分享:
分享到微信朋友圈
X
综述
磁共振成像在肌少症评估中的研究进展
王译欧 黄晨曦 张晓东

Cite this article as: WANG Y O, HUANG C X, ZHANG X D. Advances in magnetic resonance imaging for the assessment of sarcopenia[J]. Chin J Magn Reson Imaging, 2025, 16(7): 209-214.本文引用格式:王译欧, 黄晨曦, 张晓东. 磁共振成像在肌少症评估中的研究进展[J]. 磁共振成像, 2025, 16(7): 209-214. DOI:10.12015/issn.1674-8034.2025.07.033.


[摘要] 肌少症(sarcopenia)作为老年人群常见的退行性综合征,其特征性表现为骨骼肌质量下降、肌力强度及运动功能的渐进性衰退。其发病机制涉及多种病理生理学因素,包括蛋白质合成代谢失衡、线粒体功能障碍及慢性炎症反应等,导致患者躯体功能衰退及独立生活能力受损。现有文献表明,磁共振成像(magnetic resonance imaging, MRI)具有非侵入性、高软组织分辨率及多参数定量分析等优势,其凭借基础成像序列、定量参数成像及动态功能成像等方法已成为研究肌少症病理机制及临床评估的关键影像学工具。多项研究证实基于MRI的肌肉评估结果对老年衰弱、术后并发症等不良结局具有独立预测价值。然而,当前研究也指出MRI评估肌少症存在标准化缺失、动态功能成像不足等问题。结合现有MRI技术的优势与局限性,未来研究可重点关注多模态影像融合技术体系,深度整合MRI功能成像与影像组学分析方法等方向。本文系统阐述肌少症的生物学基础与病理生理学机制,并深入剖析MRI在肌群形态学测量、骨骼肌成分定量及功能成像评估中的应用,以期深化对肌少症的理解,并为该疾病的临床诊断、治疗及干预策略提供参考。
[Abstract] Sarcopenia, a prevalent degenerative syndrome in the elderly population, is characterized by progressive declines in skeletal muscle mass, muscle strength, and physical function. Its pathogenesis involves multiple pathophysiological factors, including disrupted proteostasis, mitochondrial dysfunction, and chronic low-grade inflammation, ultimately leading to impaired physical capacity and loss of independence. Current literature demonstrates that magnetic resonance imaging (MRI), with its advantages of non-invasiveness, high soft-tissue resolution, and multiparametric quantitative analysis capabilities, has emerged as a pivotal imaging modality for investigating sarcopenia pathology and clinical assessment. Utilizing techniques such as basic structural sequences, quantitative mapping techniques, and advanced functional MRI (fMRI) techniques, MRI provides critical insights. Multiple studies confirm that MRI-derived muscle metrics serve as independent predictors for adverse outcomes including frailty and postoperative complications in older adults. However, limitations persist in MRI-based sarcopenia evaluation, notably the lack of standardized protocols and underutilization of advanced fMRI. Future research should prioritize developing integrated multimodal imaging frameworks, combining quantitative MRI with radiomics analysis. This review systematically elaborates on the pathobiology of sarcopenia and provides an in-depth analysis of MRI applications in muscle morphometry, compositional quantification, and functional evaluation, aiming to advance clinical diagnosis and therapeutic strategies.
[关键词] 肌少症;骨骼肌疾病;磁共振成像;衰弱;预后评估
[Keywords] sarcopenia;disorders of muscles;magnetic resonance imaging;frailty;prognostic assessment

王译欧 1   黄晨曦 2   张晓东 1*  

1 南方医科大学第三附属医院(广东省骨科研究院)影像科,广州 510630

2 南方医科大学第一临床医学院,广州 510515

通信作者:张晓东,E-mail: ddautumn@126.com

作者贡献声明:张晓东设计本综述的方向和框架,对稿件的重要内容进行了修改;王译欧起草和撰写稿件,获取、分析并解释本研究的文献;黄晨曦获取、分析并解释本研究的数据,对稿件的重要内容进行了修改。全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82471928 广东省自然科学基金项目 2024A1515010352
收稿日期:2025-04-21
接受日期:2025-07-07
中图分类号:R445.2  R685 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.07.033
本文引用格式:王译欧, 黄晨曦, 张晓东. 磁共振成像在肌少症评估中的研究进展[J]. 磁共振成像, 2025, 16(7): 209-214. DOI:10.12015/issn.1674-8034.2025.07.033.

