neuroinflammation in Alzheimer's disease[J/OL]. Int J Mol Sci, 2023, 24(4): 4085 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36835494/. DOI: 10.3390/ijms24044085.
[27]
ZHU Y Q, HADDAD Y, YUN H J, et al. Induced inflammatory and oxidative markers in cerebral microvasculature by mentally depressive stress[J/OL]. Mediators Inflamm, 2023, 2023: 4206316 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36852396/. DOI: 10.1155/2023/4206316.
[28]
ZHOU F, LI K, YANG K P. Adipose-derived stem cell exosomes and related microRNAs in atherosclerotic cardiovascular disease[J]. J Cardiovasc Transl Res, 2023, 16(2): 453-462. DOI: 10.1007/s12265-022-10329-7.
[29]
SUN Z, LI C Y, WISNIEWSKI T W, et al. In vivo detection of age-related tortuous cerebral small vessels using ferumoxytol-enhanced 7T MRI[J]. Aging Dis, 2024, 15(4): 1913-1926. DOI: 10.14336/AD.2023.1110-1.
[30]
SHOURAV M M I, GODASI R R, ANISETTI B, et al. Association between heart failure and cerebral collateral flow in large vessel occlusive ischemic stroke[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(11): 107999 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39243832/. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107999.
[31]
THONG E H E, QUEK E J W, LOO J H, et al. Acute myocardial infarction and risk of cognitive impairment and dementia: a review[J/OL]. Biology (Basel), 2023, 12(8): 1154 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37627038/. DOI: 10.3390/biology12081154.
[32]
VIPIN A, KUMAR D, SOO S A, et al. APOE4 carrier status determines association between white matter disease and grey matter atrophy in early-stage dementia[J/OL]. Alzheimers Res Ther, 2023, 15(1): 103 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37270543/. DOI: 10.1186/s13195-023-01251-4.
[33]
GAO Y Q, SU B B, LUO Y N, et al. HLA-C*07: 01 and HLA-DQB1*02: 01 protect against white matter hyperintensities and deterioration of cognitive function: a population-based cohort study[J/OL]. Brain Behav Immun, 2024, 115: 250-257 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37884160/. DOI: 10.1016/j.bbi.2023.10.019.
[34]
MAO J Y, YANG R H, YUAN P, et al. Different stimuli induce endothelial dysfunction and promote atherosclerosis through the Piezo1/YAP signaling axis[J/OL]. Arch Biochem Biophys, 2023, 747: 109755 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37714252/. DOI: 10.1016/j.abb.2023.109755.
[35]
HIGASHI Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease[J/OL]. Antioxidants (Basel), 2022, 11(10): 1958 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36290681/. DOI: 10.3390/antiox11101958.
[36]
LI W, CHEN D, WONG S Y, et al. Associations of smoking status with carotid atherosclerosis: Mediated role of blood indexes and blood pressure[J/OL]. Nutr Metab Cardiovasc Dis, 2025, 35(2): 103709 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39271389/. DOI: 10.1016/j.numecd.2024.08.003.
[37]
REN Y H, MENG K Y, SUN Y T, et al. Effects of white matter lesion grading on the cognitive function of patients with chronic alcohol dependence[J]. Am J Transl Res, 2023, 15(2): 1129-1139.
[38]
WANG W W, ZHOU H R, QI S X, et al. The association between physical activities combined with dietary habits and cardiovascular risk factors[J/OL]. Heliyon, 2024, 10(7): e28845 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38596005/. DOI: 10.1016/j.heliyon.2024.e28845.
[39]
LIU Z Z, YU H Y, LI Y H, et al. Comparison of Syn T2-FLAIR and Syn DIR with conventional T2-FLAIR in displaying white matter hyperintensities in migraine patients[J]. Neuroradiology, 2025, 67(1): 49-56. DOI: 10.1007/s00234-024-03477-x.
[40]
SINANI O, DADOULI K, NTELLAS P, et al. Association between white matter lesions and Parkinson's disease: an impact on Postural/Gait difficulty phenotype and cognitive performance[J]. Neurol Res, 2022, 44(12): 1122-1131. DOI: 10.1080/01616412.2022.2112378.
