分享:
分享到微信朋友圈
X
临床研究
QSM和DTI联合应用探讨单侧大脑中动脉供血区缺血后铁沉积对脑灰质核团微结构变化的影响
郭晓琳 宋彦澄 刘凤海 康立清 王潇玉

本文引用格式:郭晓琳, 宋彦澄, 刘凤海, 等. QSM和DTI联合应用探讨单侧大脑中动脉供血区缺血后铁沉积对脑灰质核团微结构变化的影响[J]. 磁共振成像, 2025, 16(8): 19-24. DOI:10.12015/issn.1674-8034.2025.08.004.


[摘要] 目的 采用磁共振定量磁敏感图(quantitative susceptibility mapping, QSM)和扩散张量成像(diffusion tensor imaging, DTI)测量单侧大脑中动脉(middle cerebral artery, MCA)供血区缺血后深部核团铁含量及微结构改变,并分析两者间的潜在相关性。材料与方法 选取31例单侧MCA重度狭窄或闭塞患者进行QSM、DTI、磁共振动脉自旋标记(arterial spin labeling, ASL)和常规MRI扫描。在ASL提示缺血的患者中,分别测量患侧和健侧尾状核、苍白球、壳核、红核及黑质的磁化率值(magnetic susceptibility value, MSV)值、平均扩散率(mean diffusivity, MD)值及各向异性分数(fractional anisotropy, FA)值,运用配对样本t检验比较两侧大脑深部核团间各参数的差异性,并分析患侧各核团MSV与DTI参数值之间的相关性。结果 31例患者患侧核团MSV均高于对侧,红核两侧MSV差异无统计学意义(P>0.05),其余多个核团MSV差异有统计学意义(P<0.05)。患侧核团的MD值和FA值差异均较对侧有统计学意义(P<0.05)。尾状核、壳核及黑质FA值与MSV呈正相关(r=0.438、0.710和0.394,P值均<0.05);尾状核及壳核MD值和MSV呈负相关(r=-0.417、-0.593,P<0.05)。结论 单侧MCA供血区缺血后,多个大脑灰质核团可能存在铁的异常沉积和微结构的改变,且壳核铁的异常沉积与微结构的改变具有较强的相关性。
[Abstract] Objective This study employed quantitative susceptibility mapping (QSM) and diffusion tensor imaging (DTI) to measure alterations in iron content and microstructural integrity within the gray matter nuclei following ischemia in the middle cerebral artery (MCA) territory. Furthermore, the potential correlations between these changes were analyzed.Materials and Methods Thirty-one patients with severe unilateral MCA stenosis or occlusion were selected for QSM, DTI, magnetic resonance arterial spin labeling (ASL) and routine MRI scans. In patients with ASL prompted ischemia, the magnetic susceptibility value (MSV), mean diffusion (MD) values and fractionalisotropy (FA) values of the affected and healthy caudate nucleus, globus pallidus, putamen, red nucleus and substantia nigra were measured respectively. Paired sample t-tests were utilized to compare the differences in these parameters between the gray matter nuclei on the two sides. Additionally, the correlations between the susceptibility values and DTI parameter values in the affected nuclei were analyzed.Results The nucleus MSV on the affected side of the 31 patients were all higher than the contralateral side, and there was no statistically significant difference in MSV on both sides of the red nucleus (P > 0.05), and the MSV differences on the other nucleus (P < 0.05). Both the MD and FA values of the affected nucleus were statistically significant compared with the opposite side (P < 0.05). The FA values of the caudate nucleus, putamen and substantia nigra were positively correlated with MSV (r = 0.438, 0.710 and 0.394, P values​were all < 0.05); the MD values of the caudate nucleus and putamen were negatively correlated with MSV (r = -0.417 and -0.593, P < 0.05).Conclusions Following unilateral MCA territory ischemia, abnormal iron deposition and microstructural alterations may occur in multiple gray matter nuclei of the brain. Notably, a strong correlation exists between abnormal iron deposition and microstructural changes in the putamen.
[关键词] 缺血性脑卒中;大脑中动脉重度狭窄或闭塞;定量磁敏感图;扩散张量成像;磁共振成像;灰质核团
[Keywords] ischemic stroke;severe stenosis or occlusion of the middle cerebral artery;quantitative susceptibility mapping;diffusion tensor imaging;magnetic resonance imaging;gray matter nuclei

