分享:
分享到微信朋友圈
X
临床研究
急性缺血性脑卒中患者Willis环完整性与斑块特征及多发梗死的相关性研究
王泽华 高阳 吴琼 何金龙 张强 郝祥程 王丽雯

本文引用格式:王泽华, 高阳, 吴琼, 等. 急性缺血性脑卒中患者Willis环完整性与斑块特征及多发梗死的相关性研究[J]. 磁共振成像, 2025, 16(8): 25-31. DOI:10.12015/issn.1674-8034.2025.08.005.


[摘要] 目的 基于高分辨率磁共振血管壁成像分析前循环急性缺血性脑卒中患者Willis环完整性、责任斑块特征、梗死灶及斑块数量,探讨Willis环完整性与斑块易损性、多发梗死及斑块数量的相关性。材料与方法 共纳入前循环急性缺血性脑卒中患者85例,在发病半个月内进行了高分辨率磁共振血管壁成像检查,并根据Willis环完整性将其分为Willis环前循环完整组和Willis环前循环不完整组,Willis环后循环症状侧完整组和Willis环后循环症状侧不完整组。依次比较前循环组间、后循环组间的临床资料及颅内责任斑块特征。采用单因素及多因素二元logistic回归分析评估Willis环完整性与多发梗死的相关性。采用Spearman及多重线性回归分析评估Willis环完整性与斑块数量、强化等级的相关性。结果 与Willis环前循环完整组相比,Willis环前循环不完整组的斑块负荷(P=0.001)、强化率(P=0.043)更高、责任血管狭窄度(P=0.001)更大、斑块表面不规则(P=0.001)更多见。与Willis环后循环症状侧完整组相比,Willis环后循环症状侧不完整组的斑块负荷(P=0.002)、责任血管狭窄度(P=0.001)更大、斑块表面不规则(P=0.013)更多见。单因素logistic回归分析显示:Willis环前循环不完整与多发梗死独立相关(OR=2.94,95% CI:1.153~7.478,P=0.024)。Spearman分析结果显示,Willis环前循环不完整与强化等级呈正相关(r=0.321,P<0.05);Willis环后循环症状侧不完整与斑块数目、强化等级呈正相关(r=0.358、0.302,P<0.05)。调整了患者的临床资料。多因素logistic回归分析结果显示Willis环前循环不完整与多发梗死独立相关(OR=3.42,95% CI:1.208~9.700,P=0.021)。多重线性回归分析结果显示,Willis环前循环不完整是强化等级的影响因素(β=0.571,P<0.05),Willis环后循环症状侧不完整是斑块数目、强化等级的影响因素(β=0.791、0.341,P<0.05)。结论 Willis环不完整会促发斑块易损性、多发梗死及多血管床动脉粥样硬化。表明Willis环完整性的缺失可能会影响颅内外大动脉的血流动力学,进而影响脑组织血供和动脉粥样硬化进程。
[Abstract] Objective Based on high-resolution magnetic resonance vascular wall imaging analysis of Willis ring integrity, responsible plaque characteristics, infarct foci, and plaque numbers in patients with anterior circulation acute ischemic stroke, to explore the correlation between Willis ring integrity and plaque vulnerability, multiple infarctions, and plaque numbers.Materials and Methods Retrospective analysis of 85 patients with acute ischemic stroke in the anterior circulation who visited Our hospital from January 2022 to December 2023, all of whom underwent high-resolution magnetic resonance angiography within 14 days of symptom onset. And based on the integrity of the Willis ring, it was divided into two groups. Compare the clinical data and intracranial responsible plaque characteristics between two groups of anterior circulation and posterior circulation, respectively. Use Single factor and multiple factor binary logistic regression analysis to evaluate the correlation between Willis ring integrity and plaque coexistence, as well as multiple infarctions. Spearman and multiple linear regression analysis were used to evaluate the correlation between Willis loop integrity and plaque number, as well as enhancement level.Results The group with incomplete Willis anterior circulation had higher plaque burden (P = 0.001), enhancement rate (P = 0.043), greater stenosis of responsible vessels (P = 0.001), and more irregular plaque surfaces (P = 0.001). Compared with the intact symptom side group of the Willis loop, the incomplete symptom side group of the Willis loop had a higher plaque burden (P = 0.002), greater degree of responsible vessel stenosis (P = 0.001), and more irregular plaque surfaces (P = 0.013). Univariate logistic regression analysis showed that the incomplete anterior circulation of Willis ring was independently associated with multiple infarcts (OR = 2.94, 95% CI: 1.153 to 7.478, P = 0.024). Spearman analysis showed that the incomplete anterior circulation of Willis ring was positively correlated with the enhancement level (r = 0.321, P < 0.05); Another incomplete group was positively correlated with the number of plaques and the enhancement level (r = 0.358, 0.302; P < 0.05). Age, gender and clinical risk factors were adjusted, including smoking history, drinking history, hyperlipidemia, hypertension, and diabetes. The results of multiple logistic regression analysis showed that incomplete anterior circulation of Willis was independently associated with multiple infarctions (OR = 3.42, 95% CI: 1.208 to 9.700, P = 0.021). Multiple linear regression analysis showed that incomplete anterior circulation of Willis was a factor affecting the enhancement level (β = 0.571, P < 0.05), while incomplete posterior circulation of Willis was a factor affecting the number of plaques and enhancement level (β = 0.791, 0.341; P < 0.05).Conclusions Incomplete Willis ring will promote plaque vulnerability, multiple infarcts and atherosclerosis in multiple vascular beds. This indicates that the loss of integrity of the Willis ring may affect the hemodynamics of the extracranial and extracranial great arteries, thereby affecting the blood supply of brain tissue and atherosclerosis process.
[关键词] 急性缺血性脑卒中;多发性梗死;Willis环;责任斑块;血管壁成像;磁共振成像
[Keywords] acute ischemic stroke;multiple infarction;Willis ring;responsibility plaque;vascular wall imaging;magnetic resonance imaging