[41]
王晨, 徐靖, 付奇, 等. 脑白质高信号Fazekas分级与患者认知功能和神经功能损伤的关系[J]. 全科医学临床与教育, 2025, 23(4): 331-333, 354. DOI: 10.13558/j.cnki.issn1672-3686.2025.004.011.
WANG C, XU J, FU Q, et al. Relationship between brain white matter high signal Fazekas grading and cognitive dysfunction and neurological dysfunction of patients[J]. Clin Educ Gen Pract, 2025, 23(4): 331-333, 354. DOI: 10.13558/j.cnki.issn1672-3686.2025.004.011.
[42]
BI R T, WEI Y H, LI P C, et al. Associations of cerebral small vessel disease and chronic kidney disease in patients with acute ischemic stroke[J/OL]. J Am Heart Assoc, 2025, 14(9): e038711 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40265579/. DOI: 10.1161/JAHA.124.038711.
[43]
RUDOLPH M D, COHEN J R, MADDEN D J. Distributed associations among white matter hyperintensities and structural brain networks with fluid cognition in healthy aging[J]. Cogn Affect Behav Neurosci, 2024, 24(6): 1121-1140. DOI: 10.3758/s13415-024-01219-3.
[44]
ZENG S Y, MA L, MAO H X, et al. Dynamic functional network connectivity in patients with a mismatch between white matter hyperintensity and cognitive function[J/OL]. Front Aging Neurosci, 2024, 16: 1418173 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39086757/. DOI: 10.3389/fnagi.2024.1418173.
[45]
CHEN J, LU W W, WANG Z Y, et al. Large-scale functional network connectivity mediate the associations of white matter lesions with executive functions and information processing speed in asymptomatic cerebral small vessels diseases[J/OL]. NeuroImage Clin, 2025, 46: 103773 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40121823/. DOI: 10.1016/j.nicl.2025.103773.
[46]
HAN H L, NING Z H, YANG D D, et al. Associations between cerebral blood flow and progression of white matter hyperintensity in community-dwelling adults: a longitudinal cohort study[J]. Quant Imaging Med Surg, 2022, 12(8): 4151-4165. DOI: 10.21037/qims-22-141.
[47]
李燕, 罗时磊, 李爱娟, 等. 基于脑白质高信号Fazekas评分的ASL灌注差异研究[J]. 安徽医学, 2024, 45(7): 859-863. DOI: 10.3969/j.issn.1000-0399.2024.07.010.
LI Y, LUO S L, LI A J, et al. Study on ASL perfusion difference based on high signal Fazekas score of white matter[J]. Anhui Med J, 2024, 45(7): 859-863. DOI: 10.3969/j.issn.1000-0399.2024.07.010.
[48]
常文轩, 王婷, 刘伟, 等. 脑白质高信号患者执行功能与脑血流量的相关性分析[J]. 中国当代医药, 2024, 31(14): 4-7, 36. DOI: 1674-4721(2024)5(b)-0004-05.
CHANG W X, WANG T, LIU W, et al. Correlation analysis between executive function and cerebral blood flow in patients with cerebral white matter high signals[J]. China Mod Med, 2024, 31(14): 4-7, 36. DOI: 1674-4721(2024)5(b)-0004-05.
[49]
曹盈盈. 脑白质高信号患者弥散张量成像与认知控制容量的相关性研究[D]. 杭州: 浙江中医药大学, 2024. DOI: 10.27465/d.cnki.gzzyc.2024.000358.
CAO Y Y. Correlation between diffusion tensor imaging and cognitive control capacity in patients with white matter hyperintensities[D]. Hangzhou: Zhejiang Chinese Medical University, 2024. DOI: 10.27465/d.cnki.gzzyc.2024.000358.
[50]
KERN K C, ZAGZOUG M S, GOTTESMAN R F, et al. Diffusion tensor free water MRI predicts progression of FLAIR white matter hyperintensities after ischemic stroke[J/OL]. Front Neurol, 2023, 14: 1172031 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37808483/. DOI: 10.3389/fneur.2023.1172031.