郭晓琳    宋彦澄 *   刘凤海    康立清    王潇玉   

沧州市中心医院磁共振成像科,沧州 061000

通信作者:宋彦澄,E-mail:573769265@qq.com

作者贡献声明:宋彦澄设计本研究的方案,对稿件重要的内容进行了修改,获得了2024年度河北省医学科学研究课题计划项目的资助;郭晓琳负责起草和撰写稿件,获取、分析和解释本研究的数据;刘凤海、康立清及王潇玉获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 2024年度河北省医学科学研究课题计划项目 20240870
收稿日期:2025-02-27
接受日期:2025-08-08
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.004
本文引用格式:郭晓琳, 宋彦澄, 刘凤海, 等. QSM和DTI联合应用探讨单侧大脑中动脉供血区缺血后铁沉积对脑灰质核团微结构变化的影响[J]. 磁共振成像, 2025, 16(8): 19-24. DOI:10.12015/issn.1674-8034.2025.08.004.

0 引言

       缺血性脑卒中是国际上致残和死亡的重要原因之一,最常见的原因为颅内动脉血管狭窄[1],大脑中动脉(middle cerebral artery, MCA)狭窄是临床上最常见的缺血性亚型,也是研究脑血管缺血性病变病理生理最广泛选择的实验模型[2, 3]。铁代谢参与大脑中各种重要的生理和生化过程,在维持正常脑功能方面发挥重要的作用[4]。当发生动脉狭窄时,供血区域的脑组织引起缺血、缺氧,导致铁稳态失衡,引起的铁过载进一步会产生活性氧和氧化应激,最终导致神经元损伤[5, 6]。因此,定量诊断铁含量对于评估神经生理功能水平至关重要。

       扩散张量成像(diffusion tensor imaging, DTI)和定量磁敏感图(quantitative susceptibility mapping, QSM)技术可以对脑灰质核团的微观结构和铁含量进行定量评估。既往DTI技术多应用于脑缺血患者脑白质区域[7, 8],对深部核团的微结构的临床研究较少。了解缺血性脑卒中时铁代谢及微结构的变化可以为改善脑卒中患者的预后提供新的治疗靶点,但目前尚不清楚单侧MCA供血区缺血后脑灰质核团内铁过载是否与相应微结构的变化存在相关性。因此,本研究使用QSM联合DTI对单侧MCA供血区缺血后脑深部核团的磁化率值(magnetic susceptibility value, MSV)和DTI指标进行研究,探讨核团内铁沉积与微结构变化的潜在相关性。

1 材料与方法

1.1 一般资料

       本研究遵循《赫尔辛基宣言》原则,已获得沧州市中心医院医学伦理委员会的批准,免除受试者知情同意,批准文号:2023-337-01。回顾性纳入沧州市中心医院2021年10月至2023年5月在神经内科诊断为缺血性脑卒中患者病例31例,其中男20例,女11例。纳入标准:(1)首次经磁共振血管成像(magnetic resonance angiography, MRA)检查发现仅单侧MCA重度狭窄或闭塞,其他血管无重度狭窄;(2)经ASL检查提示缺血改变;(3)无颅内、外血管搭桥手术;(4)病情相对稳定、意识清晰。排除标准:(1)存在阿尔茨海默病、帕金森病和痴呆等其他可能会影响神经系统疾病的病史;(2)经常规MRI检查发现核团有病变者;(3)存在颅内肿瘤、脑出血、脑外伤及烟雾病等病史;(4)图像质量差。

