分享:
分享到微信朋友圈
X
综述
基于影像组学的肝内胆管癌肿瘤免疫微环境相关指标的研究进展
田佳璇 马佳美 李晓萌 殷小平

Cite this article as: TIAN J X, MA J M, LI X M, et al. Research progress of indicators related to the tumor immune microenvironment of intrahepatic cholangiocarcinoma based on radiomics[J]. Chin J Magn Reson Imaging, 2025, 16(7): 173-176, 201.本文引用格式:田佳璇, 马佳美, 李晓萌, 等. 基于影像组学的肝内胆管癌肿瘤免疫微环境相关指标的研究进展[J]. 磁共振成像, 2025, 16(7): 173-176, 201. DOI:10.12015/issn.1674-8034.2025.07.028.


[摘要] 肝内胆管癌(intrahepatic cholangiocarcinoma, ICC)约占原发性肝癌的10%~20%,其发病率逐年攀升。肿瘤免疫微环境(tumor immune microenvironment, TIME)中关键性免疫指标的动态变化显著影响ICC预后。由于现有检测手段的局限性和滞后性,引入影像组学技术可无创性预测并及时监测TIME免疫指标,了解其瘤内瘤周信息提升ICC精准诊疗。影像组学基于机器学习高通量提取影像学特征,结合临床、病理、基因及免疫等领域的多种参数构建免疫指标预测模型,用于ICC风险分层、预后评估和开发新型免疫疗法等。目前模型预测指标较为单一,模型泛化能力尚需提升;未来深度融合影像基因组学和空间转录组学等其他组学研究,开发多模态融合模型,构建多中心、标准化数据库推进临床转化研究。本文归纳基于影像组学量化TIME相关免疫指标并探索指标之间的关联性,为ICC的临床诊疗方案提供新视角。
[Abstract] Intrahepatic cholangiocarcinoma (ICC) accounts for 10% to 20% of primary liver cancers, with its incidence increasing annually. Dynamic changes in key immune indicators within the tumor immune microenvironment (TIME) significantly impact ICC prognosis. Due to the limitations and lag of existing detection methods, radiomics technology enables non-invasive prediction and timely monitoring of TIME immune indicators, enhancing precise ICC diagnosis and treatment by analyzing intratumoral and peritumoral information. Radiomics uses machine learning to high-throughput extract imaging features, integrating clinical, pathological, genetic, and immunological parameters to construct predictive models for immune indicators. These models support ICC risk stratification, prognosis assessment, and development of novel immunotherapies. Current limitations include single predictive indicators and suboptimal model generalization. Future directions involve deep integration with radiogenomics, spatial transcriptomics, and other omics, developing multimodal fusion models, and establishing multi-center standardized databases to advance clinical translation. This review summarizes the quantification of TIME-related immune indicators based on radiomics and explores the correlations between these indicators. Provide a new perspective for the clinical diagnosis and treatment of ICC.
[关键词] 肝内胆管癌;肿瘤免疫微环境;磁共振成像;影像组学;淋巴细胞
[Keywords] intrahepatic cholangiocarcinoma;tumor immune microenvironment;magnetic resonance imaging;radiomics;lymphocyte

田佳璇 1, 2   马佳美 1, 2   李晓萌 1, 2   殷小平 1, 2*  

1 河北大学附属医院放射科,保定 071000

2 河北省炎症相关肿瘤精准影像诊断学重点实验室,保定 071000

通信作者:殷小平,E-mail: yinxiaoping78@sina.com

作者贡献声明:殷小平确定本研究的方向,对稿件的重要内容进行了修改,获得了河北省高层次人才资助项目资助;田佳璇起草和撰写稿件,获取、分析并阅读本研究的相关文献;马佳美和李晓萌获取、分析并阅读本研究的相关文献,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省高层次人才资助项目 B20231008
收稿日期:2025-03-11
接受日期:2025-07-07
中图分类号:R445.2  R735.8 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.028
本文引用格式:田佳璇, 马佳美, 李晓萌, 等. 基于影像组学的肝内胆管癌肿瘤免疫微环境相关指标的研究进展[J]. 磁共振成像, 2025, 16(7): 173-176, 201. DOI:10.12015/issn.1674-8034.2025.07.028.

