分享:
分享到微信朋友圈
X
临床研究
基于多期相MRI影像组学联合不同机器学习模型预测肝细胞癌术前风险分层的研究
韩晓兵 张纯瑜 彭伟生 蔡惠亮 王成立 杨翠婷 邓娜 刘旭红 丁碧娇 王新达 章思竹 郑玉风 张亚兰 曾雅萍 张乾营

本文引用格式:韩晓兵, 张纯瑜, 彭伟生, 等. 基于多期相MRI影像组学联合不同机器学习模型预测肝细胞癌术前风险分层的研究[J]. 磁共振成像, 2025, 16(8): 80-87. DOI:10.12015/issn.1674-8034.2025.08.012.


[摘要] 目的 探索多期相MRI影像组学联合不同机器学习模型预测肝细胞癌(hepatocellular carcinoma, HCC)风险分层的价值。材料与方法 回顾性分析我院2020年1月至2024年12月术后病理诊断为HCC,且符合纳入和排除标准的120例患者的临床和影像资料。依据Edmondson-Steiner分级(ES分级)划分为低级别(ES Ⅰ级、Ⅰ/Ⅱ级)组和高级别(ES Ⅱ级、Ⅱ/Ⅲ级、Ⅲ级、Ⅲ/Ⅳ级、Ⅳ级)组,其中高级别组91例、低级别组29例。然后按7∶3随机划分为训练集84例(高级别组60例、低级别组24例)和验证集36例(高级别组31例、低级别组5例)。使用ITK-SNAP软件在动脉期图像上勾画HCC全域感兴趣区(region of interest, ROI),然后以动脉期为模板,对门静脉和延迟期进行配准,共用动脉期勾画的ROI。基于PyRadiomics软件包共提取3396个组学特征,先后采用Spearman相关性分析、最大相关性-最小冗余(maximum relevance-minimum redundancy, mRMR)和最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)回归进行数据降维并选择最佳特征,随后构建逻辑回归(logistic regression, LR)、支持向量机(support vector machine, SVM)、随机森林(random forest, RF)、朴素贝叶斯(naive Bayes, NB)和多层感知器(multilayer perceptron, MLP)五种机器学习算法的影像组学模型,选择最优模型,再结合临床影像特征,最终建立含有临床影像特征和影像组学特征的组合模型。使用受试者工作特性(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)、准确度、敏感度、特异度、阳性预测值(positive predictive value, PPV)、阴性预测值(negative predictive value, NPV)、校准曲线、决策曲线分析(decision curve analysis, DCA)评估模型的性能。结果 从三个期相分别提取1132个影像组学特征,经降维筛选后共纳入8个影像组学特征(动脉期2个、门静脉期3个和延迟期3个)构建影像组学模型,LR、SVM、RF、NB、MLP五种算法模型预测HCC病理分级训练集和验证集的AUC值分别为0.899、0.897、0.893、0.814、0.876和0.865、0.845、0.590、0.723、0.735,表明LR模型具有最好的性能和稳定性。单因素和多因素logistic回归分析发现年龄(P=0.046)和甲胎蛋白(P=0.031)是HCC病理分级的预测因子。年龄、甲胎蛋白与影像组学模型融合的组合模型在训练集AUC为0.929,验证集AUC为0.884。DeLong检验显示,训练集中临床模型与影像模型、组合模型之间差异具有统计学意义(P<0.05),影像模型与组合模型之间差异无统计学意义(P>0.05);验证集中三个模型之间差异均无统计学意义(P>0.05)。校准曲线表明组合模型在训练集和验证集的预测概率与实际概率更接近。DCA提示组合模型在合理的阈值概率范围内提供了更大的净收益。结论 基于多期相动态增强MRI影像组学结合临床影像学特征的组合模型可准确预测HCC的风险分层。
[Abstract] Objective To explore the value of multiphase magnetic resonance imaging radiomics combined with different machine learning models in predicting risk stratification of hepatocellular carcinoma (HCC).Materials and Methods We retrospectively analyzed clinical and imaging data from ​​a cohort of 120 patients​​ with pathologically confirmed HCC who underwent surgery between January 2020 and December 2024, ​​all meeting predefined inclusion/exclusion criteria. Based on the Edmondson-Steiner (ES) grading system, patients were stratified into two groups: the low-grade group (ES grade Ⅰ and Ⅰ/Ⅱ; n=29) and the high-grade group (ES grade Ⅱ, Ⅱ/Ⅲ, Ⅲ, Ⅲ/Ⅳ, and Ⅳ; n=91). The cohort was subsequently randomly divided in a 7∶3 ratio into a training set (84 cases: 60 high-grade and 24 low-grade) and a validation set (36 cases: 31 high-grade and 5 low-grade). Arterial-phase MRI images were used to delineate the whole-tumor region of interest (ROI) using ITK-SNAP software. ROIs were propagated to portal venous and delayed phases via registration. A total of 3396 radiomic features were extracted using PyRadiomics. Feature selection was performed using Spearman correlation analysis, maximum relevance-minimum redundancy (mRMR), and least absolute shrinkage and selection operator (LASSO) regression. Radiomics models were constructed using five machine learning algorithms: logistic regression (LR), support vector machine (SVM), random forest (RF), naive Bayes (NB), and multilayer perceptron (MLP). The optimal radiomics model was combined with clinical imaging features to develop a combined model. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), calibration curves, and decision curve analysis (DCA).Results A total of 1132 radiomics features were extracted from three contrast-enhanced phases (arterial, portal venous, and delayed). Following dimensionality reduction and feature selection, 8 radiomics features (2 from arterial phase, 3 from portal venous phase, and 3 from delayed phase) were selected to construct radiomics models. Five machine learning algorithms LR, SVM, RF, NB, and MLP demonstrated training and validation sets AUC values of 0.899, 0.897, 0.893, 0.814, 0.876 and 0.865, 0.845, 0.590, 0.723, 0.735, respectively, for predicting HCC pathological grades, indicating that the LR model exhibited the best performance and stability. Univariate and multivariate logistic regression analyses of clinical-radiological features identified age (P = 0.046) and alpha-fetoprotein (AFP) (P = 0.031) as independent predictors of HCC pathological grading. These predictors were subsequently integrated with the radiomics model to develop a combined model, achieving AUC of 0.929 (training set) and 0.884 (validation set). DeLong test revealed significant differences between the clinical model versus the radiomics model and combined model in the training set (P < 0.05), while no statistical distinction was observed between the radiomics and combined models (P > 0.05). In the validation set, no significant differences were found among the three models (P > 0.05). Calibration curves demonstrated closer alignment between predicted and actual probabilities for the combined model in both sets. DCA indicated enhanced net clinical benefit within clinically relevant threshold probabilities. Ultimately, the combined model integrating clinical and radiomics features provided a more accurate prediction of HCC pathological grading.Conclusions The integration of multiphase dynamic contrast-enhanced MRI radiomics with clinical imaging features enables accurate prediction of HCC risk stratification.
[关键词] 肝细胞癌;磁共振成像;影像组学;机器学习;病理分级
[Keywords] hepatocellular carcinoma;magnetic resonance imaging;radiomics;machine learning;pathological grading