0 引言

       肌肉减少症(简称“肌少症”)是一种与老龄化相关的老年综合征,以骨骼肌质量持续性下降、肌力进行性减弱及运动功能显著下降为典型三联征[1, 2]。肌少症不仅导致跌倒风险及骨质疏松性骨折发生率增加[3],更与全因死亡率升高[1, 4]、心血管代谢性疾病发展[5]、糖尿病及虚弱状态形成[6, 7]呈正相关。流行病学研究显示,该病症在65岁以上老年群体中呈现10%~27%的流行率,且随着全球人口老龄化进程加速,预计2050年全球肌少症患者规模将突破2亿,成为老龄化社会亟待解决的公共卫生挑战[1, 2]。在此背景下,准确地评估肌少症对临床研究尤为重要。研究显示,磁共振成像(magnetic resonance imaging, MRI)凭借其非侵入性、高软组织分辨率及多参数定量分析能力,可精准评估肌肉质量、脂肪浸润及微观结构变化,为肌少症的病理机制研究和临床诊断提供客观依据[8, 9]。然而,MRI在肌少症的研究中仍存在不足,比如近年来大多数综述侧重于对肌少症的全面概述,涵盖流行病学、病理生理学及多种诊断方法,未能深入地总结MRI在肌少症准确评估中的独特价值、最新技术进展及其多维度应用潜力[10]。基于此现状,本综述通过对现有文献的系统梳理,从磁共振结构成像、定量参数成像、动态功能成像三个维度,总结MRI在肌少症评估中的应用,强调其无创检测肌群形态及微结构改变的能力,以及在疗效动态监控和疾病预测等方面的独特价值[11, 12, 13],以期深化对肌少症的理解,并为该疾病的临床诊断、治疗及干预策略提供参考。

1 肌少症的定义、病理机制及其诊断标准

1.1 肌少症的定义及病理机制

       肌少症是一种进行性发展的骨骼肌疾病,涉及骨骼肌质量和功能的加速损失,通常与衰老有关[1]。有证据表明,肌少症将导致身体功能及活动能力下降,影响生活质量并导致其他不良后果的风险增加,包括跌倒、骨折和过早死亡等[14, 15]。肌少症的概念在20世纪80年代由ROSENBERG首次提出并在1993年被首次定义[10]。随时间推移,肌少症的定义与诊断不断发展完善,由于研究对象与方法的不同,各组织对肌少症的定义与诊断有一定差异,但均包含以下三个组成部分的一个或多个:低肌肉质量、低肌肉力量、低身体表现[10, 16]。欧洲老年肌少症工作组(European Working Group on Sarcopenia in Older People, EWGSOP)于2019年完成了肌少症诊断标准的更新(EWGSOP2),正式确立了肌少症的多维评估体系[1]。2020年,亚洲肌肉减少症工作组(Asian Working Group for Sarcopenia, AWGS)在完成肌少症诊断标准更新的同时,进一步强调早期识别肌少症并进行干预的重要性[17]。2024年,肌少症全球领导倡议(Global Leadership Initiative in Sarcopenia, GLIS)的建立通过明确肌少症的定义常用术语以确保其标准化,并创建肌少症的第一个全球概念定义[18]

       肌少症的主要病理变化为卫星细胞和终末分化的肌纤维数量减少[19]。伴随病程进展,骨骼肌逐渐出现更多的脂肪浸润,至晚期则被纤维组织取缔[19]。目前,肌少症的病理机制尚未明确,但已知慢性炎症、氧化应激、随着年龄增长的激素代谢改变以及胰岛素抵抗等因素均在其发生发展中起作用[20, 21, 22]。其中,慢性炎症被认为是肌少症的关键发病机制[23]。炎性因子通过不同的病理生理过程直接或间接导致肌少症的发生,机体内炎性因子可通过氧化应激、细胞周期阻滞、细胞凋亡等途径导致多器官系统损伤,引发骨骼肌质量与功能的进行性下降从而导致肌少症[19, 24]

1.2 肌少症诊断标准的异质性特征

       尽管不同国际组织(如EWGSOP2、AWGS)对肌少症的具体诊断标准存在差异,但核心评估均围绕肌肉质量、肌肉力量、躯体功能三个维度展开[10]

       其中,肌肉质量是构成肌肉力量和功能的基础,其精确量化是诊断的核心环节和挑战。其常用方法包括计算机断层扫描(computed tomography, CT)、MRI、生物电阻抗分析(bioelectrical impedance analysis, BIA)、双能X射线吸收法(dual energy X-ray absorptiometry, DXA)等[1]。当前,BIA和DXA的临床应用广泛,许多国际组织(如EWGSOP2、AWGS)推荐的“低瘦体质量”临界值主要通过这两种方法测得[1, 17]。但BIA的测量结果易被受试者机体的水合状态干扰[10, 25],而DXA无法精确量化纯肌肉组织,对实际肌肉含量的测量存在偏差[10, 25]。CT存在辐射暴露风险,而MRI成本较高,两者在临床应用上受到限制。这导致缺乏基于CT或MRI的大规模人群研究,难以建立普适性的肌少症诊断临界点[10, 26, 27]。但CT和MRI通过测定特定部位的骨骼肌横截面积(cross sectional area, CSA)计算骨骼肌指数(skeletal muscle index, SMI)可无创、精确地量化肌肉组织体积和质量,在肌肉质量评估中具有重要价值[1, 17]