0 引言

       肝内胆管癌(intrahepatic cholangiocarcinoma, ICC)起病隐匿,侵袭性强,70%患者确诊时已处于中晚期,转移率在45%~62%,术后五年复发率在60%~70%,中位生存期仅为13个月[1, 2]。常规影像组学致力于预测ICC的早期复发和风险分层,来提高患者生存率,并取得出色进展[3, 4, 5]。肿瘤免疫微环境(tumor immune microenvironment, TIME)由肿瘤细胞、免疫细胞、基质细胞及细胞外基质等多种成分组成,这些成分之间相互作用,形成一个复杂且动态变化的微环境;不同的TIME状态可影响肿瘤细胞的免疫逃逸能力、增殖活性以及对各种治疗手段的敏感性[6, 7, 8, 9]。近年来在ICC的TIME研究中虽然揭示了部分免疫细胞的异质性和免疫分子靶点,开发了影像组学预后模型;但是基于影像组学的免疫分型标准尚未统一,且缺乏可临床转化的生物标志物,免疫治疗药物的耐药机制也不明晰[6, 10, 11, 12]。影像组学技术通过高通量地提取医学影像中的定量特征,将影像信息转化为高分辨率的可挖掘数据,进而实现对疾病的精准诊断、疗效评估及预后预测。在ICC研究领域,影像组学技术已在肿瘤早期诊断、病理分级及淋巴结转移预测等方面展现出显著的应用价值[13, 14, 15]。然而,现有研究基于影像组学定量分析免疫指标对预后的影响、识别空间异质性及指标之间一致性等ICC瘤内和瘤周信息的综合分析不够深入。本综述重点关注TIME中具有抗肿瘤潜能的特定免疫细胞和结构,以及可作为免疫治疗靶点的细胞分子标志物,从影像组学的维度出发,展望其发展前景,为ICC的临床诊疗方案提供新视角。

1 影像组学在ICC免疫细胞的研究进展

       免疫细胞在ICC中呈现双重作用,既能促进也能抑制癌变、肿瘤进展、转移和复发[16]。在DENG等[17]构建的预测ICC患者根治性肝切除术后生存期的临床-影像组学模型中,增强CT(contrast-enhanced computer tomography, CE-CT)中的灰度共生矩阵特征、灰度依赖矩阵特征、灰度游程矩阵特征、灰度大小区域矩阵特征和中性粒细胞/淋巴细胞比值(neutrophil lymphocyte ratio, NLR)是ICC术后总生存期(overall survival, OS)的独立预后因素;该模型预测1年和3年OS的受试者工作特征曲线下面积(area under the curve, AUC)分别为0.809和0.886;高NLR值与较差预后相关,反映其免疫抑制作用,但具体的细胞免疫效应并未详细说明。CHEN等[18]在此模式上加入转录组学数据构建基于动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)的影像转录组学模型,经K-means聚类算法将ICC分为免疫“热”(免疫细胞浸润程度高:CD8⁺T等T淋巴细胞富集)和免疫“冷”(免疫细胞浸润程度低)两个亚群,实现精准风险分层,该模型在训练组和验证组的平均AUC为0.80。影像组学通过整合多组学分析能够非侵入性预测ICC的免疫景观,指导个体化免疫治疗。WANG等[19]发现CD8+T淋巴细胞、B淋巴细胞高度浸润会产生良好预后。YE等[20]也证实了CD8+T细胞高表达的正向作用,高密度CD8+T细胞与ICC患者OS和无复发生存期(relapse-free Survival, RFS)正相关,且只有在肿瘤内才对预后有益[21]。CD8+T细胞作为ICC的免疫预后指标,若将影像组学与蛋白质组学、代谢组学进一步整合可提高模型预测性能,纳入更多免疫指标进行一致性分析为临床治疗策略提供借鉴参考。