王泽华    高阳 *   吴琼    何金龙    张强    郝祥程    王丽雯   

内蒙古医科大学附属医院影像诊断科,呼和浩特 010050

通信作者:高阳,E-mail:1390903990@qq.com

作者贡献声明:高阳设计本研究的方案,对稿件重要的智力内容进行了修改,获得了内蒙古自治区医疗卫生科技计划项目的资助;王泽华起草和撰写稿件,获取、分析和解释本研究的数据;张强、郝祥程、吴琼、何金龙、王丽雯获取、分析和解释本研究的数据,对稿件重要的智力内容进行了修改,其中何金龙获得了内蒙古自治区自然科学基金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 内蒙古自治区自然科学基金项目 2023QN08055
收稿日期:2025-04-01
接受日期:2025-08-08
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.005
本文引用格式:王泽华, 高阳, 吴琼, 等. 急性缺血性脑卒中患者Willis环完整性与斑块特征及多发梗死的相关性研究[J]. 磁共振成像, 2025, 16(8): 25-31. DOI:10.12015/issn.1674-8034.2025.08.005.

0 引言

       在亚洲人群中,颅内动脉狭窄或闭塞是导致脑缺血事件发生的原因之一[1]。众所周知,颅内动脉粥样硬化性疾病的进展会减少颅脑血液灌注量,增加脑缺血事件的风险[2]。在动脉粥样硬化性脑血管疾病的发展过程中,可以通过侧支循环启动代偿系统。Willis环作为主要的侧支通路,通过前交通动脉连接双侧大脑前动脉,通过后交通动脉连接前后循环。Willis环的完整性通常代表着当大脑血流量下降时的代偿能力。Willis环变异在脑卒中人群中发生率较高[3, 4]。颅内动脉的迂曲程度影响动脉粥样硬化进程,在血流动力学不稳定的区域易发生血管管壁的异常增厚[5, 6]。完整性缺失的Willis环会使大脑中动脉的管壁更易发生形变。目前,有关斑块表面不规则的发生机制,最广泛的假说是由于斑块纤维帽与局部血流动力学之间的相互作用。最近的研究表明,侧支循环的缺乏与易损斑块特征有关[7]。侧支循环障碍会增加壁切应力梯度,使斑块纤维帽发生形变,在高分辨率磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging, HRMR-VWI)上表现为斑块表面不规则。

       HRMR-VWI作为一种无创的血管壁成像技术,可以直接观察颅内动脉粥样硬化斑块的易损特征。通过HRMR-VWI描述颅内责任斑块特征及Willis环完整性,对于准确地进行脑血管干预具有重要的临床意义。在以往的研究中,斑块特征被证实与血流动力学指标相关,但较少关注影响血流动力学的解剖学因素。在目前的研究中,我们旨在通过HRMR-MRI检查Willis环完整性与颅内责任斑块特征之间的关系,以及其潜在的临床影响。

1 材料与方法

1.1 一般资料

       回顾性分析2022年1月到2023年12月在内蒙古医科大学附属医院就诊的前循环急性缺血性脑卒中患者的病历资料。本研究为回顾性研究,且遵守《赫尔辛基宣言》,经内蒙古医科大学附属医院伦理委员会批准,免除受试者知情同意,批准文号:KY2025054。按照Willis环完整性分2个亚组,即Willis环前循环完整(complete anterior circle of Willis, CA-COW)组和Willis环前循环不完整(incomplete anterior circle of Willis, IA-COW)组,Willis环后循环症状侧完整(complete symptomatic side posterior circle of Willis, CSSP-COW)组和Willis环后循环症状侧不完整(incomplete symptomatic side posterior circle of Willis, ISSP-COW)组(具体标准详见1.2.3)。纳入标准:(1)根据颅脑磁共振检查发现前循环区急性缺血性脑卒中;(2)症状发生半个月内进行了HRMR-VWI检查,图像质量佳;(3)HRMR-VWI确认血管最狭窄处位于大脑中动脉。排除标准:(1)心源性血栓形成;(2)严重颈动脉粥样硬化性疾病(狭窄≥50%);(3)肾脏功能障碍(血清肌酐>133 μmol/L)。

1.2 方法

       对于符合纳排标准的患者,登录医院智业系统收集患者临床资料,所有患者均进行了HRMR-VWI和常规头颅MRI扫描。高年资主任医师使用医学图像处理软件(RadiAnt DICOM Viewer软件)对HRMR-VWI图像进行后处理得到斑块特征值和Willis环完整性。之后对以上数据进行统计分析。