[51]
VOORTER P H M, STRINGER M S, VAN DINTHER M, et al. Heterogeneity and penumbra of white matter hyperintensities in small vessel diseases determined by quantitative MRI[J]. Stroke, 2025, 56(1): 128-137. DOI: 10.1161/STROKEAHA.124.047910.
[52]
MA J, HUA X Y, ZHENG M X, et al. Brain metabolic network redistribution in patients with white matter hyperintensities on MRI analyzed with an individualized index derived from 18F-FDG-PET/MRI[J]. Korean J Radiol, 2022, 23(10): 986-997. DOI: 10.3348/kjr.2022.0320.
[53]
TONDO G, BOCCALINI C, CAMINITI S P, et al. Brain metabolism and microglia activation in mild cognitive impairment: a combined [18F] FDG and [11C]-(R)-PK11195 PET study[J]. J Alzheimers Dis, 2021, 80(1): 433-445. DOI: 10.3233/JAD-201351.
[54]
FABRIS E, KEDHI E, VERDOIA M, et al. Current role of intracoronary imaging for implementing risk stratification and tailoring culprit lesion treatment: a narrative review[J/OL]. J Clin Med, 2023, 12(10): 3393 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37240499/. DOI: 10.3390/jcm12103393.
[55]
MAIER A, TEUNISSEN A J P, NAUTA S A, et al. Uncovering atherosclerotic cardiovascular disease by PET imaging[J]. Nat Rev Cardiol, 2024, 21(9): 632-651. DOI: 10.1038/s41569-024-01009-x.
[56]
CHATTERJEE S, EASLY-MERSKI R, MUKHERJEE D. Unveiling the prognostic power of coronary physiological progression[J]. Angiology, 2025, 76(2): 105-107. DOI: 10.1177/00033197231224049.
[57]
NAKANISHI R, OKUBO R, SOBUE Y, et al. Rationale and design of the INVICTUS registry: (multicenter registry of invasive and non-invasive imaging modalities to compare coronary computed tomography angiography, intravascular ultrasound and optical coherence tomography for the determination of severity, volume and type of coronary atherosclerosiS)[J]. J Cardiovasc Comput Tomogr, 2023, 17(6): 401-406. DOI: 10.1016/j.jcct.2023.08.011.
[58]
VINK C E M, BORODZICZ-JAZDZYK S, DE JONG E A M, et al. Quantitative perfusion by cardiac magnetic resonance imaging reveals compromised myocardial perfusion in patients with angina with non-obstructive coronary artery disease[J/OL]. Clin Res Cardiol, 2025 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39966158/. DOI: 10.1007/s00392-025-02606-7.
[59]
WANG S, KIM P, WANG H N, et al. Myocardial blood flow quantification using stress cardiac magnetic resonance improves detection of coronary artery disease[J]. JACC Cardiovasc Imaging, 2024, 17(12): 1428-1441. DOI: 10.1016/j.jcmg.2024.07.023.
[60]
JIN H, QIN X, ZHAO F F, et al. Is coronary artery calcium an independent risk factor for white matter hyperintensity?[J/OL]. BMC Neurol, 2023, 23(1): 313 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37648961/. DOI: 10.1186/s12883-023-03364-7.
[61]
JIN H, HOU J, QIN X, et al. Predicting progression of white matter hyperintensity using coronary artery calcium score based on coronary CT angiography-feasibility and accuracy[J/OL]. Front Aging Neurosci, 2023, 15: 1256228 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38020772/. DOI: 10.3389/fnagi.2023.1256228.
[62]
晋慧. 冠状动脉钙化积分与脑白质高信号的相关性分析及进展预测研究[D]. 蚌埠: 蚌埠医科大学, 2024. DOI: 10.26925/d.cnki.gbbyc.2024.000079.
JIN H. Correlation analysis and progress prediction of coronary artery calcification score and white matter hyperintensity signal[D]. Bengbu: Bengbu Medical College, 2024. DOI: 10.26925/d.cnki.gbbyc.2024.000079.
[63]
秦婕, 陈瑞, 王云飞, 等. 冠周脂肪衰减指数及斑块定量特征与脑白质高信号的相关性分析[J]. 南京医科大学学报(自然科学版), 2024, 44(9): 1262-1267. DOI: 10.7655/NYDXBNSN240232.