1.2 检查方法

       采用美国GE Discovery MR750 3.0 T扫描仪及32通道颅脑专用线圈进行MRI检查。检查序列包括T1WI、T2WI、扩散加权成像(diffusion weighted imaging, DWI)、时间飞跃法磁共振血管成像(time of flight magnetic resonance angiography, TOF-MRA)、动脉自旋标记(arterial spin labeling, ASL)、QSM及DTI等。T1WI扫描参数:TR 1925 ms,TE 24.2 ms,FOV 240 mm×240 mm,层厚5 mm,层数20,采集时间1 min 53 s;T2WI扫描参数:TR 6496 ms,TE 94.0 ms,FOV 240 mm×240 mm,层厚5 mm,层数20,采集时间52 s;DWI扫描参数:TR 2383 ms,TE 66.2 ms,b值=1000 s/mm2,FOV 240 mm×240 mm,层厚5 mm,层数20,采集时间33 s;TOF-MRA扫描参数:TR 19 ms,TE 3.4 ms,FOV 220 mm×180 mm,层厚1.2 mm,层数128,采集时间3 min 39 s;QSM扫描参数:TR 41.7 ms,TE 3.2 ms,FOV 256 mm×256 mm,层厚1 mm,NEX 0.7,层数为100,采集时间9 min 18 s;DTI扫描参数:TR 8000 ms,TE 85.6 ms,FOV 240 mm×240 mm,层厚4 mm,NEX 1,方向数64,层数为60,采集时间3 min 36 s;ASL扫描参数:标记后延迟或翻转时间2525 ms,TR 5327 ms,TE 10.5 ms,FOV 240 mm×240 mm,层厚4 mm,NEX 3,采集时间5 min 9 s。

1.3 图像处理

       将图像上传到ADW 4.6工作站并使用Functool后处理软件中QSM、DTI及ASL内置软件,由两名高年资神经放射科医师采用双盲法进行图像分析及参数测量,得出MSV、各向异性分数(fractional anisotropy, FA)值、平均扩散率(mean diffusivity, MD)值及CBF参数图。(1)DTI图像和QSM图像分析:分别使用横断面T2WI、滤过的相位图上在显示核团效果最佳的层面进行感兴趣区(region of interest, ROI)的手动勾勒。ROI放置略小于核团,并避开脑脊液、血管及部分容积效应等伪影。每一个核团在同一层面上测量3次,记录每个ROI的FA值、MD值及MSV,取其平均值为最终结果。(2)ASL分析:重建CBF图,获取患侧及健侧大脑中动脉供血区CBF值,将患侧CBF与健侧CBF进行比对,得到相对CBF(relative CBF, rCBF)。将rCBF<0.7定义为缺血[9]。测量方法见图1

图1  双侧尾状核、苍白球、壳核、红核及黑质手动勾画的ROI。1A~1D为尾状核ROI及其对应的FA、MD和MSV参数图;1E~1H分别为壳核(粗箭)和苍白球(细箭)ROI及其对应的FA、MD和MSV参数图;1I~1L分别为红核(粗箭)和黑质(细箭)ROI及其对应的FA、MD和MSV参数图;1M为ASL重建的CBF图。ROI:感兴趣区;FA:各向异性分数;MD:平均扩散率;MSV:磁化率值;ASL:动脉自旋标记;CBF:脑血流量。
Fig. 1  Manually delineated ROIs of bilateral caudate nucleus, globus pallidus, putamen, red nucleus and substantia nigra. 1A - 1D show the ROI of the caudate nucleus and its corresponding FA, MD, and MSV maps; 1E - 1H display the ROIs of the putamen (thick arrow) and globus pallidus (thin arrow), along with their respective FA, MD, and MSV maps; 1I - 1L present the ROIs of the red nucleus (thick arrow) and substantia nigra (thin arrow), as well as their FA, MD, and MSV maps; 1M is the ASL-reconstructed CBF map. ROI: region of interest; FA: fractional anisotropy; MD: mean diffusivity; MSV: magnetic susceptibility value; ASL: arterial spin labeling; CBF: cerebral blood flow.