韩晓兵 1   张纯瑜 2   彭伟生 1   蔡惠亮 1   王成立 1   杨翠婷 1   邓娜 1   刘旭红 1   丁碧娇 1   王新达 3   章思竹 1   郑玉风 1   张亚兰 1   曾雅萍 4   张乾营 1*  

1 中国人民解放军联勤保障部队第910医院放射诊断科,泉州 362000

2 中国人民解放军联勤保障部队第910医院肝病中心实验室,泉州 362000

3 泉州市第一医院影像科,泉州 362000

4 晋江市医院影像科,泉州 362200

通信作者:张乾营,E-mail:836477654@qq.com

作者贡献声明:张乾营设计本研究的方案,对稿件重要内容进行了修改,获得了福建省科技计划项目资助;韩晓兵起草和撰写稿件,获取、分析和解释本研究的数据,获得了泉州市科技计划项目(编号:2024NY057)资助;张纯瑜、彭伟生、蔡惠亮、王成立、杨翠婷、邓娜、刘旭红、丁碧娇、王新达、章思竹、郑玉凤、张亚兰、曾雅萍获取、分析或解释本研究的数据,对稿件重要内容进行了修改,其中郑玉凤获得了泉州市科技计划项目(编号:2025QZN05)资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 福建省科技计划项目 2024Y9455 泉州市科技计划项目 2024NY057,2025QZN05
收稿日期:2025-04-29
接受日期:2025-08-05
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.012
本文引用格式:韩晓兵, 张纯瑜, 彭伟生, 等. 基于多期相MRI影像组学联合不同机器学习模型预测肝细胞癌术前风险分层的研究[J]. 磁共振成像, 2025, 16(8): 80-87. DOI:10.12015/issn.1674-8034.2025.08.012.

0 引言

       肝细胞癌(hepatocellular carcinoma, HCC)是全球范围内最常见的原发性肝癌类型,2020年全球新发病例约90.5万例,其中我国占比高达50%[1]。尽管近年来诊疗技术有所进步,HCC患者的5年生存率仍低于20%,尤其在慢性乙型肝炎病毒(hepatitis B virus, HBV)高流行地区(如东亚)[2]

       有研究表明,肿瘤分化不良可能是其播散及治疗后复发的危险因素[3],这反映了肿瘤的生物学行为,与治疗方案的选择及预后判断密切相关。根据世界卫生组织(World Health Organization, WHO)分类标准,HCC的病理分化分为高分化、中分化、低分化和未分化,与经典Edmondson-Steiner分级(ES分级)相对应(Ⅰ级至Ⅳ级)[4]。多项研究[5, 6]表明,ES分级与肿瘤侵袭性显著负相关,低分化(ES Ⅲ~Ⅳ级)患者的5年生存率不足30%。目前,病理分级的确诊依赖术后组织活检,但侵入性操作可能引发并发症,且存在取样误差和观察者间异质性等问题。因此,开发一种无创、精准的术前风险分层工具,对于优化个体化治疗决策具有重要意义。

       既往研究表明,CT、MRI影像学特征及年龄、肿瘤大小等临床因素与HCC病理分级相关。曹赛等[7]探讨小肝癌CT血供分型与肿瘤分化程度的相关性,研究发现分化差的HCC主要是肝动脉供血,分化较好的HCC供血系统为双重供血(肝动脉和门静脉)。HUANG等[8]研究钆塞酸二钠增强MRI术前预测HCC组织学分级的可行性,发现高分化HCC的独立危险因素是最大肿瘤直径(maximum tumor diameter, MTD)。莫志英等[9]计算肝胆期HCC与竖脊肌的相对信号强度(relative signal intensity, RSI),结果表明肝胆期RSI与HCC的分化程度呈中等正相关(P<0.001)。这些常规影像学检查有利于预测HCC组织学分化程度,但是能够正确预测HCC的病理分级是相当有限的。