1.2.1 临床资料收集

       记录患者的年龄、性别。其他纳入指标及诊断标准如下。(1)高血压:非同日3次以上,测量收缩压≥140 mmHg(1 mmHg=0.133 kPa)和/或舒张压≥90 mmHg;(2)糖尿病:随机血糖≥11.1 mmol/L,或空腹血糖≥7.0 mmol/L,或葡萄糖负荷试验2小时血糖≥11.1 mmol/L,糖化血红蛋白≥6.5%;(3)高脂血症定义为甘油三酯≥2.3 mmol/L;总胆固醇≥6.2 mmol/L;低密度脂蛋白≥4.1 mmol/L;高密度脂蛋白≤1.0 mmol/L;(4)吸烟史:累计吸烟六个月以上;(5)饮酒史:男性每天饮酒量超过80克,女性每天饮酒量超过40克,且持续5年以上。

1.2.2 影像学检查

       所有患者在西门子3.0 T磁共振成像设备(Siemens Healthcare, Erlangen, Germany),众志颅颈一体化线圈(苏州众志医疗科技有限公司,中国,江苏,苏州)。HRMR-VWI扫描采用3D T1-SPACE序列,参数如下:TR 900 ms,TE 20 ms,FOV 205 mm×160 mm,层厚0.53 mm,层数256,矩阵300×384。使用高压注射器注射对比剂5 min后进行重复扫描,对比剂为钆喷酸葡胺(北京北陆药业股份有限公司,中国),注射剂量为0.2 mL/kg,流速4 mL/s。时间飞跃法磁共振血管成像(time of flight magnetic resonance angiography, TOF-MRA)扫描参数:TR 21 ms,TE 3.43 ms,FOV 220 mm×199 mm,激励次数1,矩阵320×191。临床常规扫描头颅MRI,包括横轴位T1WI 序列、T2WI序列、DWI序列,矢状位T1WI序列。

1.2.3 图像后处理及分析方法

       使用医学图像处理软件(RadiAnt DICOM Viewer软件)的多平面重建功能,找寻大脑中动脉最狭窄处进行重建。责任斑块:症状侧大脑中动脉最狭窄处的斑块[8]。根据CUI等[9]对颅内外血管的定义,颈总动脉末端、颈内动脉颈段、岩段属于颅外血管;颈内动脉破裂孔段到交通段、大脑前动脉水平段、大脑中动脉水平段属于颅内血管。记录每位患者上述动脉的斑块总数。根据梗死灶数量,分为单发梗死和多发梗死[10]

       对责任斑块的HRMR-VWI平扫图像和增强图像同时进行横断面重建,勾画最狭窄处的外壁和管腔边界,以及邻近的正常动脉管壁。测量最狭窄处的最大管壁厚度、最小管壁厚度、病变直径和参考平面的管腔直径。使用软件自带的图像信号强度测量工具,分别测量责任斑块、参考动脉管壁、责任斑块旁大于50 mm2的脑组织(其信号强度用于斑块、管壁、垂体柄信号强度的标准化)及垂体柄增强前后的信号值。

       经测量得到责任斑块的以下特征参数。(1)斑块面积=最狭窄处管壁面积-最狭窄处管腔面积[11]。(2)斑块负荷=1-最狭窄处管腔面积/最狭窄处管壁面积[12]。(3)重构指数=最狭窄处管壁面积/参考管壁面积[13],大于1.05为正性重构。(4)偏心指数=1-最小管壁厚度/最大管壁厚度[14],≥0.5为偏心性斑块[15]。(5)强化率=(责任斑块增强信号值/脑组织增强信号值)/(责任斑块平扫信号值/脑组织平扫信号值)[16]。(6)斑块强化:0级,斑块强化程度≤正常管壁强化程度;1级,斑块强化程度>0级,<垂体柄强化程度;2级,斑块强化程度≥垂体柄强化程度[17]。强化程度>0级为强化斑块[18]。(7)狭窄度:参照华法林-阿司匹林症状性颅内动脉疾病实验法,在高分辨率磁共振血管壁成像图像上进行测量[19, 20]。(8)斑块内出血:在3D T1-SPACE序列上,选取椭圆ROI,勾画责任斑块和周边正常管壁,责任斑块信号>150%正常管壁信号时,定义为斑块内出血[21]。(9)斑块表面不规则:斑块表面毛糙不规整、不光滑[22]。(10)Willis环分型:参照之前公布的标准[7],在TOF-MRA上将Willis环分为4型。Ⅰ型:CA-COW;Ⅱ型:IA-COW;Ⅲ型:CSSP-COW;Ⅳ型:ISSP-COW。以上测量过程由两位经验丰富的高年资主任医师共同完成,分析时不知晓患者是否有缺血性脑卒中复发史。

1.2.4 统计学分析

       应用SPSS 26.0进行统计分析。使用S-W法检验定量数据的正态性。在计量资料中,符合正态分布的用均数±标准差表示,不符合正态分布的则用中位数(四分位数间距)表示,计数资料用例数(%)表示。符合正态分布的计量资料的组间比较采用两独立样本t检验,不符合正态分布采用非参数秩和检验,计数资料采用卡方检验。所有检验均为双侧检验。使用两独立样本t检验、非参数秩和检验及卡方检验对前循环组间、后循环组间患者的斑块特征和临床资料进行统计学分析。采用二元logistic回归分析评估Willis环完整性与多发梗死的相关性。采用Spearman及多重线性回归分析评估Willis环完整性与斑块数量、强化等级的相关性。调整了患者的临床资料。双尾P<0.05认为差异具有统计学意义。