1.4 统计学分析

       应用SPSS 25.0统计软件进行数据分析,计量资料采用均数±标准差(x¯±s)表示;采用单样本K-S检验做正态性检验。运用配对样本t检验分析患侧灰质核团与健侧MSV、FA值和MD值的差异。采用组内相关系数(intra-class correlation coefficient, ICC)评估2名观察者测量ROI MSV、FA、MD值的一致性,ICC<0.40表示一致性较差,ICC>0.75表示一致性良好。为排除年龄和性别因素的混淆影响,将其作为协变量进行控制。采用偏相关分析分析患侧各核团QSM的MSV与DTI参数值之间的相关性。P<0.05表示差异有统计学意义。

2 结果

2.1 测量结果一致性分析

       采用ICC评估2名医师所测量ROI区域MSV、FA、MD值的一致性。2名医师所测量各ROI区域MSV的一致性较高(ICC均>0.75;表1)。

表1  患侧和健侧各ROI的组内相关系数
Tab. 1  ICC of ROIs on the affected and unaffected sides

2.2 单侧MCA缺血后两侧大脑灰质核团MSV的差异

       31例患者患侧核团MSV均高于健侧,其中尾状核、壳核、苍白球及黑质两侧MSV差异有统计学意义(P<0.05),红核两侧MSV差异无统计学意义(P>0.05),见表2

表2  患侧和健侧灰质核团磁化率值比较
Tab. 2  Comparisons of magnetic susceptibility value in gray matter nuclei between the affected and unaffected sides

2.3 单侧MCA缺血后两侧大脑灰质核团DTI指标的差异

       31例患者患侧核团的FA值均高于对侧,而MD值均低于对侧,差异均有统计学意义(P<0.05),见表3

表3  患侧和健侧灰质核团DTI指标比较
Tab. 3  Comparisons of DTI metrics in gray matter nuclei between the affected and unaffected sides

2.4 患侧各灰质核团MSV与DTI参数的相关性分析

       患侧尾状核、壳核及黑质FA值与MSV呈正相关(r=0.438、0.710和0.394,P均<0.05),尾状核及壳核MD值与MSV呈负相关(r=-0.417、-0.593,P<0.05)。剩余核团的DTI参数值与MSV无明显相关性(P>0.05)。其中,壳核的DTI参数值与MSV线性关系最显著。见表4图2图3

图2  患侧壳核FA值与MSV的散点图。FA:各向异性分数;MSV:磁化率值。
图3  患侧壳核MD值与MSV的散点图。MD:平均扩散率;MSV:磁化率值。
Fig. 2  Scatter plot of FA values in the affected putamen versus MSV. FA: fractional anisotropy; MSV: magnetic susceptibility value.
Fig. 3  Scatter plot of MD values in the affected putamen versus MSV. MD: mean diffusivity; MSV: magnetic susceptibility value.
表4  患侧灰质核团DTI指标与磁化率值的相关性分析
Tab. 4  Correlation analysis between DTI metrics and magnetic susceptibility values in gray matter nuclei of the affected side

3 讨论

       本研究首次使用QSM联合DTI技术定量分析单侧MCA供血区缺血后大脑灰质核团中铁含量及微结构的变化。结果显示患侧多个核团的MSV和FA值、MD值较对侧差异有统计学意义;同时,壳核的MSV与FA值、MD值有显著的相关性。该结果表明单侧MCA供血区缺血后脑灰质核团内有铁过载和微结构的变化,且两者间具有一定的相关性。

3.1 单侧MCA供血区缺血后深部核团MSV变化

       QSM可以无创、定量地检测脑组织的MSV,具有较高的特异性和敏感性。先前的研究已经证实QSM评估的MSV在深部核团中与脑组织中化学测定的铁浓度呈正相关[10, 11]