       影像组学是一种新兴的成像分析方式,通过高通量提取多模态影像的定量特征(如灰度共生矩阵纹理、形态学参数、小波变换等),结合机器学习算法构建预测模型,已广泛应用于肿瘤异质性分析,为无创评估肿瘤生物学行为提供了新思路[10, 11, 12]。ZHOU等[13]评估了MRI动脉期的纹理特征在区分HCC病理分级方面的表现,受试者工作特性(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)达0.846。多位学者回顾了以往多项不同AI模型的临床预测研究[14],其中预测HCC患者经导管肝动脉化疗栓塞(transarterial chemoembolization, TACE)反应模型的AUC范围从0.55至0.97高低不等,结合临床-放射学特征(Albumin-Bilirubin分级、肿瘤直径等)后,其模型的AUC(0.79 vs. 0.81)有所提高,表明整合临床-影像学特征能够增强AI模型对HCC患者TACE反应的预测性能。但既往研究多局限于单一期相影像组学分析,未结合动态增强特征并验证多期相的协同效应。本研究通过整合多期相动态增强MRI影像组学特征与多种机器学习算法并结合临床影像学特征优化模型性能,旨在构建高精度的无创病理分级预测工具,这将有助于术前识别HCC的分化程度,帮助手术策略制订或辅助治疗,改善患者预后。

1 材料与方法

1.1 研究对象

       本研究收集中国人民解放军联勤保障部队第910医院2020年1月至2024年12月经术后病理诊断为HCC的334例患者的临床和影像资料。纳入标准:(1)经手术切除病理证实为HCC;(2)术前2周内行三期动态增强肝脏磁共振扫描。排除标准:(1)术前接受射频消融、化疗、免疫治疗等HCC治疗的患者;(2)病理诊断报告未进行Edmondson-Steiner分级;(3)图像质量差和病灶轮廓不清,无法勾画感兴趣区(region of interest, ROI);(4)临床资料不全。

       本研究以高、低级别分组来对HCC进行风险分层。由于肝脏内的同一个HCC可能包含不同病理分级的肿瘤细胞,我们将以ES Ⅰ级、Ⅰ/Ⅱ级划分为低级别组,Ⅱ级、Ⅱ/Ⅲ级、Ⅲ级、Ⅲ/Ⅳ级、Ⅳ级划分为高级别组[15]。为减少分组偏倚影响,采用分层随机抽样按7∶3将病例划分为训练集和验证集。本研究遵守《赫尔辛基宣言》,经联勤保障部队第九一〇医院伦理委员会批准,免除受试者知情同意,批准文号:院医伦号[2024]99号。

1.2 MRI扫描方案

       患者在行MRI检查前禁食4小时,采用两台3.0 T扫描仪(Siemens Skyra, GE Discovery 750),配备18通道腹部线圈,使用容积加速采集水脂分离技术、容积内插体部检查技术。扫描参数:回波时间(echo time, TE)1.85 ms,重复时间(repetition time, TR)3.9 ms,层厚3 mm,层间距1 mm,并行采集因子(integrated parallel acquisition technique, IPAT)2,基础分辨率(base resolution)288,相位分辨率(phase resolution)80%×288,体素(voxel size)1.3 mm×1.0 mm×3.0 mm。经肘静脉注射钆喷酸葡胺(gadopentetate dimeglumine, Gd-DTPA),剂量0.2 mL/kg,后用20 mL生理盐水冲洗。每期扫描需要患者屏气,分别在20~25 s、40~65 s、2 min获得动脉期、门静脉期、延迟期图像。

1.3 临床资料和MRI图像分析

       患者的临床资料和图像采集均来自医院的影像归档和通信系统(picture archiving and communication system, PACS)。临床资料包括年龄、性别、乙肝病史、甲胎蛋白(alpha-fetoprotein, AFP)、谷草转氨酶(glutamic oxaloacetic transaminase, AST)、谷丙转氨酶(glutamic-pyruvic transaminase, ALT)、凝血酶原时间(prothrombin time, PT)、血小板计数(blood platelet, PLT)。MRI图像由2名有8年腹部MRI诊断经验的副主任医师独立审查,他们对病理结果一无所知。分析参数包括MTD、出血、坏死、脂肪、肿瘤边界和包膜。

1.4 病理分析

       根据2015版《原发性肝癌规范化病理诊断指南》[15]对肿瘤病理结果进行回顾性分析,对切除的HCC标本经过HE染色处理后,由一位有高级职称的病理医师评定HCC的ES分级(图1),在此之前他并不了解临床资料和影像学诊断。

图1  世界卫生组织(WHO)标准肝细胞癌(HCC)病理分化图(HE ×100)。1A:高分化HCC,核/质比接近正常,瘤细胞体积小;1B:中分化HCC,核/质比和细胞体积增大,核染色加深,有异型性改变;1C:低分化HCC,核染色深,癌细胞异型明显,核分裂多见。
Fig. 1  Pathological differentiation diagram of hepatocellular carcinoma (HCC) according to WHO criteria (HE × 100). 1A: Well-differentiated HCC, nuclear-to-cytoplasmic ratio approximates normal hepatocytes, small tumor cell size. 1B: Moderately differentiated HCC, increased nuclear-to-cytoplasmic ratio and cell size, nuclear hyperchromasia, and atypia. 1C: Poorly differentiated HCC, marked nuclear hyperchromasia, significant cellular pleomorphism, and frequent mitoses.