2 结果

2.1 CA-COW组与IA-COW组临床资料及责任斑块特征比较

       与CA-COW组相比,IA-COW组的斑块负荷(P=0.001)、强化率(P=0.043)更高、责任血管狭窄度(P=0.001)更大、斑块表面不规则(P=0.001)更多见,而其他影像指标及临床资料在两组间差异无统计学意义(表1)。CA-COW与IA-COW典型病例的影像图像见图1

图1  CA-COW与IA-COW典型病例的影像图像。1A~1D:男,61岁,右侧肢体无力。MRA示双侧大脑前动脉A1段及前交通动脉完整,可见箭所指处左侧大脑中动脉轻度狭窄(1A),T1WI图上见箭所指的管壁增厚(1B),责任斑块轴位平扫及增强图像见斑块形成(1C~1D)。测量责任斑块特征:斑块负荷=0.61,强化率=1.12,狭窄度=0.33,斑块表面规则。1E~1H:男,72岁,右侧肢体无力。MRA内黄箭所指处右侧大脑前动脉A1段缺失,红箭所指处左侧大脑中动脉闭塞(1E),T1WI图上见箭所指的管壁增厚、管腔闭塞(1F),责任斑块轴位平扫及增强图像见斑块形成(1G~1H)。测量责任斑块特征:斑块负荷=1,强化率=4.07,狭窄度=1,斑块表面不规则。CA-COW:Willis环前循环完整;IA-COW:Willis环前循环不完整;MRA:磁共振血管成像。
Fig. 1  Images of typical cases of CA-COW and IA-COW. 1A-1D: Male, 61 years old, right limb weakness. MRA shows intact A1 segments of bilateral anterior cerebral arteries and anterior communicating arteries, mild stenosis of the left middle cerebral artery indicated by the visible arrow (1A). T1WI shows thickening of the wall indicated by the arrow (1B), and the responsible plaque formation is observed on axial plain and enhanced images (1C - 1D). Measurement of responsible plaque characteristics: plaque load = 0.61, enhancement rate = 1.12, stenosis = 0.33, plaque surface regularity. 1E - 1H: Male, 72 years old, with weakness in the right limb. The yellow arrow in MRA indicates the absence of segment A1 of the right anterior cerebral artery, while the red arrow indicates occlusion of the left middle cerebral artery (1E), thickening of the wall and occlusion of the lumen indicated by the arrow on T1WI (1F), and formation of the responsible plaque on axial plain and enhanced images (1G - 1H). Measurement of responsible plaque characteristics: plaque load = 1, enhancement rate = 4.07, stenosis = 1, irregular plaque surface. CA-COW: complete anterior circle of Willis; IA-COW: incomplete anterior circle of Willis; MRA: magnetic resonance angiography.
表1  CA-COW组与IA-COW组患者临床资料及责任斑块特征比较
Tab. 1  Comparison of clinical data and responsible plaque characteristics between CA-COW group and IA-COW group patients

2.2 CSSP-COW组与ISSP-COW组临床资料及影像特征比较

       与CSSP-COW组相比,ISSP-COW组的斑块负荷(P=0.002)、责任血管狭窄度(P=0.001)更大、斑块表面不规则(P=0.013)更多见,而其他影像指标及临床资料在两组间差异无统计学意义(表2)。CSSP-COW和ISSP-COW典型病例的影像图像见图2

图2  CSSP-COW和ISSP-COW典型病例的影像图像。2A~2D:男,66岁,右侧肢体无力。MRA示左侧(症状侧)后交通动脉和大脑后动脉P1段完整,左侧大脑中动脉轻度狭窄(2A),T1WI见箭所指的管壁增厚(2B),责任斑块轴位平扫及增强图像见斑块形成(2C~2D)。测量责任斑块特征:斑块负荷=0.72,强化率=1.19,狭窄度=0.34,斑块表面规则。2E~2H:男,50岁,左侧肢体无力。MRA内黄箭所指处右侧后交通动脉缺失,红箭所指处右侧大脑中动脉中度狭窄(2E),T1WI图上见箭所指的管壁增厚、管腔狭窄(2F),责任斑块轴位平扫及增强图像见斑块形成(2G~2H)。测量责任斑块特征:斑块负荷=0.86,强化率=1.40,狭窄度=0.67,斑块表面不规则。
Fig. 2  Imaging images of typical cases of CSSP-COW and ISSP-COW. 2A - 2D: Male, 66 years old, right limb weakness. MRA shows intact P1 segments of the left (symptomatic side) posterior communicating artery and posterior cerebral artery, mild stenosis of the left middle cerebral artery (2A), thickening of the wall indicated by the arrow on T1WI (2B), and formation of the responsible plaque on axial plain and enhanced images (2C - 2D). Measurement of responsible plaque characteristics: plaque load = 0.72, enhancement rate = 1.19, stenosis = 0.34, plaque surface regularity. 2E - 2H: Male, 50 years old, left limb weakness. The yellow arrow in MRA indicates the absence of the right posterior communicating artery, while the red arrow indicates moderate stenosis of the right middle cerebral artery (2E). T1WI shows thickening of the vessel wall and narrowing of the lumen indicated by the arrow (2F). Axial plain and enhanced images of the responsible plaque show plaque formation (2G - 2H). Measurement of responsible plaque characteristics: plaque load = 0.86, enhancement rate = 1.40, stenosis = 0.67, irregular plaque surface.
表2  CSSP-COW组与ISSP-COW组患者临床资料及责任斑块特征比较
Tab. 2  Comparison of clinical data and responsible plaque characteristics between CSSP-COW group and ISSP-COW group patients