       脱磷基质是促进肿瘤恶性进展的关键角色[22],肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是脱磷基质的重要组成部分之一。LI等[23]整合影像组学特征和免疫组化标志物构建预测ICC早期复发的列线图模型,在训练组中AUC值为0.929;富脱磷基质与高淋巴结转移率、微血管侵犯(microvascular invasion, MVI)和较短OS相关;脱磷基质在影像学上表现出特定的动脉期低强化、延迟期高强化、靶征,有助于ICC与其他肝脏肿瘤鉴别,提供ICC预后的生物标志物。但ATANASOV等[24]研究发现中高水平的TAMs促进ICC患者RFS、OS延长;这种差异可能跟TAMs的细胞异质性有关,如M2极化肿瘤相关巨噬细胞(M2-TAMs)在ICC中不仅促进肿瘤细胞的侵袭、转移,下调抗炎免疫反应[25];还能发挥肿瘤血管生成因子效应,抑制药物的抗肿瘤作用[26];诱导ICC对化疗药物产生耐药性[27]。若基于影像组学量化M2-TAMs表达水平及评估M2-TAMs抑制剂的疗效,不仅为免疫靶点治疗提供新路径,还能加速基础研究成果向临床应用转化,目前该部分研究文献较少。

       JI等[28]整合单细胞测序技术、空间转录组学和影像组学数据,开发基于DCE-MRI的影像基因组学模型,评估包含PLAUR等免疫相关中心基因的免疫相关评分(immune-related score, IRS),发现抑制性免疫细胞(如M0巨噬细胞和中性粒细胞)与高IRS正相关,显示较高的免疫抑制特征和较差预后;抗肿瘤免疫细胞(如CD8+T细胞)与低IRS正相关,显示较高的免疫激活特征、免疫化疗敏感性和生存率;还发现PLAUR基因编码的蛋白uPAR在巨噬细胞中高表达,作为潜在治疗靶点,抗uPAR单克隆抗体单独或与抗程序性细胞死亡蛋白(PD-1 programmed cell death protein 1, PD-1)治疗联合使用可显著抑制肿瘤生长。该研究不仅补充和揭示了ICC免疫细胞和分子之间的关联机制,还开发了潜在的非侵入性预测个体化免疫治疗反应的模型,可作为免疫细胞和分子未来的联合研究方向并有望投入到未来的临床应用中。

2 影像组学在ICC免疫分子的研究进展

2.1 PD-1

       PD-1是重要的免疫检查点蛋白,与肿瘤细胞表面的配体结合造成肿瘤免疫逃逸,临床中将其作为肿瘤治疗靶点[29]。ZHANG等[30]整合基于MRI的影像组学特征(动脉期、动脉期低增强或轻度增强、肿瘤内血管低存在率、导管型ICC与PD-1阳性表达正相关)和临床特征[如肝功指标丙氨酸转氨酶(alanine aminotransferase, ALT)、天冬氨酸转氨酶(aspartate aminotransferase, AST)、γ-谷氨酰转移酶(gamma-glutamyl transferase, GGT)和癌胚抗原(carcinoembryonic antigen, CEA)、糖类抗原-199水平]构建预后模型;该模型预测PD-1表达的AUC为0.897。开发PD-1抑制剂缓解了ICC患者治疗方案有限且预后不佳的困境,但PD-1抑制剂的疗效在ICC患者中存在高度异质性[31],因此评估其疗效开展个体化治疗很有必要。目前推荐将影像组学和病理组学组成数字活检[32],联合其他分子特征开发ICC综合预后模型预测PD-1抑制剂疗效SUN等[33]构建基于CE-CT的影像组学模型发现,影像组学评分与CD8+T细胞的基因表达、CD8+T细胞高度浸润与抗PD-1疗效显著均呈现高度一致性;其中包含一阶特征和4个来自灰度游程矩阵的二阶特征的影像组学评分作为独立预测因子,能预测ICC中CD8+T细胞的浸润丰度、OS。研究发现将常规化疗药物(吉西他滨)与PD-1抑制剂联合使用增加活化CD8+T细胞的数量,二者相互影响,反映药物疗效,克服ICC患者对常规疗法的耐药性[18, 34, 35]。CD8+T细胞和PD-1及其抑制剂的结合有益于开发新型ICC预后的联合生物标志物,提高免疫疗效和疗效评估能力;探索新技术如正电子发射断层显像与磁共振成像一体化技术,深入挖掘与PD-1表达相关的细胞、分子,探究他们在不同ICC亚型中的表达差异,助力开发更具针对性的治疗策略。