       本研究结果显示患侧尾状核、壳核、苍白球及黑质均较对侧MSV升高,而红核差异无统计学意义,这与此前研究较为一致[12, 13, 14]。造成患侧铁沉积增多的原因包括:(1)脑缺血会导致星形胶质细胞和小胶质细胞增殖、活化和迁移,影响铁的运输和储存[15];(2)大脑在缺血情况下会引发病理性非感染性炎症,过量释放促炎细胞因子,影响中枢神经系统胶质细胞中的铁稳态[16];(3)一侧MCA缺血缺氧后导致内皮细胞受损,进而导致血脑屏障受损,过量的铁进入脑组织内,导致脑组织内铁水平的升高[17, 18]。灰质核团的血供由前后循环共同供血,尾状核、豆状核及壳核供血动脉主要来自前循环,而红核及黑质主要由后循环供血。但有研究表明,长时间脑缺血缺氧后,病理学改变不仅发生在缺血区域,也发生在与缺血部位有功能连接的远端区域[19]。既往研究中,基底节区缺血性损伤可以继发黑质神经变性[20],脑内铁可能沿着“小脑—脑干—基底神经节”神经纤维通路在神经细胞内运输和代谢,当上述任一部位发生因供血不足而受损时,铁不能正常排出,就会形成过量的铁沉积[21]。铁过载和游离铁释放的增多可能导致神经元死亡,继而导致一系列神经认知功能障碍[22],所以抑制铁过载减轻脑卒中损伤是我们临床工作中需关注的一个方向。有研究[23]发现铁螯合剂可以降低缺血性脑卒中的死亡率,这为治疗缺血性脑卒中提供了新的思路。

3.2 单侧MCA供血区缺血后深部核团DTI指标变化

       DTI技术可以在微观结构水平上无创量化生物组织中水扩散的方向性和速率,灰质神经元具有高活性和富血供特点,研究灰质核团微结构损伤可能更有临床意义。本研究结果显示患侧核团的FA值增高,而MD值降低,分析其原因可能为:(1)大脑发生缺血性损伤后会导致氧化磷酸化和ATP合成的失败,减少Na+/K+泵的活性,从而导致膜去极化,降低离子通道的功能障碍,致使细胞内离子的积聚,细胞外空间的水转移到细胞内空间,引起细胞内水肿[24];(2)大脑发生缺血后,脑组织中谷氨酸释放和积累程度高于正常生理浓度10~100倍,进一步阻碍水分子扩散[25]。既往研究[26, 27]表明DTI有助于区分缺血半暗带和梗死核心,并在治疗时间窗内确定急性卒中的发病时间,可作为急性和超急性卒中恢复的预后工具。一项关于缺血性脑卒中DTI扫描的研究[28]发现FA值的增加表明组织结构存在完整性和细胞损伤存在可逆性,有助于挽救潜在存活的脑组织。LIU等[29]研究发现外源性腺苷通过提高Na+/K+泵的活性和减少谷氨酸扩散,为预防和治疗缺血性卒中提供了新的治疗途径。

3.3 QSM值与DTI参数值的相关性

       之前的研究发现灰质核团中的DTI指标受多种因素影响,如铁的存在、髓鞘纤维的存在和生理噪声等[30]。本研究显示随着壳核铁含量增加,FA值呈线性增加,而MD值呈线性减少,这意味着铁蛋白可以改变水的扩散,与YANG等[31]研究一致。仅在壳核区域观察到DTI指标与MSV的强相关性,分析可能的原因与其结构复杂程度相关。苍白球、红核及黑质结构相对复杂[32, 33, 34],髓鞘轴突、大的细胞和铁蛋白的微观结构都有可能使水分子的自由扩散受到限制[35],而尾状核和壳核由神经元和神经胶质构成,微观结构相对简单[36],不同的是,壳核中铁的沉积率高于尾状核[21]。壳核的铁沉积在脑缺血时对水的扩散影响更大,且铁的存在似乎对FA值的影响大于MD值,证实相对简单的神经元组成和较高水平的铁含量可能更容易影响水的扩散。红核作为后循环供血的核团,MSV差异无统计学意义,但FA值和MD值存在差异,表明铁沉积并不能完全反映核团的微观结构变化,铁可能在神经元细胞丢失之后才会造成异常沉积。通过DTI指标与MSV之间的相关性分析,我们证实了铁的异常沉积会影响大脑核团的微观结构,或许神经元丢失后造成的微结构变化比MSV变化更敏感,进一步提高了我们对脑缺血后的病理变化的认识,为以后临床评估神经元损伤和治疗提供了方法。