2.3 Willis环完整性与多发梗死的二元logistic回归分析

       单因素logistic回归分析显示:CA-COW与多发梗死独立相关(OR=2.94,95% CI:1.153~7.478,P=0.024)。调整了患者的临床资料,包括年龄、性别,有无高血压、高血糖、高血脂,是否吸烟及饮酒。多因素logistic回归分析结果显示CA-COW与多发梗死独立相关(OR=3.42,95% CI:1.208~9.700,P=0.021)。以上详见表3

表3  Willis环完整性与多发梗死的相关性分析
Tab. 3  Correlation analysis between Willis ring integrity and multiple infarctions

2.4 Willis环完整性与斑块数量、强化等级的Spearman及多重线性回归分析

       Spearman分析结果显示,CA-COW与强化等级呈正相关(r=0.321,P<0.05);ISSP-COW与斑块数目、强化等级呈正相关(r=0.358、0.302,P<0.05)。调整了患者的临床资料,包括年龄、性别,有无高血压、高血糖、高血脂,是否吸烟及饮酒。多重线性回归分析结果显示,CA-COW是强化等级的影响因素(β=0.571,P<0.05,R2=0.290,D-W值=1.64,VIF=1.114),ISSP-COW是斑块数目、强化等级的影响因素(β=0.791、0.341,P均<0.05,R²=0.209、0.197,D-W值=1.63、1.66,VIF=1.101、1.131)。以上详见表4

表4  Willis环完整性与斑块数量、强化等级的相关性分析
Tab. 4  Correlation analysis of willis loop integrity with plaque quantity and enhancement grade

3 讨论

       本研究采用HRMR-VWI探讨Willis环完整性对大脑中动脉斑块特征的影响,并分析Willis环完整性与易损斑块特征的相关性。研究结果表明Willis环不完整会加快动脉粥样硬化性病变的进程,如责任血管狭窄度和斑块负荷的增加。Willis环前、后循环部分的不完整均会增加斑块表面不规则的发生率。

3.1 Willis环不完整发生率、定义及人群选择

       在本研究中,Willis环不完整在前循环缺血性脑卒中患者中普遍存在(IA-COW,34.1%;ISSP-COW,50.6%)。本文中Willis环不完整的发生率较之前的文献报道的略有差异。WANG等[7]的一项研究表明,26.8%的症状性颅内动脉粥样硬化疾病患者可以看到IA-COW,74.2%的症状性颅内动脉粥样硬化疾病患者可以看到ISSP-COW。两者间的差异可能的原因是WANG等同时纳入了前循环缺血性脑卒中和后循环缺血性脑卒中,导致了人群选择的差异。目前,关于Willis环完整性的学说各异。大部分研究认为,当大脑前、中、后动脉及椎基底动脉系统均未狭窄时,后交通动脉存在,且不开放;当大脑中动脉中度及以上狭窄时,症状侧后交通动脉会代偿性开放,以保证前循环血管区脑组织的血供。正常解剖情况下,大脑后动脉起源于基底动脉。但部分人群大脑后动脉起源于颈内动脉末端,当大脑中动脉发生狭窄时,基底动脉会发出一条血管与大脑后动脉相连,起到后交通动脉的作用。对于此类人群Willis环是否属于完整,目前并无定论。本研究受限于样本量,且为了减少混杂因素,并没有纳入此类人群。在部分存在后交通动脉开放的人群中,其后交通动脉较纤细。在本研究中认为,根据个体大脑中动脉狭窄程度不一以及是否存在大脑前动脉A1段缺如等情况,其后交通动脉开放程度不一。所以症状侧后交通动脉纤细仍属于后循环完整组。

3.2 Willis环前循环完整性与斑块特征相关性分析

       前循环脑区的血供主要依靠大脑前、中动脉,当颅内动脉狭窄时,前后交通动脉的代偿作用尤为明显[23]。但是,多项研究表明,正常人群的大脑后动脉及后交通动脉的变异多见[24, 25]。当大脑中动脉及颈动脉正常时,前交通动脉血流量低;当大脑中动脉或颈动脉狭窄时,前交通动脉的血液流动速率会增加[26, 27]。而病变血管狭窄率与壁切应力成正比,管壁重构,斑块纤维帽进一步变薄[28, 29, 30]。因此,当IA-COW,特别是缺乏前交通动脉时,Willis环就不能有效调节狭窄动脉处的血压,从而进一步加重了斑块内新生血管处的壁切应力,最终新生血管发生破裂导致斑块内出血;较高的壁切应力也会诱发斑块内炎症反应的进展,促进毛细血管生成,提高血管内皮细胞通透性,导致斑块发生强化。本研究也验证了这一机理,与CA-COW组相比,IA-COW组的责任斑块强化率更高。除此之外,与CA-COW组相比,IA-COW组的责任斑块斑块表面不规则率更高、斑块负荷和责任动脉狭窄度更大。斑块的进程与血流动力学指标是相互作用的关系。斑块负荷及狭窄度的增加改变了颅内动脉的几何形状,从而导致斑块旁血流动力学指标(如壁切应力梯度、压力、速度)方向和大小的变化,进一步加剧了斑块的壁切应力,当超过斑块纤维帽的受力限度时,斑块表面会发生形变,即斑块表面不规则。而Willis环不完整时,也会使斑块旁的壁切应力紊乱,从而促使管壁增厚、斑块形成。先前的研究表明,颅内动脉粥样硬化引起的急性缺血性脑卒中患者里,多发梗死患者的责任斑块较单发梗死患者易损性更大,即斑块内出血、斑块强化等发生率更高[31, 32]。而本研究表明,在前循环缺血性脑卒中患者中,CA-COW与多发梗死独立相关。进一步说明了,Willis环不完整会影响责任斑块易损性,从而可能会导致穿支动脉多处阻堵塞,引起多发性脑梗死。