       肌少症的确诊通常需综合各评估维度的多项指标。EWGSOP2[1]所提出的肌少症诊断框架为:使用肌少症筛查量表(SARC-F问卷)进行初步筛查;通过握力测试完成肌肉力量评估;若提示肌少症风险则使用DXA/BIA进一步评估肌肉质量;最后通过躯体功能评估确定严重程度。AWGS2019[17]则针对亚洲人群调整了EWGSOP2框架和临界值。肌少症诊断评估基本框架及临界值见表1

表1  肌少症诊断评估对照表
Tab. 1  Diagnostic assessment criteria for sarcopenia

2 MRI在肌少症诊断中的评估优势

       MRI在肌少症诊断中的核心优势在于其无创且精准的定量评估能力,能够直接反映肌少症的关键病理改变并克服了其他常用方法的局限[1]。MRI显示的肌肉萎缩、脂肪浸润等特征性改变,已被证实与组织病理学(金标准)结果高度一致[3, 31]。相较于DXA(测量瘦体质量易受机体水合状态及水潴留性疾病显著干扰),MRI的诊断准确性不受此类因素影响,为肌少症的诊断提供了更可靠的影像学依据[25]。MRI还具有多平面、多序列成像特性,不仅能全方位呈现肌肉组织的解剖结构,其标准化的扫描方案还显著降低了BIA、DXA等因操作者依赖性强(如电极放置、体位校准)导致的人为误差风险[13]。同时,凭借卓越的软组织分辨率,MRI能敏锐捕捉早期微观结构改变,例如,在T1加权像上,基于组织固有的弛豫差异,肌肉(中等信号)与脂肪(高信号)的边界清晰可辨[9, 12]。EWGSOP2指南[1]指出,L3锥体水平及股骨中段区域的MRI/CT影像可作为全身骨骼肌质量的可靠预测依据,因此腰大肌及大腿中部肌群成为临床测量骨骼肌的标准化解剖定位点。例如:SALAFFI等[32]基于MRI-CSA-25指标建立的膝关节上方25 cm肌肉横截面积诊断标准,已被纳入肌少症诊疗体系。XU等[33]则证实L3椎体水平的SMI(L3-SMI)对肝硬化患者肌少症具有显著诊断价值。相较于CT依赖肌肉衰减值间接评估脂肪变性,MRI不仅能实现同等无创的肌肉质量评估,更能提供脂肪定量的直接信息,且无电离辐射风险[17, 34]

3 MRI序列在肌少症中的定量评估应用

       国际诊断标准(如EWGSOP2、AWGS)[1, 17]将肌少症分为三个阶段:单纯肌肉力量下降提示有肌少症可能;肌肉力量下降的同时出现肌肉质量的低下可确诊肌少症;若在肌肉力量、质量均低下的同时伴随躯体功能下降则诊断为严重肌少症。因此,精准量化肌肉质量是确诊肌少症的关键依据。MRI凭借其多样化的扫描序列,构建了针对肌少症的定量评价框架[1]:基础成像(如高分辨率T1/T2WI)提供肌肉形态结构的高精度测量,是量化肌肉萎缩程度、评估肌肉质量的核心手段[1, 34]。化学位移MRI(如Dixon)可通过计算脂肪分数(fat fraction, FF)评估肌肉的脂肪浸润程度[34]。脂肪浸润是肌少症进展的重要病理标志,其严重程度与肌肉功能下降密切相关,定量FF值不仅有助于评估疾病进展,也是评估预后的重要影像学生物标志物[34, 35]。扩散MRI[如扩散张量成像(diffusion tensor imaging, DTI)]深入解析肌肉微观结构与纤维完整性[36]。这种对早期、潜在微观结构改变(如水肿、纤维化、肌纤维排列紊乱)的敏感探查,为理解肌少症各个阶段的病理生理变化提供了独特视角,并可能提示未来的功能衰退风险[37, 38, 39]

       MRI的多序列协同工作,不仅能在形态(肌肉面积)、成分(脂肪浸润)和微观结构(纤维完整性)三个核心维度上提供客观、定量的检测结果,其获取的关键指标更是支撑肌少症严重程度分级诊断(确诊、严重)和探索早期病理改变(可能肌少症)的坚实影像学基础[1, 38]。MRI序列在肌少症中的定量评估应用汇总见表2

3.1 MRI基础成像及量化评估成像在肌少症中的应用

       在功能成像领域,T2·mapping技术和磁共振波谱成像(magnetic resonance spectroscopy, MRS)分别通过定量检测T2弛豫时间及肌肉代谢产物浓度,为肌少症评估开辟新路径[35, 41]