2.2 Ki-67

       ICC中Ki-67的表达水平用于评估肿瘤细胞的增殖和侵袭,因此Ki-67可作为ICC患者的不良预后预测指标和治疗靶点[36]。影像组学致力于无创预测ICC的Ki-67表达,PENG等[37]建立基于超声的影像组学特征,通过假设检验及逻辑回归方法构建预测Ki-67表达的模型,在训练组和验证组的AUC值分别为0.804和0.848。WANG等[38]基于MRI影像组学从多尺度肿瘤区域的角度进一步研究Ki-67,在四个肿瘤区域(VOItumor、VOI+8mm、VOI+10mm、VOI+12mm)中选择与Ki-67相关的影像组学特征,构建四个预测模型;并在训练组和验证组中均显示出良好的预测效能(AUC:0.849~0.912和0.789~0.838);其中VOI+10mm区域模型在验证组的AUC最高(0.838),与训练组的AUC差异最小(△AUC=0.033),显示出最稳定的预测效能。以上Ki-67表达评估模型以及纳入的瘤内瘤周信息为ICC患者的精准医疗提供了新工具。然而目前的研究也存在局限性,未来需要进一步扩大样本量、多中心合作,探索更多影像序列和特征,提高模型的准确性和普适性,深入探究在ICC进展过程中与Ki-67交互作用的细胞、结构,促进免疫靶向治疗的开展,改善患者预后。

3 影像组学在ICC三级淋巴结构的研究进展

       TLSs(tertiary lymphoid structures, TLSs)由T细胞区、B细胞区和周围的高内皮静脉(high endothelial venules, HEVs)区组成,并聚集形成类似次级淋巴器官的结构,促进抗肿瘤免疫反应[39, 40]。XU等[41]基于TLSs和MVI状态构建预测ICC患者术后极早期复发(very early recurrence, VER)的预后模型;瘤内TLSs和MVI状态是VER的独立预测因素;TLSs阳性且MVI阴性的患者半年、两年和五年生存率分别为100.0%、85.7%和59.5%,预后较好;有助于筛选可能从化疗联合免疫治疗中获益的ICC患者,制订个性化治疗策略。瘤内TLSs的密度和分布更有研究价值,瘤内TLSs高密度预后好,而瘤周TLSs高密度则预后较差[42]。且成熟的三级淋巴结构与较好的预后呈正相关[43],可作为独立于CD8+T细胞的预测免疫检查点抑制剂疗效的生物标志物。HEVs是TLSs成熟和功能化的标志之一,HEVs在TLSs中通过表达L-选择素配体[如外周淋巴结血管地址素(perpheral lymphonode vascular addressin, PNAd)]促进淋巴细胞黏附和迁移,增强抗肿瘤免疫反应[39, 44]。WANG等[45]还构建了具有HEVs特征的类器官,能够在体外表达PNAd,通过T淋巴细胞促进抗肿瘤活性。未来可以联合影像组学无创预测基于TLSs的免疫治疗或联合免疫治疗方案的疗效,为个体化治疗提供体外预实验依据。