3.3 Willis环后循环症状侧完整性与斑块特征相关性分析

       Willis环后循环部分的结果也表明,与CSSP-COW组相比,ISSP-COW组的责任斑块表面不规则率更高、斑块负荷和责任动脉狭窄度更大。这说明当大脑中动脉出现狭窄时,同侧的后交通动脉会影响其狭窄处的血流动力学。后交通动脉发出丘脑前动脉等穿支动脉[33]。当大脑中动脉严重狭窄兼ISSP-COW时,大脑缺血症状往往会更加严重[34, 35, 36]。除此之外,本研究显示,ISSP-COW与斑块数目呈正相关,表明Willis环不完整可能会影响系统性动脉粥样硬化负荷。因此,对于症状性颅内动脉粥样硬化患者,应密切观察其症状侧后交通动脉的开放情况,识别高危斑块。

3.4 局限性

       本研究虽在评估方法上具有一定创新性,即突破了既往研究多基于计算机断层血管造影的局限,采用HRMR-VWI评估斑块特征,但仍存在以下几方面显著局限性有待进一步完善。首先,缺乏动态随访数据。本研究仅对患者进行了单次HRMR-VWI检测,未对入组患者开展长期随访,因此无法明确Willis环完整性与易损斑块特征之间的动态变化关系,难以揭示二者在疾病进展过程中的相互影响及演变规律,这在一定程度上限制了研究结论的时效性和预测价值。其次,Willis环完整性评估方法存在局限。当前研究采用的评估方法对慢血流的敏感性不足,导致对交通动脉缺失的辨识度较低,可能影响Willis环完整性判断的准确性。相较于增强CTA或增强MRA等方法,现有方法在捕捉血流动力学细节、识别细小交通动脉结构方面存在劣势,进而可能对研究结果的可靠性产生干扰。第三,研究人群选择存在偏差。本研究纳入的患者均为颈动脉轻度狭窄,且责任斑块局限于前循环颅内动脉,这使得研究结论的适用范围受到限制。由于未涵盖责任斑块位于颈内动脉颅外段或椎基底动脉的群体,无法全面反映不同部位斑块与Willis环完整性之间的关联,可能导致研究结果无法推广至更广泛的缺血性脑血管病患者群体。第四,未纳入部分Willis环变异人群。研究排除了胚胎型大脑后动脉、重复畸形等特殊Willis环变异类型的患者,而这些变异可能与斑块易损性及缺血性脑卒中的发生存在密切关联。该局限性使得研究无法全面探讨Willis环解剖变异在脑血管疾病中的作用,影响了研究结论的完整性。

4 结论

       多发梗死、强化等级与Willis环前循环不完整独立相关;斑块数目、强化等级与Willis环后循环症状侧不完整独立相关。表明Willis环完整性的缺失会影响颅内大动脉的血流动力学,进而加快动脉粥样硬化进程,促使易损斑块形成,诱发斑块破裂。本研究为临床诊断提供新参考,助力精准识别脑卒中高风险人群,还为后续研究指明方向,为开发新疗法提供借鉴。