       T2·mapping通过测量T2弛豫时间能反映因脂肪浸润导致的肌肉微观结构变化[35],但该技术难以区分水肿/炎症与脂肪浸润,因两者均可引起T2值升高[34, 35]。T2值可作为评估骨骼肌组织疾病活动的磁共振定量标志物之一,其异常变化往往早于肌肉组织脂肪变性的影像学表现[35]

       MRS的动态代谢监测在肌肉疾病鉴别、损伤程度量化及再生过程评估中展现出独特优势[41]。在骨骼肌研究中,通常采用31P-MRS或13C-MRS分别测量高能磷酸盐与肌糖原浓度以评估代谢状态,并利用1H-MRS的脂质特征峰直接测定脂肪分数(图1[34, 41]。在以四甲基硅烷甲基1H信号为0 ppm的参照体系中,活体组织水质子化学位移约位于4.7 ppm,肌细胞外脂质(extracellular lipids, EMCL)化学位移约1.5 ppm,肌细胞内脂质(intracellular lipids, IMCL)化学位移约1.28 ppm[34]。尽管EMCL与IMCL的化学成分十分相似,MRS仍能够将二者区分,而普通的Dixon成像则无法做到这一点。不过,相较于T1/T2弛豫图像及Dixon成像,MRS只能测定特定区域的脂肪含量,范围较小且定位易偏移,导致其测定的可重复性有限[34]

       综上所述,T2·mapping和MRS联合构建的多参数分析,不仅能完成对组织水肿情况的分级,还可对组织代谢物浓度进行检测,为代谢性疾病相关肌少症的早期识别提供了新维度参数[41, 42]。然而,将上述先进功能成像技术有效整合并转化为临床常规应用仍面临一定挑战。未来研究应通过多中心协作建立基于MRI-CSA、SMI、T2值、MRS代谢物浓度等适用于不同人群的肌少症诊断与严重程度分级阈值,解决异质性数据整合难题,通过融合T2·mapping及MRS等多模态技术,提升早期微结构改变的检测灵敏度。

图1  采用Philips Achieva 3.0 T MR后处理工作站获取了一位25岁男性大腿中段股外侧肌及半膜肌的MRS的结果,显示其肌外脂质含量(EMCL)和肌内脂质含量(IMCL)(白箭)。其中,EMCL代表肌外脂质,IMCL代表肌内脂质。
Fig. 1  Proton magnetic resonance spectroscopy (1H-MRS) acquired at the mid-thigh level in a 25-year-old male using a Philips Achieva 3.0 T MR system and processed on its workstation. The spectra demonstrate distinct peaks corresponding to extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) within the vastus lateralis and semitendinosus muscles (denoted by white arrows). EMCL represents lipids residing outside the muscle fibers, while IMCL signifies lipids stored within the muscle fibers.

3.2 化学位移MRI在肌少症中的应用

       化学位移MRI可利用水和脂肪的共振频率差异,实现组织特异性成像与定量分析[35, 43]。水脂分离技术作为化学位移MRI的核心技术,可通过Dixon序列或基于多回波Dixon算法的迭代最小二乘估算法水脂分离技术(iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation, IDEAL)序列实现,通过计算FF值[脂肪信号/(水信号+脂肪信号)×100%]量化肌肉脂肪浸润情况[35, 44]。该方法无创、定量分析肌肉组织水脂分布,在肌少症诊断中具有重要价值[43, 44]。LIU等[29]提出全身Dixon技术可作为DXA的替代方法分别量化各个器官和肌肉中的脂肪含量及水含量。该技术虽在扫描速度上具备显著优势,其空间分辨率却相对受限。因此,尽管Dixon成像在理论上同样适用于肌肉体积评估及分割需求,研究者仍优先选择具有高分辨率的T1WI,以实现精准的肌肉组织定量分析及分割处理[35]图2)。相较于传统Dixon技术,IDEAL技术采用多回波采集,具有更高的脂肪分离精度,能精准分离肌间脂肪组织与皮下脂肪组织进而实现肌间脂肪的纵向追踪以及肌少症患者脂肪浸润的准确评估[39, 45, 46]

       化学位移MRI正从基础的脂肪检测向精准定量领域发展,但仍面临着设备依赖性问题以及相位误差校正问题。未来或可通过人工智能(artificial intelligence, AI)的自动化肌肉分割算法,减少手动测量误差并实现定量分析流程优化,完善肌少症统一标准的建立。

图2  采用Philips Achieva 3.0 T MR后处理工作站获取了一位25岁男性大腿中段双侧大腿骨骼肌T1WI及mDIXON-quant图像,结合T1WI在脂肪分数图上手动沿股四头肌、腘绳肌、内收肌及缝匠肌筋膜边缘勾画。
Fig. 2  Axial T1-weighted imaging (T1WI) and quantitative water-fat separation (mDIXON-Quant) sequences of bilateral mid-thigh muscles in a 25-year-old male, acquired using a Philips Achieva 3.0 T MR system and processed on its workstation. Manual segmentation of the quadriceps femoris, hamstring, adductor magnus, and sartorius muscle groups was performed along fascial boundaries on T1WI, with results overlaid on the corresponding fat fraction map.