       结合多重免疫组化、多重免疫荧光、3D成像技术、人工智能和影像组学等多种技术和方法可对TLSs进行检测和定量分层[46]。XU等[47]开发基于增强CT的影像组学列线图模型预测ICC患者的瘤内TLSs状态,单因素和多因素逻辑回归分析显示,动脉期弥漫性高强化和美国癌症联合会(American Joint Committee on Cancer, AJCC)第8版分期是区分TLSs状态的独立因素;该模型在训练组和验证组的AUC为0.85和0.88,表现最佳;对TLSs进行风险分层,发现低风险组(列线图评分≥-1.16)的RFS显著优于高风险组。XU等[48]还进一步探究基于MRI的影像组学模型,其敏感性、特异性和准确性均高于其他模型,在训练组和内外部验证组中AUC值为0.85、0.81、0.84。TLSs状态评估为临床预后提供了新的指标,未来可以进行多组学多序列特征提取,结合MRI、超声等影像技术及空间转录技术开发更全面的影像学模型,探索促成TLSs不同细胞聚集区域的影响因素并进行量化。

4 总结与展望

       当前研究存在以下不足之处亟待解决:其一,目前对ICC中TIME的动态演变机制及其组成成分间的相互作用认识不充分;其二,基于免疫组化的肿瘤免疫标志物的检测和定量分析标准尚未统一;其三,研究样本量不足、回顾性研究偏倚、模型泛化能力有待验证等问题也较为突出。可以从以下维度来完善研究,提高大数据时代新型医疗创新:首先,可以将基因组学、转录组学、蛋白质组学、表观基因组学、细胞学、信息学等与影像组学深度融合开发多组学多模态模型进行研究;其次,采用3D肿瘤分割方法提高数据准确性,应用人工智能(如Transformer模型)优化特征提取,提高量化精度;此外,建立跨国多中心的前瞻性研究队列,系统性优化并验证模型的泛化能力。尤其要深入挖掘基于影像组学的ICC肿瘤免疫微环境相关指标的临床价值,利用TLSs和CD8+T细胞在ICC中独特的表达水平和空间异质性,构建可临床转化的ICC预后监测和风险分层模型;进一步探索影像组学指导下的个体化免疫治疗策略,如免疫检查点阻断剂、癌症疫苗和过继细胞转移治疗;同时了解免疫治疗中的不良反应和耐药分子机制。最终构建“影像引导-组学解析-智能辅助决策”的新型研究框架,推动ICC分子分型系统的迭代升级,为肝胆肿瘤的精准免疫治疗建立可推广的技术标准,实现ICC免疫微环境从基础发现到临床应用的快速转化闭环。