[1]
SI Q, TENG Y, LIU C, et al. Stroke incidence and cognitive outcomes of intracranial atherosclerotic stenosis: study protocol for a multicenter, prospective, observational cohort study[J/OL]. Ann Transl Med, 2022, 10(16): 909 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9469171/. DOI: 10.21037/atm-22-3570.
[2]
BALLOUT A A, LIEBESKIND D S. Recurrent stroke risk in intracranial atherosclerotic disease[J/OL]. Front Neurol, 2022, 13: 1001609 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9475064. DOI: 10.3389/fneur.2022.1001609.
[3]
JONES J D, CASTANHO P, BAZIRA P, et al. Anatomical variations of the circle of Willis and their prevalence, with a focus on the posterior communicating artery: A literature review and meta-analysis[J]. Clin Anat, 2021, 34(7): 978-990. DOI: 10.1002/ca.23662.
[4]
PIECHNA A, CIESLICKI K. Influence of hydrodynamic and functional nonlinearities of blood flow in the cerebral vasculature on cerebral perfusion and autoregulation pressure reserve[J/OL]. Sci Rep, 2023, 13(1): 6229 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10110590/. DOI: 10.1038/s41598-023-32643-z.
[5]
ZHU G, YUAN Q, YANG J, et al. Experimental study of hemodynamics in the Circle of Willis[J/OL]. Biomed Eng Online, 2015, 14Suppl 1(Suppl 1): S10 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4306098. DOI: 10.1186/1475-925X-14-S1-S10.
[6]
WOO H G, KIM H G, LEE K M, et al. Wall Shear Stress Associated with Stroke Occurrence and Mechanisms in Middle Cerebral Artery Atherosclerosis[J]. J Stroke, 2023, 25(1): 132-140. DOI: 10.5853/jos.2022.02754.
[7]
WANG H, SHEN L, ZHAO C, et al. The incomplete circle of Willis is associated with vulnerable intracranial plaque features and acute ischemic stroke[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 23 [2025-04-01]. https://doi.org/10.1186/s12968-023-00931-2. DOI: 10.1186/s12968-023-00931-2.
[8]
MEN X, HU M, GUO Z, et al. Culprit plaques of large parent arteries, rather than cerebral small vessel disease, contribute to early neurological deterioration in stroke patients with intracranial branch atheromatous disease[J/OL]. Cerebrovasc Dis, 2023 [2025-04-01]. https://karger.com/ced/article-abstract/53/1/88/836735/Culprit-Plaques-of-Large-Parent-Arteries-Rather?redirectedFrom=fulltext. DOI: 10.1159/000530371.
[9]
CUI B, YANG D, ZHENG W, et al. Plaque enhancement in multi-cerebrovascular beds associates with acute cerebral infarction[J]. Acta Radiol, 2021, 62(1): 102-112. DOI: 10.1177/0284185120915604.
[10]
MA Z, HUO M, XIE J, et al. Wall characteristics of atherosclerotic middle cerebral arteries in patients with single or multiple infarcts: A high-resolution MRI Study[J/OL]. Front Neurol, 2022, 13: 934926 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9669706. DOI: 10.3389/fneur.2022.934926.
[11]
YANG H, LIU B, YIN Q, et al. Comparison of symptomatic vertebrobasilar plaques between patients with and without Diabetes Mellitus using computed tomographic angiography and vessel wall magnetic resonance imaging[J/OL]. Diab Vasc Dis Res, 2022, 19(1): 1476916632 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8883388/. DOI: 10.1177/14791641211073944.
[12]
WU F, MA Q, SONG H, et al. Differential Features of Culprit Intracranial Atherosclerotic Lesions: A Whole-Brain Vessel Wall Imaging Study in Patients With Acute Ischemic Stroke[J/OL]. J Am Heart Assoc, 2018, 7(15): e009705 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6201468/. DOI: 10.1161/JAHA.118.009705.
[13]
LIU F, SONG M, HUANG X, et al. Symptomatic plaque enhancement is associated with early-onset post-stroke depression[J]. J Affect Disord, 2022, 306: 281-287. https://www.sciencedirect.com/science/article/abs/pii/S0165032722002658?via%3Dihub. DOI: 10.1016/j.jad.2022.03.026.
[14]
LI S, TANG M, ZHANG D, et al. The prevalence and prognosis of asymptomatic intracranial atherosclerosis in a community-based population: Results based on high-resolution magnetic resonance imaging[J]. Eur J Neurol, 2023, 30(12): 3761-3771. DOI: 10.1111/ene.16057.
[15]
LI R Y, ZHAO D L, YU J W, et al. Intracranial plaque characteristics on high-resolution MRI and high-sensitivity C-reactive protein levels: association and clinical relevance in acute cerebral infarction[J/OL]. Clin Radiol, 2023, 78(5): e442-e450 [2025-04-01]. https://www.clinicalradiologyonline.net/article/S0009-9260(23)00029-6/abstract. DOI: 10.1016/j.crad.2023.01.004.
[16]
MONTES D, VRANIC J, LIM J C, et al. Cardiovascular Risk Factors Affect Specific Segments of the Intracranial Vasculature in High-Resolution (HR) Vessel Wall Imaging (VWI)[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(10): 106026 [2025-04-01]. https://linkinghub.elsevier.com/retrieve/pii/S1052-3057(21)00431-6. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106026.
[17]
MEDDINGS Z, RUNDO L, SADAT U, et al. Robustness and classification capabilities of MRI radiomic features in identifying carotid plaque vulnerability[J]. Br J Radiol, 2024, 97(1158): 1118-1124. DOI: 10.1093/bjr/tqae057.
[18]