1.5 影像组学分析

1.5.1 肿瘤ROI勾画

       在勾画ROI前,对所有MRI图像进行预处理。首先进行N4偏置场校正,再按2×2×2线性重采样,以标准化体素间距,然后进一步将信号强度归一化(0,1)。随后将预处理完的MRI图像导入ITK-SNAP(版本3.8.0)图像处理软件中,由2名有5年以上经验的放射科主治医生对动脉期病灶边缘进行勾画作为ROI,肿瘤勾画覆盖所有切片上的整个肿瘤区域,完成后储存为3D-ROI(图2)。2周后再进行第二次ROI勾画,计算组内相关系数(Intra-class Correlation Coefficient, ICC),ICC>0.75时表示两次勾画ROI的一致性较好。然后以动脉期扫描为模板,门静脉期、延迟期为目标,依次进行配准,共用动脉期勾画的ROI。

图2  ROI勾画示意图。2A:动脉期图像ROI勾画;2B:3D-ROI;2C~2D:门静脉期(2C)和延迟期(2D)图像向动脉期的配准图。
Fig. 2  Region of interest (ROI) delineated diagram. 2A: ROI delineated on arterial-phase; 2B: 3D-reconstructed ROI; 2C-2D: Registration of portal venous (2C) and delayed phases (2D) to the arterial phase.

1.5.2 影像组学特征提取

       使用PyRadiomics开源程序包在Python软件(版本3.7.12,http://pyradiomics.readthedocs.io)上进行特征提取。从动脉期、门静脉期、延迟期三个阶段共获得3396个影像组学特征。

1.5.3 影像组学特征标准化、降维及筛选

       (1)使用Z-score对组学特征进行标准化,使数据均值为0、标准差为1,计算公式为z=(X-μ)/σ,X为原始数据,μ为均值,σ为标准差,z为标准化数据。(2)通过t检验(特征数据符合正态分布)和Mann-Whitney U检验(特征数据不符合正态分布)进行比较所有特征,P<0.05具有显著性。(3)使用皮尔逊相关系数,对于相关系数>0.9的特征,只保留一个。(4)使用最大相关性-最小冗余(maximum relevance-minimum redundancy, mRMR)和10折交叉验证的最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)回归模型选择非零系数特征。

1.5.4 影像组学机器学习模型构建

       将三期相最终获得的能区分HCC病理分级的影像组学特征分别用逻辑回归(Logistic Regression, LR)、支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest, RF)、朴素贝叶斯(Naive Bayes, NB)和多层感知器(Multilayer Perceptron, MLP)五种算法进行机器学习,同时执行10折交叉验证获得各机器学习算法的最佳参数,选择最优模型作为预测HCC病理分级的影像组学模型。

1.5.5 组合模型的建立

       对所有临床影像特征进行差异分析,经单因素和多因素logistic回归分析获得有统计学意义的变量,构建临床模型,然后与最优的影像组学模型结合,获得一个组合模型,包括影像组学特征和临床影像特征。

1.5.6 模型的评估

       模型的评估指标包括AUC、准确度、敏感度、特异度、阳性预测值(positive predictive value, PPV)、阴性预测值(negative predictive value, NPV)。采用DeLong检验比较各模型之间的差异。为了更直观地显示组合模型各变量之间的相互关系,我们绘制了列线图。校准曲线分析预测概率与实际概率之间的一致性。通过可视化的决策曲线分析(decision curve analysis, DCA)评估组合模型在HCC风险分层中量化不同阈值概率方面的优势。

1.6 统计学分析

       本研究所有数据分析均在OnekeyAI科研平台(Python,版本3.7.12)上执行,使用Statsmodels(版本0.13.2)进行统计分析,通过PyRadiomics(版本3.0.1)进行提取影像组学特征,使用Scikit-learn(版本1.0.2)实现机器学习。使用Shapiro-Wilk验证临床影像特征的正态性,连续变量根据其分布情况进行t检验(符合正态分布)或Mann-Whitney U检验(不符合正态分布),分类变量采用卡方检验。我们将AFP值进行两分类(AFP≤20 ng/mL映射为0,AFP>20 ng/mL映射为1)。P<0.05为差异有统计学意义。

2 结果

2.1 临床参数和影像学特征

       经筛选过后,入组病例共120例(高级别组91例、低级别组29例),按7∶3随机划分为训练集84例(高级别组60例、低级别组24例)和验证集36例(高级别组31例、低级别组5例)。HCC患者的临床和影像特征详见表1

表1  HCC患者的临床和影像特征
Tab. 1  Clinical and imaging characteristics of HCC patients

2.2 影像组学模型的构建和选择

       从HCC的三期相MRI图像中,共提取了3396个特征。对特征数据进行Z-score标准化并经t检验和U检验后保留65个特征,随后经Pearson相关分析后保留了39个特征,最后经mRMR和10折交叉验证的LASSO算法选择后确定了8个非零系数特征(图3)。多个机器学习模型在HCC病理分级预测方面的性能评估(表2图4)结果显示,所有模型中LR模型的AUC值最高[训练集AUC=0.899(95% CI:0.833~0.965),验证集AUC=0.865(95% CI:0.712~1.000)],LR模型的性能和稳定性最好,因此,选择LR模型参与最终的组合模型构建。