[1]
GRANATA V, FUSCO R, DE MUZIO F, et al. Risk assessment and cholangiocarcinoma: diagnostic management and artificial intelligence[J/OL]. Biology (Basel), 2023, 12(2): 213 [2025-01-18]. https://pubmed.ncbi.nlm.nih.gov/36829492/. DOI: 10.3390/biology12020213.
[2]
MORIS D, PALTA M, KIM C, et al. Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current and future therapeutic landscape for clinicians[J]. CA Cancer J Clin, 2023, 73(2): 198-222. DOI: 10.3322/caac.21759.
[3]
IRIZATO M, MINAMIGUCHI K, UCHIYAMA T, et al. Hepatobiliary and pancreatic neoplasms: essential predictive imaging features for personalized therapy[J/OL]. Radiographics, 2025, 45(3): e240068 [2025-01-18]. https://pubmed.ncbi.nlm.nih.gov/39913319/. DOI: 10.1148/rg.240068.
[4]
BO Z Y, CHEN B, YANG Y, et al. Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: A multicentre cohort study[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2501-2513. DOI: 10.1007/s00259-023-06184-6.
[5]
CHEN B, MAO Y C, LI J C, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study[J/OL]. Comput Biol Med, 2023, 167: 107612 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37939408/. DOI: 10.1016/j.compbiomed.2023.107612.
[6]
FABRIS L, SATO K, ALPINI G, et al. The tumor microenvironment in cholangiocarcinoma progression[J]. Hepatology, 2021, 73(Suppl 1): 75-85. DOI: 10.1002/hep.31410.
[7]
FU T, DAI L J, WU S Y, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response[J/OL]. J Hematol Oncol, 2021, 14(1): 98 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/34172088/. DOI: 10.1186/s13045-021-01103-4.
[8]
FRIDMAN W H, MEYLAN M, PETITPREZ F, et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome[J]. Nat Rev Clin Oncol, 2022, 19(7): 441-457. DOI: 10.1038/s41571-022-00619-z.
[9]
CHRISTOFIDES A, STRAUSS L, YEO A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8): 1148-1156. DOI: 10.1038/s41590-022-01267-2.
[10]
GRETEN T F, SCHWABE R, BARDEESY N, et al. Immunology and immunotherapy of cholangiocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(6): 349-365. DOI: 10.1038/s41575-022-00741-4.
[11]
CHEN S Z, SAEED A F U H, LIU Q, et al. Macrophages in immunoregulation and therapeutics[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 207 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37211559/. DOI: 10.1038/s41392-023-01452-1.
[12]
NISHIDA N, KUDO M. Genetic/epigenetic alteration and tumor immune microenvironment in intrahepatic cholangiocarcinoma: transforming the immune microenvironment with molecular-targeted agents[J]. Liver Cancer, 2024, 13(2): 136-149. DOI: 10.1159/000534443.
[13]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[14]
KANG W D, QIU X, LUO Y G, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis[J/OL]. J Transl Med, 2023, 21(1): 598 [2025-02-10]. https://pubmed.ncbi.nlm.nih.gov/37674169/. DOI: 10.1186/s12967-023-04437-4.
[15]
DERCLE L, MCGALE J, SUN S, et al. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy[J/OL]. J Immunother Cancer, 2022, 10(9): e005292 [2025-02-11]. https://pubmed.ncbi.nlm.nih.gov/36180071/. DOI: 10.1136/jitc-2022-005292.
[16]
XU Y, SU G H, MA D, et al. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence[J/OL]. Signal Transduct Target Ther, 2021, 6(1): 312 [2025-02-11]. https://pubmed.ncbi.nlm.nih.gov/34417437/. DOI: 10.1038/s41392-021-00729-7.
[17]
DENG L M, CHEN B, ZHAN C Y, et al. A novel clinical-radiomics model based on sarcopenia and radiomics for predicting the prognosis of intrahepatic cholangiocarcinoma after radical hepatectomy[J/OL]. Front Oncol, 2021, 11: 744311 [2024-12-21]. https://pubmed.ncbi.nlm.nih.gov/34868941/. DOI: 10.3389/fonc.2021.744311.
[18]