3.4 本研究的局限性

       (1)本研究中深部核团采用手动勾画ROI,虽通过两位医师的均值来纳入分析方法,但仍存在一定的主观性;(2)样本量较小,课题组需进一步搜集病例。

4 结论

       综上所述,单侧MCA缺血患者灰质核团存在脑铁含量的增加和脑微结构的改变,且壳核区域显示的MD值和FA值与MSV的显著相关性表明铁沉积对水扩散有重要地影响,进一步加深了对缺血性脑损伤的病理机制的理解,为临床的精准医疗提供了影像学依据。

[1]
LI Y, XU X, WU X, et al. Cell polarization in ischemic stroke: molecular mechanisms and advances[J]. Neural Regen Res, 2024, 20(3): 632-645. DOI: 10.4103/NRR.NRR-D-23-01336.
[2]
MENG Y, LI C X, ZHANG X. Quantitative Evaluation of Oxygen Extraction Fraction Changes in the Monkey Brain during Acute Stroke by Using Quantitative Susceptibility Mapping[J/OL]. Life (Basel), 2023, 13(4): 1008 [2025-02-27]. https://pubmed.ncbi.nlm.nih.gov/37109537/. DOI: 10.3390/life13041008.
[3]
LI C X, MENG Y, YAN Y, et al. Investigation of White Matter and Grey Matter Alterations in the Monkey Brain Following Ischemic Stroke Using Diffusion Tensor Imaging[J]. Investig Magn Reson Imaging, 2022, 26(4): 275-283. DOI: 10.13104/imri.2022.26.4.275.
[4]
ZHAO Q, MAIMAITIAILI S, BI Y, et al. Brain Iron Deposition Alterations in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment Based on Quantitative Susceptibility Mapping[J/OL]. J Diabetes, 2025, 17(1): 70052 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39843980. DOI: 10.1111/1753-0407.70052.
[5]
ZHANG X Y, HAN P P, ZHAO Y N, et al. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species[J/OL]. Heliyon, 2024, 10(7): 28959 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/38601542. DOI: 10.1016/j.heliyon.2024.e28959.
[6]
CHAI Z, ZHENG J, SHEN J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke[J/OL]. CNS Neurosci Ther, 2024, 30(7): 14865 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39042604. DOI: 10.1111/cns.14865.
[7]
ZHANG Q, JIANG H, HAN S, et al. Magnetic resonance imaging quantitative assessment of corticospinal tract damage in basal ganglia infarction[J/OL]. Medicine (Baltimore), 2024, 103(43): 40300 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39470499. DOI: 10.1097/md.0000000000040300.
[8]
AHTAM B, SOLTI M, DOO J M, et al. Diffusion-Weighted Magnetic Resonance Imaging Demonstrates White Matter Alterations in Watershed Regions in Children With Moyamoya Without Stroke or Silent Infarct[J/OL]. Pediatr Neurol, 2023, 143: 89-94. DOI: 10.1016/j.pediatrneurol.2023.03.005.
[9]
THAMM T, ZWEYNERT S, PIPER S K, et al. Diagnostic and prognostic benefit of arterial spin labeling in subacute stroke[J/OL]. Brain Behav, 2019, 9(5): e01271 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520295. DOI: 10.1002/brb3.1271.
[10]
DENG X, BU M, LIANG J, et al. Relationship between cognitive impairment and hippocampal iron overload: A quantitative susceptibility mapping study of a rat model[J/OL]. Neuroimage, 2025, 306: 121006 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39788338. DOI: 10.1016/j.neuroimage.2025.121006.
[11]
GAO Y, LIANG C, ZHANG Q, et al. Brain iron deposition and cognitive decline in patients with cerebral small vessel disease: a quantitative susceptibility mapping study[J/OL]. Alzheimers Res Ther, 2025, 17(1): 17 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39789638. DOI: 10.1186/s13195-024-01638-x.
[12]