QIN J, CHEN R, WANG Y F, et al. Analysis of the correlation between fat attenuation index and plaque quantification parameters with brain white matter hyperintensity[J]. J Nanjing Med Univ Nat Sci, 2024, 44(9): 1262-1267. DOI: 10.7655/NYDXBNSN240232.
[64]
GUARICCI A I, NEGLIA D, ACAMPA W, et al. Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives[J/OL]. J Cardiovasc Med (Hagerstown), 2023, 24(Suppl 1): e67-e76 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37052223/. DOI: 10.2459/JCM.0000000000001433.
[65]
KURONUMA K, VAN DIEMEN P A, HAN D, et al. Relationship between impaired myocardial blood flow by positron emission tomography and low-attenuation plaque burden and pericoronary adipose tissue attenuation from coronary computed tomography: From the prospective PACIFIC trial[J]. J Nucl Cardiol, 2023, 30(4): 1558-1569. DOI: 10.1007/s12350-022-03194-z.
[66]
WURSTER T H, LANDMESSER U, ABDELWAHED Y S, et al. Simultaneous [18F] fluoride and gadobutrol enhanced coronary positron emission tomography/magnetic resonance imaging for in vivo plaque characterization[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1391-1398. DOI: 10.1093/ehjci/jeab276.
[67]
MAZINI B, DIETZ M, MARÉCHAL B, et al. Interrelation between cardiac and brain small-vessel disease: a pilot quantitative PET and MRI study[J/OL]. Eur J Hybrid Imaging, 2023, 7(1): 20 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/37926793/. DOI: 10.1186/s41824-023-00180-7.
[68]
ALVÉN J, PETERSEN R, HAGERMAN D, et al. PlaqueViT: a vision transformer model for fully automatic vessel and plaque segmentation in coronary computed tomography angiography[J]. Eur Radiol, 2025, 35(8): 4461-4471. DOI: 10.1007/s00330-025-11410-w.
[69]
TZIMAS G, GULSIN G S, EVERETT R J, et al. Age- and sex-specific nomographic CT quantitative plaque data from a large international cohort[J]. JACC Cardiovasc Imaging, 2024, 17(2): 165-175. DOI: 10.1016/j.jcmg.2023.05.011.
[70]
MILLER R J H, MANRAL N, LIN A, et al. Patient-specific myocardial infarction risk thresholds from AI-enabled coronary plaque analysis[J/OL]. Circ Cardiovasc Imaging, 2024, 17(10): e016958 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39405390/. DOI: 10.1161/CIRCIMAGING.124.016958.
[71]
BUCKLER A J, GOTTO A M, RAJEEV A, et al. Atherosclerosis risk classification with computed tomography angiography: a radiologic-pathologic validation study[J/OL]. Atherosclerosis, 2023, 366: 42-48 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/36481054/. DOI: 10.1016/j.atherosclerosis.2022.11.013.
[72]
HE H Y, JIANG J, PENG S S, et al. A robust automated segmentation method for white matter hyperintensity of vascular-origin[J/OL]. Neuroimage, 2025, 315: 121279 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40389145/. DOI: 10.1016/j.neuroimage.2025.121279.
[73]
KIM H, RYU W S, SCHELLINGERHOUT D, et al. Automated segmentation of MRI white matter hyperintensities in 8421 patients with acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2024, 45(12): 1885-1894. DOI: 10.3174/ajnr.A8418.
[74]
HOU J, JIN H, ZHANG Y S, et al. Hybrid model of CT-fractional flow reserve, pericoronary fat attenuation index and radiomics for predicting the progression of WMH: a dual-center pilot study[J/OL]. Front Cardiovasc Med, 2023, 10: 1282768 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38179506/. DOI: 10.3389/fcvm.2023.1282768.
[75]
JOHANSEN M C, GOTTESMAN R F, KRAL B G, et al. Association of coronary artery atherosclerosis with brain white matter hyperintensity[J]. Stroke, 2021, 52(8): 2594-2600. DOI: 10.1161/STROKEAHA.120.032674.

上一篇 多模态磁共振成像技术在慢性高原病脑部形态及功能改变中的研究进展
下一篇 磁共振栖息地成像在乳腺癌诊疗中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2