CHEN L, YIN G T, WANG Z Y, et al. A predictive radiotranscriptomics model based on DCE-MRI for tumor immune landscape and immunotherapy in cholangiocarcinoma[J]. Biosci Trends, 2024, 18(3): 263-276. DOI: 10.5582/bst.2024.01121.
[19]
WANG L Y, LI P, GONG S, et al. Construction of a novel cuproptosis-related gene signature and integrative analyses in cholangiocarcinoma[J/OL]. Heliyon, 2025, 11(1): e41600 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/39866451/. DOI: 10.1016/j.heliyon.2024.e41600.
[20]
YE Y H, XIN H Y, LI J L, et al. Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma[J]. Clin Mol Hepatol, 2024, 30(4): 914-928. DOI: 10.3350/cmh.2024.0296.
[21]
XIA T, LI K Y, NIU N, et al. Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses[J/OL]. J Hematol Oncol, 2022, 15(1): 37 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/35346322/. DOI: 10.1186/s13045-022-01253-z.
[22]
VIJGEN S, TERRIS B, RUBBIA-BRANDT L. Pathology of intrahepatic cholangiocarcinoma[J]. Hepatobiliary Surg Nutr, 2017, 6(1): 22-34. DOI: 10.21037/hbsn.2016.11.04.
[23]
LI Q, CHE F, WEI Y, et al. Role of noninvasive imaging in the evaluation of intrahepatic cholangiocarcinoma: from diagnosis and prognosis to treatment response[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(11): 1267-1279. DOI: 10.1080/17474124.2021.1974294.
[24]
ATANASOV G, DIETEL C, FELDBRÜGGE L, et al. Tumor necrosis and infiltrating macrophages predict survival after curative resection for cholangiocarcinoma[J/OL]. Oncoimmunology, 2017, 6(8): e1331806 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/28919993/. DOI: 10.1080/2162402X.2017.1331806.
[25]
YUAN H, LIN Z L, LIU Y J, et al. Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness[J/OL]. Cancer Cell Int, 2020, 20(1): 586 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/33372604/. DOI: 10.1186/s12935-020-01687-w.
[26]
YANG L, HAN P S, CUI T, et al. M2 macrophage inhibits the antitumor effects of Lenvatinib on intrahepatic cholangiocarcinoma[J/OL]. Front Immunol, 2023, 14: 1251648 [2025-02-18]. https://pubmed.ncbi.nlm.nih.gov/37809069/. DOI: 10.3389/fimmu.2023.1251648.
[27]
YANG T, DENG Z D, XU L, et al. Macrophages-aPKCɩ-CCL5 feedback loop modulates the progression and chemoresistance in cholangiocarcinoma[J/OL]. J Exp Clin Cancer Res, 2022, 41(1): 23 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/35033156/. DOI: 10.1186/s13046-021-02235-8.
[28]
JI G W, XU Z G, LIU S C, et al. Radiogenomics of intrahepatic cholangiocarcinoma predicts immunochemotherapy response and identifies therapeutic target[J/OL]. Clin Mol Hepatol, 2025 [2025-05-08]. https://pubmed.ncbi.nlm.nih.gov/39924997/. DOI: 10.3350/cmh.2024.0895.
[29]
YOON S B, WOO S M, CHUN J W, et al. The predictive value of PD-L1 expression in response to anti-PD-1/PD-L1 therapy for biliary tract cancer: a systematic review and meta-analysis[J/OL]. Front Immunol, 2024, 15: 1321813 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/38605964/. DOI: 10.3389/fimmu.2024.1321813.
[30]
ZHANG J, WU Z R, ZHANG X, et al. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers[J/OL]. ESMO Open, 2020, 5(6): e000910 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/33239315/. DOI: 10.1136/esmoopen-2020-000910.
[31]
LEI Z Q, MA W H, SI A F, et al. Effect of different PD-1 inhibitor combination therapies for unresectable intrahepatic cholangiocarcinoma[J]. Aliment Pharmacol Ther, 2023, 58(6): 611-622. DOI: 10.1111/apt.17623.
[32]
BANNA G L, OLIVIER T, RUNDO F, et al. The promise of digital biopsy for the prediction of tumor molecular features and clinical outcomes associated with immunotherapy[J/OL]. Front Med (Lausanne), 2019, 6: 172 [2025-02-24]. https://pubmed.ncbi.nlm.nih.gov/31417906/. DOI: 10.3389/fmed.2019.00172.
[33]
SUN R, LIMKIN E J, VAKALOPOULOU M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
[34]