图3  基于mRMR和10折交叉验证的LASSO回归系数图(3A),选择最佳λ(λ=0.039 1)值(3B),最终筛选的8个特征权重直方图(3C)。mRMR:最大相关性-最小冗余;LASSO:最小绝对收缩和选择算子;MSE:均方误差。
Fig. 3  LASSO regression coefficient plot based on mRMR and 10-fold cross-validation (3A), selection of the optimal lambda (λ) value (λ = 0.039 1) (3B), histogram of weights for the 8 final screened features. Phases: Arterial, portal venous and delayed (3C). mRMR: maximum relevance-minimum redundancy; LASSO: least absolute shrinkage and selection operator; MSE: mean squared error.
图4  基于影像组学特征的不同机器学习算法模型预测高级别和低级别HCC的ROC曲线(4A:训练集;4B:验证集)。HCC:肝细胞癌;ROC:受试者工作特性;AUC:曲线下面积;LR:逻辑回归;SVM:支持向量机;MLP:多层感知器。
Fig. 4  ROC curves for predicting high-grade and low-grade HCC using different machine learning algorithms based on radiomic features (4A: training set; 4B: validation set). HCC: hepatocellular carcinoma; ROC: receiver operating characteristic; AUC: area under the curve; LR: logistic regression; SVM: support vector machine; MLP: multilayer perceptron.
表2  不同机器学习算法模型预测高级别和低级别HCC的诊断性能
Tab. 2  Diagnostic performance of different machine learning algorithm models for predicting high-grade and low-grade HCC

2.3 组合模型的构建和验证

       所有临床影像特征经单因素和多因素logistic回归分析(表3)发现,年龄(OR=0.961,95% CI:0.930~0.993,P=0.046)和AFP(OR=3.383,95% CI:1.335~8.568,P=0.031)是HCC病理分级的预测因子。将年龄年龄、AFP纳入并构建临床模型,然后与影像组学模型融合一起建立组合模型。每个模型的性能评估结果(表4图5)表明,组合模型在训练集(AUC=0.929)和验证集(AUC=0.884)的AUC最高。DeLong检验显示训练集中临床模型与影像模型、组合模型之间差异具有统计学意义(P<0.05),影像模型与组合模型之间差异无统计学意义(P>0.05);验证集中三个模型之间均差异无统计学意义(P>0.05)。校准曲线表明组合模型在训练集和验证集的预测概率与实际概率更接近(图6)。DCA表明组合模型在合理的阈值概率范围内提供了更大的净收益(图7)。列线图呈现了单个特征的权重(图8)。

图5  临床模型、影像组学模型及组合模型区分HCC病理分级的ROC曲线。5A:训练集;5B:验证集。HCC:肝细胞癌;ROC:受试者工作特征;AUC:曲线下面积;CI:置信区间。
Fig. 5  ROC curves for distinguishing pathological grades of HCC using clinical, radiomics, and combined models. 5A: training set; 5B: validation set. ROC: receiver operating characteristic; HCC: hepatocellular carcinoma; AUC: area under the curve; CI: confidence interval.
图6  临床模型、影像组学模型及组合模型区分肝细胞癌(HCC)病理分级的校准曲线。6A:训练集;6B:验证集。
Fig. 6  Calibration curves for distinguishing pathological grades of hepatocellular carcinoma (HCC) using clinical, radiomics, and combined models. 6A: training set; 6B: validation set.
图7  临床模型、影像组学模型及组合模型区分肝细胞癌(HCC)病理分级的决策曲线分析。7A:训练集;7B:验证集。
Fig. 7  Decision curve analysis for distinguishing pathological grades of hepatocellular carcinoma (HCC) using clinical, radiomics, and combined models. 7A: training set; 7B: validation set.
图8  组合模型的列线图。AFP:甲胎蛋白。
Fig. 8  A nomogram visualizing the combined model. AFP: alpha-fetoprotein.
表3  临床和影像特征单因素和多因素logistic分析
Tab. 3  Univariate and multivariate logistic regression analysis of clinical and imaging features
表4  临床模型、影像组学模型和组合模型的诊断性能
Tab. 4  Diagnostic performance of clinical, radiomics, and combined models

3 讨论

       本研究通过提取HCC肝脏MRI动态增强三个期相的影像组学特征,使用了LR、SVM、RF、NB、MLP五种机器学习算法构建影像组学模型,发现LR影像组学模型的AUC值最高,具有最佳的性能和稳定性。随后通过整合临床影像学特征和基于LR的影像组学模型,构建了一个组合模型,该组合模型在HCC病理分级方面表现出最高的性能,并在验证集中也验证了模型的稳定性。因此,基于影像组学特征联合临床影像学特征构建的组合模型有望成为一个准确、可靠、无创的评估HCC风险分层的新方法。

3.1 不同机器学习算法模型的探讨

       在本研究中,与SVM、RF、NB和MLP算法模型相比,LR模型表现出更强的性能和泛化能力。LR模型参数少,相比于复杂的MLP模型更容易被学习理解。RF模型虽在理论上具备更高非线性拟合能力,但在样本量不足时易出现过拟合[16]。SVM、NB模型的泛化性能差,可能是对类别不平衡数据敏感有关,未来可通过调整类别权重或引入合成采样技术(如SMOTE)进行性能优化。总之,LR模型凭借其可解释性强、计算高效、概率输出直观等优势成为广泛应用的首选方法,尤其是在小样本数据下的稳定性和概率输出形式(如风险分层),也可以和临床决策流程高度契合[17]