MAO H, DOU W, CHEN K, et al. Evaluating iron deposition in gray matter nuclei of patients with unilateral middle cerebral artery stenosis using quantitative susceptibility mapping[J/OL]. Neuroimage Clin, 2022, 34: 103021 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/35500369. DOI: 10.1016/j.nicl.2022.103021.
[13]
DU L, ZHAO Z, LIU X, et al. Alterations of Iron Level in the Bilateral Basal Ganglia Region in Patients With Middle Cerebral Artery Occlusion[J/OL]. Front Neurosci, 2021, 14: 608058 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/33551726. DOI: 10.3389/fnins.2020.608058.
[14]
毛慧敏, 王新怡, 陈坤健, 等. 单侧大脑中动脉狭窄或闭塞脑铁沉积的定量磁敏感图初步研究[J]. 磁共振成像, 2021, 12(11): 16-20. DOI: 10.12015/issn.1674-8034.2021.11.004.
MAO H M, WANG X Y, CHEN K J, et al. Preliminary study of quantitative susceptibility mapping in the brain iron deposition of unilateral middle cerebral artery stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2021, 12(11): 16-20. DOI: 10.12015/issn.1674-8034.2021.11.004.
[15]
LI B, YU W, VERKHRATSKY A. Trace metals and astrocytes physiology and pathophysiology[J/OL]. Cell Calcium, 2024, 118: 102843 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/38199057. DOI: 10.1016/j.ceca.2024.102843.
[16]
AHMED Z, CHAUDHARY F, AGRAWAL K D. Epidemiology, Pathophysiology, and Current Treatment Strategies in Stroke[J]. Cardiol Cardiovasc Med, 2024, 8(4): 389-404. DOI: 10.26502/fccm.92920399.
[17]
BRIAN C, NEAL E H, BOWMAN A B, et al. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier[J]. J Cereb Blood Flow Metab, 2018, 39(11): 2117-2131. DOI: 10.1177/0271678X18783372.
[18]
CAMPOS-ESCAMILLA C. The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases[J/OL]. Adv Protein Chem Struct Biol, 2020, 123: 133-162. DOI: 10.1016/bs.apcsb.2020.09.002.
[19]
MARCO D, REINHOLD S. Remote changes after ischaemic infarcts: a distant target for therapy?[J]. Brain, 2017, 140(7): 1818-1820. DOI: 10.1093/brain/awx135.
[20]
LEE H, LEE K, KIM Y D, et al. Association between substantia nigra degeneration and functional outcome in patients with basal ganglia infarction[J/OL]. Eur J Neurol, 2024, 31(2): 16111 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/37903090. DOI: 10.1111/ene.16111.
[21]
MAO H, DOU W, WANG X, et al. Iron Deposition in Gray Matter Nuclei of Patients With Intracranial Artery Stenosis: A Quantitative Susceptibility Mapping Study[J/OL]. Front Neurol, 2022, 12: 785822 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/35069414. DOI: 10.3389/fneur.2021.785822.
[22]
ZHI Y, HUANG T, LIU S, et al. Correlation between iron deposition and cognitive function in mild to moderate Alzheimer's disease based on quantitative susceptibility mapping[J/OL]. Front Aging Neurosci, 2024, 16: 1485530 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39478701. DOI: 10.3389/fnagi.2024.1485530.
[23]
FINE M J, KOSYAKOVSKY J, BOWE T T, et al. Low-dose intranasal deferoxamine modulates memory, neuroinflammation, and the neuronal transcriptome in the streptozotocin rodent model of Alzheimer's disease[J/OL]. Front Neurosci, 2025, 18: 1528374 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39872995. DOI: 10.3389/fnins.2024.1528374.
[24]