CHEN J, AMOOZGAR Z, LIU X, et al. Reprogramming the intrahepatic cholangiocarcinoma immune microenvironment by chemotherapy and CTLA-4 blockade enhances anti-PD-1 therapy[J]. Cancer Immunol Res, 2024, 12(4): 400-412. DOI: 10.1158/2326-6066.CIR-23-0486.
[35]
WARREN E A K, MAITHEL S K. Molecular pathology for cholangiocarcinoma: a review of actionable genetic targets and their relevance to adjuvant & neoadjuvant therapy, staging, follow-up, and determination of minimal residual disease[J]. Hepatobiliary Surg Nutr, 2024, 13(1): 29-38. DOI: 10.21037/hbsn-22-563.
[36]
GAO S S, SUN W, ZHANG Y F, et al. Correlation analysis of MR elastography and Ki-67 expression in intrahepatic cholangiocarcinoma[J/OL]. Insights Imaging, 2023, 14(1): 204 [2025-02-24]. https://pubmed.ncbi.nlm.nih.gov/38001349/. DOI: 10.1186/s13244-023-01559-7.
[37]
PENG Y T, ZHOU C Y, LIN P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma[J]. Acad Radiol, 2020, 27(6): 785-797. DOI: 10.1016/j.acra.2019.07.029.
[38]
WANG Q, WANG C, QIAN X L, et al. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of Ki67 expression in intrahepatic cholangiocarcinoma[J]. Acta Radiol, 2025, 66(4): 368-378. DOI: 10.1177/02841851241310394.
[39]
VELLA G, GUELFI S, BERGERS G. High endothelial venules: a vascular perspective on tertiary lymphoid structures in cancer[J/OL]. Front Immunol, 2021, 12: 736670 [2025-02-28]. https://pubmed.ncbi.nlm.nih.gov/34484246/. DOI: 10.3389/fimmu.2021.736670.
[40]
SHANG T Y, JIANG T Y, LU T, et al. Tertiary lymphoid structures predict the prognosis and immunotherapy response of cholangiocarcinoma[J/OL]. Front Immunol, 2023, 14: 1166497 [2025-02-28]. https://pubmed.ncbi.nlm.nih.gov/37234171/. DOI: 10.3389/fimmu.2023.1166497.
[41]
XU Y, LI Z, ZHOU Y Z, et al. Using immunovascular characteristics to predict very early recurrence and prognosis of resectable intrahepatic cholangiocarcinoma[J/OL]. BMC Cancer, 2023, 23(1): 1009 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37858111/. DOI: 10.1186/s12885-023-11476-z.
[42]
DING G Y, MA J Q, YUN J P, et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma[J]. J Hepatol, 2022, 76(3): 608-618. DOI: 10.1016/j.jhep.2021.10.030.
[43]
VANHERSECKE L, BRUNET M, GUÉGAN J P, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression[J]. Nat Cancer, 2021, 2(8): 794-802. DOI: 10.1038/s43018-021-00232-6.
[44]
ROBERT A W, MARCON B H, ANGULSKI A B B, et al. Selective loading and variations in the miRNA profile of extracellular vesicles from endothelial-like cells cultivated under normoxia and hypoxia[J/OL]. Int J Mol Sci, 2022, 23(17): 10066 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36077462/. DOI: 10.3390/ijms231710066.
[45]
WANG X C, LI X F, ZHAO J, et al. Rapid generation of hPSC-derived high endothelial venule organoids with in vivo ectopic lymphoid tissue capabilities[J]. Adv Mater, 2024, 36(15): e2308760. DOI: 10.1002/adma.202308760.
[46]
YANG M, CHE Y R, LI K Z, et al. Detection and quantitative analysis of tumor-associated tertiary lymphoid structures[J]. J Zhejiang Univ Sci B, 2023, 24(9): 779-795. DOI: 10.1631/jzus.B2200605.
[47]
XU Y, LI Z, YANG Y, et al. A CT-based radiomics approach to predict intra-tumoral tertiary lymphoid structures and recurrence of intrahepatic cholangiocarcinoma[J/OL]. Insights Imaging, 2023, 14(1): 173 [2024-11-12]. https://pubmed.ncbi.nlm.nih.gov/37840098/. DOI: 10.1186/s13244-023-01527-1.
[48]
XU Y, LI Z, YANG Y, et al. Association between MRI radiomics and intratumoral tertiary lymphoid structures in intrahepatic cholangiocarcinoma and its prognostic significance[J/OL]. J Magn Reson Imaging, 2024, 60(2): 715-728. DOI: 10.1002/jmri.29128.

上一篇 影像组学在肝脏恶性肿瘤局部治疗疗效预测中的应用
下一篇 影像组学在胃癌诊断和治疗应用中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2