3.2 多期相影像组学模型与临床预测因子对HCC病理分级预测效能的探讨

       已有大量研究表明,影像组学分析技术可以成功预测胶质瘤、肾癌、子宫内膜癌、胰腺神经内分泌肿瘤和前列腺癌等[18, 19, 20, 21, 22]肿瘤的病理分级。在肝脏领域,有多项研究探索了基于影像组学在HCC病理分级预测中的作用[23, 24, 25, 26]。其中胡小军[26]基于肝胆期影像组学模型的泛化性(AUC=0.70)明显不如本研究的模型(AUC=0.865),可能归因于多期相特征融合策略。有研究表明瘤内血管与HCC的组织学分级结果有一定相关性[27],例如,门静脉期血流动力学特征(如对比剂廓清率)可补充动脉期纹理信息,更全面反映肿瘤异质性。WU等[28]基于非增强MRI的模型AUC为0.742,而本研究通过多期相联合将性能提升约15%,印证了动态增强数据的临床价值。多位学者的研究也表明多期相特征融合模型性能优于单期相特征模型[29, 30, 31, 32],其中杨燕[32]基于多期相组学特征建立的SVM模型性能(AUC=0.932)显著优于单期相的模型,而单期相模型中动脉期模型的AUC(0.848)最高,此多期相模型性能高于本研究的原因可能是它融合了更多期相,包括T1WI、动脉期、门静脉期、延迟期和肝胆期,蕴含更多的肿瘤异质性信息,后续研究中我们将提取更多模态(DWI、SWI等)的影像组学特征来优化模型的性能。此外,临床特征分析表明,年龄和AFP是预测高级别HCC的独立危险因素。多项研究[33, 34, 35]表明,年轻HCC患者(<50岁)的肿瘤侵袭性更强,本研究进一步发现,年龄越小,高级别HCC风险增加(OR=0.961,P=0.046),提示需加强年轻人群的早期筛查。此外,AFP>20 ng/mL与高级别HCC显著相关(OR=3.383,P=0.031),与胡梦洁等[36]的结论一致。最后,将临床影像学特征和影像组学特征结合在一起,预测模型在验证集AUC由0.865提升至0.884,表明临床影像特征的纳入可以提高模型的预测性能。

3.3 组合模型预测HCC病理分级性能的探讨

       本研究通过构建影像组学联合临床影像学模型预测HCC病理分化级别,发现组合模型展现出最优性能,其验证集AUC达0.884(95% CI:0.775~0.993),显著高于单一临床模型(AUC=0.568)和影像组学模型(AUC=0.865),进一步证实了多模态融合的增量价值[37]。该模型实现了高敏感度(83.9%)和完美特异度(100.0%),意味着能识别83.9%的高级别HCC且无低级别误诊,但需警惕其阴性预测值(NPV=50.0%),提示当模型判定“低级别”时可靠性不足,可能是由于低级别组HCC样本量不足,故今后需扩大样本量进一步研究,尤其是增加低级别组HCC样本量的比例。

3.4 不足及展望

       本研究存在一些局限性。首先,这是一个单中心回顾性研究,可能存在选择偏倚,后续可以开展多中心合作研究,通过外部验证优化模型的泛化能力;其次,样本量偏少且ES高级别组和低级别组样本分布不平衡,可能会影响某些参数对病理分级的统计学结果,今后的研究将增加其他功能成像模态(DWI、SWI)和样本量;最后,手动肿瘤分割并提取影像组学特征是耗时的,未来有必要开发和使用自动或半自动的肿瘤分割方法。

4 结论

       总之,基于多期相动态增强MRI影像组学特征联合临床影像学特征构建的组合模型可以很好地在术前进行HCC的风险分层,为HCC患者术前提供了一种无创、准确、稳定的检查方法,可优化个性化治疗策略,改善预后,具有重要的临床意义和价值。