XIAO J, SONG S S, SCHLICK K H, et al. Disparate trends of atherosclerotic plaque evolution in stroke patients under 18-month follow-up: a 3D whole-brain magnetic resonance vessel wall imaging study[J]. Neuroradiol J, 2022, 35(1): 42-52. DOI: 10.1177/19714009211026920.
[19]
GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
[20]
ZHAO D L, LI R Y, LI C, et al. Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA[J/OL]. Clin Radiol, 2023, 78(2): e63-e70 [2025-04-01]. https://clinicalradiologyonline.net/retrieve/pii/S0009926022004962. DOI: 10.1016/j.crad.2022.08.132.
[21]
JIA Y, LIU X, ZHANG L, et al. Integrated head and neck imaging of symptomatic patients with stroke using simultaneous non-contrast cardiovascular magnetic resonance angiography and intraplaque hemorrhage imaging as compared with digital subtraction angiography[J]. J Cardiovasc Magn Reson, 2022, 24(1): 19-23. DOI: 10.1186/s12968-022-00849-1.
[22]
LI Q, YU M, YANG D, et al. Association of the coexistence of intracranial atherosclerotic disease and cerebral small vessel disease with acute ischemic stroke[J/OL]. Eur J Radiol, 2023, 165: 110915 [2025-04-01]. https://ejradiology.com/retrieve/pii/S0720048X23002292. DOI: 10.1016/j.ejrad.2023.110915.
[23]
JAIN C, KUMAR A, VYAS S, et al. Asymmetry in cerebral perfusion from circle of Willis arterial variations in normal population[J]. Neuroradiol J, 2023, 36(1): 31-37. DOI: 10.1177/19714009221098366.
[24]
ENYEDI M, SCHEAU C, BAZ R O, et al. Circle of Willis: anatomical variations of configuration. A magnetic resonance angiography study[J]. Folia Morphol (Warsz), 2023, 82(1): 24-29. DOI: 10.5603/FM.a2021.0134.
[25]
ZHENG R, HAN Q, HONG W, et al. Hemodynamic characteristics and mechanism for intracranial aneurysms initiation with the circle of Willis anomaly[J]. Comput Methods Biomech Biomed Engin, 2023: 1-9. DOI: 10.1080/10255842.2023.2199902.
[26]
LENG X, LEUNG T W. Collateral Flow in Intracranial Atherosclerotic Disease[J]. Transl Stroke Res, 2023, 14(1): 38-52. DOI: 10.1007/s12975-022-01042-3.
[27]
WU X B, LIU Y A, HUANG L X, et al. Hemodynamics combined with inflammatory indicators exploring relationships between ischemic stroke and symptomatic middle cerebral artery atherosclerotic stenosis[J/OL]. Eur J Med Res, 2023, 28(1): 378 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10523698/. DOI: 10.1186/s40001-023-01344-8.
[28]
ZHANG X, JIAO Z, HUA Z, et al. Localized Elevation of Wall Shear Stress Is Linked to Recent Symptoms in Patients with Carotid Stenosis[J]. Cerebrovasc Dis, 2023, 52(3): 283-292. DOI: 10.1159/000526872.
[29]
ZHOU M, YU Y, CHEN R, et al. Wall shear stress and its role in atherosclerosis[J/OL]. Front Cardiovasc Med, 2023, 10: 1083547 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10106633. DOI: 10.3389/fcvm.2023.1083547.
[30]
CHEN Z, QIN H, LIU J, et al. Characteristics of Wall Shear Stress and Pressure of Intracranial Atherosclerosis Analyzed by a Computational Fluid Dynamics Model: A Pilot Study[J/OL]. Front Neurol, 2019, 10: 1372 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6978719. DOI: 10.3389/fneur.2019.01372.
[31]
WU F, SONG H, MA Q, et al. Hyperintense Plaque on Intracranial Vessel Wall Magnetic Resonance Imaging as a Predictor of Artery-to-Artery Embolic Infarction[J]. Stroke, 2018, 49(4): 905-911. DOI: 10.1161/STROKEAHA.117.020046.
[32]
SHEN M, GAO P, CHEN S, et al. Differences in distribution and features of carotid and middle cerebral artery plaque in patients with pial infarction and perforating artery infarction: A 3D vessel wall imaging study[J/OL]. Eur J Radiol, 2023, 167: 111045 [2025-04-01]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(23)00359-5. DOI: 10.1016/j.ejrad.2023.111045.
[33]
LAPRAZ P, PINSARD Q, COUDERT R, et al. Association between flow patterns of the posterior cerebral arterial circle and basilar-tip aneurysms[J]. Surg Radiol Anat, 2023, 45(5): 505-511. DOI: 10.1007/s00276-023-03121-y.
[34]
LIU S, HUANG Z L, SUN Y R, et al. Application value of transcranial contrast-enhanced ultrasonography in evaluating middle cerebral artery stenosis[J]. Eur Rev Med Pharmacol Sci, 2023, 27(1): 224-232. DOI: 10.26355/eurrev_202301_30875.
[35]
ZHANG B, WANG G, GAO Y, et al. Influence of the integrity of circle of Willis on asymptomatic or mild patients with first diagnosed chronic internal carotid artery occlusion[J/OL]. Eur J Radiol, 2023, 165: 110954 [2025-04-01]. https://www.ejradiology.com/article/S0720-048X(23)00268-1/abstract. DOI: 10.1016/j.ejrad.2023.110954.
[36]
温宏峰, 赵春霞, 贺大权. Willis环不同代偿能力对颈动脉重度狭窄患者脑血流灌注差异的对比研究[J]. 中华老年心脑血管病杂志, 2023, 25(3): 268-271. DOI: 10.3969/j.issn.1009-0126.2023.03.011.
WEN H F, ZHAO C X, HE D Q. Comparison of cerebral blood flow perfusion in patients with severe carotid artery stenosis by different compensatory capacities of COW[J]. Chin J Geriatr Heart Brain Vessel Dis, 2023, 25(3): 268-271. DOI: 10.3969/j.issn.1009-0126.2023.03.011.

上一篇 QSM和DTI联合应用探讨单侧大脑中动脉供血区缺血后铁沉积对脑灰质核团微结构变化的影响
下一篇 基于MRI的影像组学模型及临床因素模型对缺血性脑卒中溶栓后出血转化风险的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2