3.3 扩散MRI在肌少症中的应用

       扩散加权成像(diffusion-weighted imaging, DWI)呈现的是与水分子随机运动相关的热能图,通常指示水分子扩散情况。骨骼肌组织中密集排列的肌纤维及复杂的腔室结构限制水分子扩散,且这种扩散受限呈现出各向异性特征。DTI在DWI的基础上,增加了多个方向的扩散敏感梯度,通过全面评估水分子在三维空间中的扩散特性,进一步定量骨骼肌肌纤维微观结构改变的影像技术[47, 48]。有研究证实[37, 40, 49],DTI可评估肌纤维排列与细胞外基质的重塑情况,从而揭示在糖尿病、肝硬化等代谢性疾病中肌少症发生的病理机制,其定量值可作为评估相关疾病严重程度的生物标志物之一。此外,DTI还可区分神经源性萎缩与肌源性萎缩在扩散特性上的差异,基于DTI纤维追踪技术显示神经源性萎缩区域的纤维束常呈现断裂或密度显著降低特征,而肌源性萎缩虽保持纤维走行结构相对完整,但其周围组织存在弥漫性脂肪浸润现象[50]。值得一提的是,DTI对骨骼肌的评估与外部肌肉力量之间的关系对优化运动员的训练及肌少症的运动或药物干预也具有重要意义。SHENG等[51]在对接受康复训练的肌少症患者进行随访时,通过扩散张量成像定量肌纤维各向异性分数(fractional anisotropy, FA)和平均扩散率(mean diffusivity, MD)值,量化水分子扩散的各向异性程度及扩散运动的速度,间接反映肌纤维的修复和重塑情况,可用于评估康复训练对肌肉质量和功能的改善情况。

       总体而言,扩散MRI通过解析水分子扩散运动规律,能够追踪组织微观结构特征,为揭示疾病病理机制研究提供独特视角。虽然DTI在临床应用中展现重要价值,但其运动伪影、水脂位移伪影及扫描耗时等技术瓶颈不可忽视。未来我们将通过整合超高场强DTI与人工智能算法,提升图像信噪比和分辨率,从影像上早期识别微观结构差异的角度认识肌少症的演变。

表2  MRI定量评价体系在肌少症诊断中的应用
Tab. 2  Integrated application of MRI quantitative evaluation system in sarcopenia diagnosis

4 小结与展望

       综上所述,MRI凭借无电离辐射、高软组织分辨率及多参数定量分析能力,已成为肌少症评估的重要工具。各MRI序列在肌少症诊断中的应用价值包括:常规MRI(如T1WI)凭借高分辨率成像量化肌肉形态学指标(体积、CSA、SMI);化学位移成像(如Dixon)直接测定脂肪变性程度(FF值);功能MRI(DTI、T2·mapping、MRS等)通过测定FA、MD及T2值等参数解析肌纤维排列与代谢情况。但MRI在肌少症评估中也存在局限性:设备成本显著高于BIA、DXA,且扫描耗时长;感兴趣区的手动勾画及扫描参数异质性导致测量可重复性不足。

       目前研究已明确MRI多参数定量在肌少症评估中的价值。同时,AI辅助下,肌肉自动化分割领域、快速成像技术也取得了一定的突破,有效降低了肌肉分割误差,提升测量效率。然而,尽管GLIS-2024多中心队列通过万人级数据积累,在一定程度上推动了MRI诊断阈值建立的探索,但关于统一扫描方案及跨中心诊断阈值仍存在分歧。构建普适性的肌少症MRI评估体系仍是该领域面临的主要挑战。基于MRI当前的局限与挑战,未来的研究应重点关注以下几个方面:(1)建立大规模、多中心的肌少症队列制定影像诊断阈值,建立统一标准的肌少症扫描方案及后处理流程;(2)推进多模态影像融合以探索代谢-炎症-肌肉萎缩分子机制,结合MRI功能成像与组学技术建立早期预警标志物;(3)通过深度学习算法实现全自动肌肉分割与参数提取,克服人工测量的变异性。

       总之,MRI在肌少症的诊断评估中具有广阔前景和发展潜力。随着技术的不断进步,未来还有望在提升低场强MRI图像质量方面取得突破,构建更加高效普惠的肌少症影像诊断与监测模式。