KIM D, MORIKAWA S, NAKAGAWA T, et al. Advances in brain ischemia mechanisms and treatment approaches: Recent insights and inflammation-driven risks[J/OL]. Exp Neurol, 2025, 386: 115177 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39922448. DOI: 10.1016/j.expneurol.2025.115177.
[25]
LAI K, PRITIŠANAC I, LIU Q Z, et al. Glutamate acts on acid-sensing ion channels to worsen ischaemic brain injury[J]. Nature, 2024, 631(8022): 826-834. DOI: 10.1038/s41586-024-07684-7.
[26]
FOTEINI C, DIMITRIOS T, AGGELIKI F, et al. Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke[J]. Neurol Int, 2022, 14(4): 841-874. DOI: 10.3390/neurolint14040069.
[27]
KUO D P, KUO P C, CHEN Y C, et al. Machine learning-based segmentation of ischemic penumbra by using diffusion tensor metrics in a rat model[J/OL]. J Biomed Sci, 2020, 27(1): 80 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/32664906. DOI: 10.1186/s12929-020-00672-9.
[28]
GARCÍA A OSA, BRAMBATI S M, DESAUTELS A, et al. Timing stroke: A review on stroke pathophysiology and its influence over time on diffusion measures[J/OL]. J Neurol Sci, 2022, 441: 120377 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/36049374. DOI: 10.1016/j.jns.2022.
[29]
LIU Y, CHU S, HU Y, et al. Exogenous Adenosine Antagonizes Excitatory Amino Acid Toxicity in Primary Astrocytes[J]. Cell Mol Neurobiol, 2020, 41(4): 1-18. DOI: 10.1007/s10571-020-00876-5.
[30]
RULSEH A M, KELLER J, TINTĚRA J, et al. Chasing shadows: What determines DTI metrics in gray matter regions? An in vitro and in vivo study[J]. J Magn Reson Imaging, 2013, 38(5): 1103-1110. DOI: 10.1002/jmri.24065.
[31]
YANG L, CHENG Y, SUN Y, et al. Combined Application of Quantitative Susceptibility Mapping and Diffusion Kurtosis Imaging Techniques to Investigate the Effect of Iron Deposition on Microstructural Changes in the Brain in Parkinson's Disease[J/OL]. Front Aging Neurosci, 2022, 14: 792778 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/35370619. DOI: 10.3389/fnagi.2022.792778.
[32]
JUN J G, FENG Y, YAN D S, et al. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis[J/OL]. Cell Death Dis, 2021, 12(1): 81 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/33441545. DOI: 10.1038/s41419-020-03369-x.
[33]
STACHO M, HÄUSLER N A, BRANDSTETTER A, et al. Phylogenetic reduction of the magnocellular red nucleus in primates and inter-subject variability in humans[J/OL]. Front Neuroanat, 2024, 18: 1331305 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/38550712. DOI: 10.3389/fnana.2024.1331305.
[34]
MAYA K, GILAD S. Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations In Vivo[J]. Neuron, 2020, 109(3): 516-529. DOI: 10.1101/2020.02.27.967869.
[35]
GONG N J, WONG C S, CHAN C C, et al. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging[J]. Neurobiol Aging, 2014, 35(10): 2203-2216. DOI: 10.1016/j.neurobiolaging.2014.03.011.
[36]
ALMASAAD M J, BATAINEH M Z, ZAQOUT S. Neuronal diversity in the caudate nucleus: A comparative study between camel and human brains[J/OL]. Anat Rec (Hoboken), 2024 [2025-02-27]. https://www.ncbi.nlm.nih.gov/pubmed/39118384. DOI: 10.1002/ar.25555.

上一篇 基于DTI技术对帕金森病冻结步态患者黑质和岛叶的脑微结构变化的初步研究
下一篇 急性缺血性脑卒中患者Willis环完整性与斑块特征及多发梗死的相关性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2