[1]
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 磁共振成像, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
Department of Medical Administration of National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition) [J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[2]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[3]
KAMIYAMA T, NAKANISHI K, YOKOO H, et al. Analysis of the risk factors for early death due to disease recurrence or progression within 1 year after hepatectomy in patients with hepatocellular carcinoma[J/OL]. World J Surg Oncol, 2012, 10: 107 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/22697061/. DOI: 10.1186/1477-7819-10-107.
[4]
LIAN S M, CHENG H J, LI H J, et al. Construction of nomogram model based on contrast-enhanced ultrasound parameters to predict the degree of pathological differentiation of hepatocellular carcinoma[J/OL]. Front Oncol, 2025, 15: 1519703 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39931079/. DOI: 10.3389/fonc.2025.1519703.
[5]
EDMONDSON H A, STEINER P E. Primary carcinoma of the liver: a study of 100 cases among 48, 900 necropsies[J]. Cancer, 1954, 7(3): 462-503. DOI: 10.1002/1097-0142(195405)7:3<462::aid-cncr2820070308>3.0.co;2-e.
[6]
MIR I H, JYOTHI K C, THIRUNAVUKKARASU C. The prominence of potential biomarkers in the diagnosis and management of hepatocellular carcinoma: Current scenario and future anticipation[J]. J Cell Biochem, 2022, 123(10): 1607-1623. DOI: 10.1002/jcb.30190.
[7]
曹赛, 唐毅, 聂唯. 小肝癌多层螺旋CT影像学血供特征与病理表现的对照研究[J]. 中国医药指南, 2012, 10(19): 10-12. DOI: 10.15912/j.cnki.gocm.2012.19.266.
CAO S, TANG Y, NIE W. The spiral CT manifestations of the blood supply of small hepatocellular carcinoma: correlation with pathologic findings[J]. Guide China Med, 2012, 10(19): 10-12. DOI: 10.15912/j.cnki.gocm.2012.19.266.
[8]
HUANG K, DONG Z, CAI H S, et al. Imaging biomarkers for well and moderate hepatocellular carcinoma: preoperative magnetic resonance image and histopathological correlation[J/OL]. BMC Cancer, 2019, 19(1): 364 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/30999947/. DOI: 10.1186/s12885-019-5574-8.
[9]
莫志英, 廖锦元. 钆塞酸二钠增强MRI肝胆期评估肝细胞癌分化程度的价值[J]. 医学影像学杂志, 2022, 32(8): 1301-1305.
MO Z Y, LIAO J Y. The value of signal on hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI in the degree of differentiation of hepatocellular carcinoma[J]. J Med Imag, 2022, 32(8): 1301-1305.
[10]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: Making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[11]
ZHAO B, CAO B Y, XIA T Y, et al. Multiparametric MRI for assessment of the biological invasiveness and prognosis of pancreatic ductal adenocarcinoma in the era of artificial intelligence[J]. J Magn Reson Imag, 2025, 62(1): 9-19. DOI: 10.1002/jmri.29708.
[12]
YAMADA A, KAMAGATA K, HIRATA K, et al. Clinical applications of artificial intelligence in liver imaging[J]. La Radiol Med, 2023, 128(6): 655-667. DOI: 10.1007/s11547-023-01638-1.
[13]
ZHOU W, ZHANG L, WANG K, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images[J]. J Magn Reson Imaging, 2017, 45(5): 1476-1484. DOI: 10.1002/jmri.25454.
[14]
KESHAVARZ P, NEZAMI N, YAZDANPANAH F, et al. Prediction of treatment response and outcome of transarterial chemoembolization in patients with hepatocellular carcinoma using artificial intelligence: A systematic review of efficacy[J/OL]. Eur J Radiol, 2025, 184: 111948 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39892373/. DOI: 10.1016/j.ejrad.2025.111948.
[15]
中国抗癌协会肝癌专业委员会, 中华医学会肝病学分会肝癌学组, 中国抗癌协会病理专业委员会, 等. 原发性肝癌规范化病理诊断指南(2015年版)[J]. 中华肝脏病杂志, 2015, 23(05): 321-327. DOI: 10.3760/cma.j.issn.1007-3418.2015.05.001.
Chinese Association of Liver Cancer of Chinese Anti-Cancer Association, Hepatocellular Carcinoma Subcommittee of Chinese Society of Liver Diseases of Chinese Medical Association, Pathological Committee of Chinese Anti-Cancer Association, et al. Guidelines for standardized pathological diagnosis of primary liver cancer (2015 edition)[J]. Chinese Journal of Hepatology, 2015, 23(05): 321-327. DOI: 10.3760/cma.j.issn.1007-3418.2015.05.001.
[16]
SUNG Y S, PARK B, PARK H J, et al. Radiomics and deep learning in liver diseases[J]. J Gastroenterol Hepatol, 2021, 36(3): 561-568. DOI: 10.1111/jgh.15414.
[17]
SONG Y X, YANG X D, LUO Y G, et al. Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: a retrospective study[J]. CNS Neurosci Ther, 2023, 29(1): 158-167. DOI: 10.1111/cns.13991.
[18]
ZHU Y Y, WANG J, XUE C, et al. Deep learning and habitat radiomics for the prediction of glioma pathology using multiparametric MRI: A multicenter study[J]. Acad Radiol, 2025, 32(2): 963-975. DOI: 10.1016/j.acra.2024.09.021.
[19]
YU X Y, ZHU D L, GUO H J, et al. DASNet: A convolutional neural network with SE attention mechanism for ccRCC tumor grading[J/OL]. Interdiscip Sci Comput Life Sci, 2025 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40126867/. DOI: 10.1007/s12539-025-00693-8.
[20]
Lefebvre T.L., Ueno Y., Dohan A., 等. 基于多参数MRI的子宫内膜癌术前风险分层影像组学模型的开发和验证[J]. 国际医学放射学杂志, 2023, 46(1): 104-105. DOI: 10.19300/j.2023.r1106.