[1]
CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. DOI: 10.1093/ageing/afy169.
[2]
ALMOHAISEN N, GITTINS M, TODD C, et al. Prevalence of undernutrition, frailty and sarcopenia in community-dwelling people aged 50 years and above: systematic review and meta-analysis[J/OL]. Nutrients, 2022, 14(8): 1537 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/35458101/. DOI: 10.3390/nu14081537.
[3]
LIU C R, WONG P Y, CHUNG Y L, et al. Deciphering the "obesity paradox" in the elderly: a systematic review and meta-analysis of sarcopenic obesity[J/OL]. Obes Rev, 2023, 24(2): e13534 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/36443946/. DOI: 10.1111/obr.13534.
[4]
LAVALLE S, VALERIO M R, MASIELLO E, et al. Unveiling the intricate dance: how cancer orchestrates muscle wasting and sarcopenia[J]. In Vivo, 2024, 38(4): 1520-1529. DOI: 10.21873/invivo.13602.
[5]
DAMLUJI A A, ALFARAIDHY M, ALHAJRI N, et al. Sarcopenia and cardiovascular diseases[J]. Circulation, 2023, 147(20): 1534-1553. DOI: 10.1161/CIRCULATIONAHA.123.064071.
[6]
GIELEN E, DUPONT J, DEJAEGER M, et al. Sarcopenia, osteoporosis and frailty[J/OL]. Metabolism, 2023, 145: 155638 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37348597/. DOI: 10.1016/j.metabol.2023.155638.
[7]
SALOM VENDRELL C, GARCÍA TERCERO E, MORO HERNÁNDEZ J B, et al. Sarcopenia as a little-recognized comorbidity of type II diabetes mellitus: A review of the diagnosis and treatment[J/OL]. Nutrients, 2023, 15(19): 4149 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37836433/. DOI: 10.3390/nu15194149.
[8]
DIALLO T D, ROSPLESZCZ S, FABIAN J, et al. Associations of myosteatosis with disc degeneration: a 3T magnetic resonance imaging study in individuals with impaired glycaemia[J]. J Cachexia Sarcopenia Muscle, 2023, 14(3): 1249-1258. DOI: 10.1002/jcsm.13192.
[9]
HOOIJMANS M T, SCHLAFFKE L, BOLSTERLEE B, et al. Compositional and functional MRI of skeletal muscle: A review[J]. J Magn Reson Imaging, 2024, 60(3): 860-877. DOI: 10.1002/jmri.29091.
[10]
SAYER A A, COOPER R, ARAI H, et al. Sarcopenia[J/OL]. Nat Rev Dis Primers, 2024, 10: 68 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/39300120/. DOI: 10.1038/s41572-024-00550-w.
[11]
毛雅, 姚颖. 生物电阻抗分析的临床应用[J]. 华中科技大学学报(医学版), 2022, 51(5): 706-711. DOI: 10.3870/j.issn.1672-0741.2022.05.020.
MAO Y, YAO Y. The clinical application of bioelectrical impedance analysis[J]. Acta Med Univ Sci Technol Huazhong, 2022, 51(5): 706-711. DOI: 10.3870/j.issn.1672-0741.2022.05.020.
[12]
ANG S W, LIEW J, DHARMARATNAM V M, et al. Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review[J]. Ann Coloproctol, 2025, 41(1): 27-39. DOI: 10.3393/ac.2024.00080.0011.
[13]
王笑男, 李春媚, 陈敏. 磁共振成像机遇和挑战: 中国十年来发展成果及展望[J]. 磁共振成像, 2022, 13(10): 1-4, 17. DOI: 10.12015/issn.1674-8034.2022.10.001.
WANG X N, LI C M, CHEN M. Opportunities and challenges of magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imag, 2022, 13(10): 1-4, 17. DOI: 10.12015/issn.1674-8034.2022.10.001.
[14]
CAWTHON P M, MANINI T, PATEL S M, et al. Putative cut-points in sarcopenia components and incident adverse health outcomes: an SDOC analysis[J]. J Am Geriatr Soc, 2020, 68(7): 1429-1437. DOI: 10.1111/jgs.16517.
[15]
XU J, WAN C S, KTORIS K, et al. Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis[J]. Gerontology, 2022, 68(4): 361-376. DOI: 10.1159/000517099.
[16]
CRUZ-JENTOFT A J, BAEYENS J P, BAUER J M, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people[J]. Age Ageing, 2010, 39(4): 412-423. DOI: 10.1093/ageing/afq034.
[17]
CHEN L K, WOO J, ASSANTACHAI P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3): 300-307. DOI: 10.1016/j.jamda.2019.12.012.
[18]
KIRK B, CAWTHON P M, ARAI H, et al. The conceptual definition of sarcopenia: Delphi consensus from the global leadership initiative in sarcopenia (GLIS)[J/OL]. Age Ageing, 2024, 53(3): afae052 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38520141/. DOI: 10.1093/ageing/afae052.
[19]
LI C W, YU K, SHYH-CHANG N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 781-794. DOI: 10.1002/jcsm.12901.