LEFEBVRE T L, et al. Development and validation of multiparametric MRI-based radiomics models for preoperative risk stratification of endometrial cancer[J]. Int J Med Radiol, 2023, 46(1): 104-105. DOI: 10.19300/j.2023.r1106.
[21]
JI S R, CAO L H, GAO J, et al. Proteogenomic characterization of non-functional pancreatic neuroendocrine tumors unravels clinically relevant subgroups[J/OL]. Cancer Cell, 2025, 43(4): 776-796 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40185092/. DOI: 10.1016/j.ccell.2025.03.016.
[22]
PENG Z H, WANG Y N, WU X R, et al. Identifying high gleason score prostate cancer by prostate fluid metabolic fingerprint-based multi-modal recognition[J/OL]. Small Methods, 2024, 8(10): e2301684 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/38258603/. DOI: 10.1002/smtd.202301684.
[23]
KUROKAWA S, TANAKA T, YAMAZAKI H, et al. Comparing the CT and MRI findings for canine primary hepatocellular lesions[J/OL]. Vet Rec, 2022, 190(11): e1083 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/34751436/. DOI: 10.1002/vetr.1083.
[24]
WU M, YU H J, PANG S W, et al. Application of CT-based radiomics combined with laboratory tests such as AFP and PIVKA-II in preoperative prediction of pathologic grade of hepatocellular carcinoma[J/OL]. BMC Med Imaging, 2025, 25(1): 51 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39962429/. DOI: 10.1186/s12880-025-01588-2.
[25]
HAN Y E, CHO Y, KIM M J, et al. Hepatocellular carcinoma pathologic grade prediction using radiomics and machine learning models of gadoxetic acid-enhanced MRI: a two-center study[J]. Abdom Radiol (NY), 2023, 48(1): 244-256. DOI: 10.1007/s00261-022-03679-y.
[26]
胡小军. 基于术前钆塞酸二钠MRI图像构建机器学习影像组学模型预测Ck19阳性肝细胞癌和肝细胞癌病理分级的研究[D]. 南方医科大学, 2024. DOI: 10.27003/d.cnki.gojyu.2023.000156.
HU X J. Study on preoperative prediction of Ck19-positive hepatocellular carcinoma and pathological grading using machine learning radiomics models based on gadoxetic acid disodium-enhanced MRI images [D]. Southern Medical University, 2024. DOI: 10.27003/d.cnki.gojyu.2023.000156.
[27]
ZHANG K, LI W C, XIE S S, et al. Preoperative determination of pathological grades of primary single HCC: development and validation of a scoring model[J]. Abdom Radiol (NY), 2022, 47(10): 3468-3477. DOI: 10.1007/s00261-022-03606-1.
[28]
WU M H, TAN H N, GAO F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-2811. DOI: 10.1007/s00330-018-5787-2.
[29]
YANG Y, ZHANG S, CUI C, et al. Multiphase MRI-based radiomics for predicting histological grade of hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 60(5): 2117-2127. DOI: 10.1002/jmri.29289.
[30]
LIU H F, WANG M, WANG Q, et al. Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma[J]. Insights Imaging, 2024, 15(1): 97. DOI: 10.1186/s13244-024-01623-w.
[31]
MAO Y F, WANG J C, ZHU Y, et al. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24. DOI: 10.21037/hbsn-19-870.
[32]
杨燕. 基于MR影像组学和机器学习预测肝癌病理分级、微血管浸润及Ki-67表达[D]. 中国人民解放军陆军军医大学, 2023. DOI: 10.27001/d.cnki.gtjyu.2022.000024.
YANG Y. Prediction of pathological grade, microvascular invasion, and Ki-67 expression in hepatocellular carcinoma based on MR radiomics and machine learning[D]. Army Medical University, 2023. DOI: 10.27001/d.cnki.gtjyu.2022.000024.
[33]
YAKOVCHENKO V, CHANG M F, HERNAEZ R, et al. Access to evaluation for liver transplantation in the veterans health administration[J]. Dig Dis Sci, 2025, 70(2): 552-565. DOI: 10.1007/s10620-024-08717-x.
[34]
NAKAZAWA S, FUKAI K, SANO K, et al. Association of occupational physical activity and sedentary behaviour with the risk of hepatocellular carcinoma: a case-control study based on the Inpatient Clinico-Occupational Database of Rosai Hospital Group[J/OL]. BMJ Open, 2025, 15(3): e092020 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/40074261//. DOI: 10.1136/bmjopen-2024-092020.
[35]
赵莹, 刘爱连, 武敬君, 等. 基于增强MRI影像组学术前预测肝细胞癌病理分化程度[J]. 中国医学影像学杂志, 2021, 29(6): 570-576.
ZHAO Y, LIU A L, WU J J, et al. Preoperative prediction of pathologic grade of hepatocellular carcinoma based on radiomics derived from contrast enhanced MRI[J]. Chin J Med Imag, 2021, 29(6): 570-576.
[36]
胡梦洁, 郁义星, 范艳芬, 等. 钆塞酸二钠增强磁共振影像学特征联合定量分析在预测肝细胞癌病理分级中的价值[J]. 中华医学杂志, 2020, 100(17): 1299-1304. DOI: 10.3760/cma.j.cn112137-20191021-02281.
HU M J, YU Y X, FAN Y F, et al. The predictive value of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced MRI imaging features combined with quantitative parameters for the pathologic grading of hepatocellular carcinoma[J]. Natl Med J China, 2020, 100(17): 1299-1304. DOI: 10.3760/cma.j.cn112137-20191021-02281.
[37]
MEHRI-KAKAVAND G, MDLETSHE S, WANG A L. A comprehensive review on the application of artificial intelligence for predicting postsurgical recurrence risk in early-stage non-small cell lung cancer using computed tomography, positron emission tomography, and clinical data[J/OL]. J Med Radiat Sci, 2025 [2025-04-28]. https://pubmed.ncbi.nlm.nih.gov/39844750/. DOI: 10.1002/jmrs.860.

上一篇 基于多参数MRI影像组学鉴别非肿块型乳腺癌和非哺乳期乳腺炎
下一篇 MRI多b值DWI定量参数预测胃癌脉管侵犯的价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2