[20]
ITO A, HASHIMOTO M, TANIHATA J, et al. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1864-1882. DOI: 10.1002/jcsm.12988.
[21]
BENNETT J L, PRATT A G, DODDS R, et al. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2023, 19(4): 239-251. DOI: 10.1038/s41584-023-00921-9.
[22]
ROLLAND Y, DRAY C, VELLAS B, et al. Current and investigational medications for the treatment of sarcopenia[J/OL]. Metabolism, 2023, 149: 155597 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37348598/. DOI: 10.1016/j.metabol.2023.155597.
[23]
PAPADOPOULOU S K. Sarcopenia: a contemporary health problem among older adult populations[J/OL]. Nutrients, 2020, 12(5): 1293 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/32370051/. DOI: 10.3390/nu12051293.
[24]
GU X C, WANG W H, YANG Y J, et al. The effect of metabolites on mitochondrial functions in the pathogenesis of skeletal muscle aging[J]. Clin Interv Aging, 2022, 17: 1275-1295. DOI: 10.2147/CIA.S376668.
[25]
PRADO C M M, HEYMSFIELD S B. Lean tissue imaging: a new era for nutritional assessment and intervention[J]. JPEN J Parenter Enteral Nutr, 2014, 38(8): 940-953. DOI: 10.1177/0148607114550189.
[26]
马俪文, 刘健, 党万太. 不同影像学检查方式在痛风性关节炎中应用的研究进展[J]. 重庆医学, 2023, 52(17): 2662-2666. DOI: 10.3969/j.issn.1671-8348.2023.17.019.
MA L W, LIU J, DANG W T. Advances in the different imaging methods in gouty arthritis[J]. Chongqing Med, 2023, 52(17): 2662-2666. DOI: 10.3969/j.issn.1671-8348.2023.17.019.
[27]
王中丽, 吴云琪, 林瑶, 等. 肥胖指数与慢性肾脏病的研究进展[J/OL]. 中国医学前沿杂志(电子版), 2025, 17(1): 6-13. DOI: 10.12037/YXQY.2025.01-02.
WANG Z L, WU Y Q, LIN Y, et al. Research progress of obesity index and chronic kidney disease[J/OL]. Chin J Front Med Sci Electron Version, 2025, 17(1): 6-13. DOI: 10.12037/YXQY.2025.01-02.
[28]
BOHANNON R W, MAGASI S R, BUBELA D J, et al. Grip and knee extension muscle strength reflect a common construct among adults[J]. Muscle Nerve, 2012, 46(4): 555-558. DOI: 10.1002/mus.23350.
[29]
LIU D Q, WANG S J, LIU S, et al. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies[J/OL]. Mol Aspects Med, 2024, 97: 101270 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38583268/. DOI: 10.1016/j.mam.2024.101270.
[30]
BHASIN S, TRAVISON T G, MANINI T M, et al. Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium[J]. J Am Geriatr Soc, 2020, 68(7): 1410-1418. DOI: 10.1111/jgs.16372.
[31]
JENKINS B M, DIXON L D, KOKESH K J, et al. Skeletal muscle symptoms and quantitative MRI in females with dystrophinopathy[J]. Muscle Nerve, 2024, 70(5): 988-999. DOI: 10.1002/mus.28235.
[32]
SALAFFI F, CAROTTI M, POLISENO A C, et al. Quantification of sarcopenia in patients with rheumatoid arthritis by measuring the cross-sectional area of the thigh muscles with magnetic resonance imaging[J]. Radiol Med, 2023, 128(5): 578-587. DOI: 10.1007/s11547-023-01630-9.
[33]
XU Z Y, YANG D W, LUO J, et al. Diagnosis of sarcopenia using the L3 skeletal muscle index estimated from the L1 skeletal muscle index on MR images in patients with cirrhosis[J]. J Magn Reson Imaging, 2023, 58(5): 1569-1578. DOI: 10.1002/jmri.28690.
[34]
ENGELKE K, CHAUDRY O, GAST L, et al. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art[J]. J Orthop Translat, 2023, 42: 57-72. DOI: 10.1016/j.jot.2023.07.005.
[35]
GARCIA-DIEZ A I, PORTA-VILARO M, ISERN-KEBSCHULL J, et al. Myosteatosis: diagnostic significance and assessment by imaging approaches[J]. Quant Imaging Med Surg, 2024, 14(11): 7937-7957. DOI: 10.21037/qims-24-365.
[36]
ZHANG W S, FU C, YAN D, et al. Quantification of volumetric thigh and paravertebral muscle fat content: comparison of quantitative Dixon (Q-Dixon) magnetic resonance imaging (MRI) with high-speed T2-corrected multiecho MR spectroscopy[J]. Quant Imaging Med Surg, 2024, 14(7): 4490-4505. DOI: 10.21037/qims-24-127.
[37]
HUANG X C, MA J Y, GAO C, et al. Diffusion-tensor magnetic resonance imaging as a non-invasive assessment of extracellular matrix remodeling in lumbar paravertebral muscles of rats with sarcopenia[J/OL]. BMC Musculoskelet Disord, 2024, 25(1): 540 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38997743/. DOI: 10.1186/s12891-024-07654-0.
[38]
徐婷, 郭应坤, 许华燕, 等. 磁共振成像在肌病中的临床应用研究进展[J]. 磁共振成像, 2023, 14(7): 192-196, 202. DOI: 10.12015/issn.1674-8034.2023.07.035.
XU T, GUO Y K, XU H Y, et al. Progressions in clinical application of magnetic resonance imaging in myopathy[J]. Chin J Magn Reson Imag, 2023, 14(7): 192-196, 202. DOI: 10.12015/issn.1674-8034.2023.07.035.
[39]
HUANG X C, HUANG Y L, GUO Y T, et al. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia[J/OL]. Exp Gerontol, 2023, 183: 112322 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37929293/. DOI: 10.1016/j.exger.2023.112322.
[40]
XING D, LIU F, GAO Y F, et al. Texture analysis of T1- and T2-weighted images identifies myofiber atrophy and grip strength decline in streptozotocin-induced type 1 diabetic sarcopenia rats[J/OL]. J Orthop Surg Res, 2025, 20(1): 155 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/39934885/. DOI: 10.1186/s13018-025-05556-y.
[41]
KRUMPOLEC P, KLEPOCHOVÁ R, JUST I, et al. Multinuclear MRS at 7T uncovers exercise driven differences in skeletal muscle energy metabolism between young and seniors[J/OL]. Front Physiol, 2020, 11: 644 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/32695010/. DOI: 10.3389/fphys.2020.00644.
[42]
李军飞, 王一婧, 张雪松, 等. 磁共振T2 mapping在膝骨性关节炎周围肌肉改变评估中的价值研究[J]. 磁共振成像, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imag, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
[43]
BORDE T, WU M M, RUSCHKE S, et al. Assessing breast density using the chemical-shift encoding-based proton density fat fraction in 3-T MRI[J]. Eur Radiol, 2023, 33(6): 3810-3818. DOI: 10.1007/s00330-022-09341-x.
[44]
QIN C, GOLDBERG O, KAKAR G, et al. MRI fat fraction imaging of nodal and bone metastases in prostate cancer[J]. Eur Radiol, 2023, 33(8): 5851-5855. DOI: 10.1007/s00330-023-09527-x.
[45]
THULUVATH A J, FORSGREN M F, LADNER D P, et al. Utilizing a novel MRI technique to identify adverse muscle composition in end-stage liver disease: A pilot study[J/OL]. Ann Hepatol, 2024, 29(4): 101508 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/38719079/. DOI: 10.1016/j.aohep.2024.101508.
[46]
KOUTOULIDIS V, TERPOS E, PAPANIKOLAOU N, et al. Comparison of MRI features of fat fraction and ADC for early treatment response assessment in participants with multiple myeloma[J]. Radiology, 2022, 304(1): 137-144. DOI: 10.1148/radiol.211388.
[47]
BERRY D B, GALINSKY V L, HUTCHINSON E B, et al. Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure[J]. Magn Reson Med, 2023, 90(4): 1582-1593. DOI: 10.1002/mrm.29751.
[48]
NAUGHTON N, CAHOON S M, SUTTON B P, et al. Accelerated, physics-inspired inference of skeletal muscle microstructure from diffusion-weighted MRI[J]. IEEE Trans Med Imaging, 2024, 43(11): 3698-3709. DOI: 10.1109/TMI.2024.3397790.
[49]
CAMERON D, REITER D A, ADELNIA F, et al. Age-related changes in human skeletal muscle microstructure and architecture assessed by diffusion-tensor magnetic resonance imaging and their association with muscle strength[J/OL]. Aging Cell, 2023, 22(7): e13851 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/37162031/. DOI: 10.1111/acel.13851.
[50]
盛思思, 邵剑波, 彭雪华, 等. 儿童脊髓性肌萎缩症大腿肌肉MRI影像特点及与临床相关性分析[J]. 磁共振成像, 2024, 15(9): 114-119. DOI: 10.12015/ISSN.1674-8034.2024.09.019.
SHENG S S, SHAO J B, PENG X H, et al. MRI features and clinical correlation analysis of thigh muscle in children with spinal muscular atrophy[J]. Chin J Magn Reson Imag, 2024, 15(9): 114-119. DOI: 10.12015/ISSN.1674-8034.2024.09.019.
[51]
SHENG J P, JIANG R, DU F Z, et al. Application of magnetic resonance DTI technique in evaluating the effect of postoperative exercise rehabilitation[J/OL]. J Healthc Eng, 2022, 2022: 2385699 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/35356626/. DOI: 10.1155/2022/2385699.

上一篇 磁共振成像在中轴型脊柱关节炎骶髂关节结构性病变评估中的研究进展
下一篇 血氧水平依赖磁共振成像评估肿瘤缺氧的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2