分享:
分享到微信朋友圈
X
临床研究
基于双参数磁共振成像的PI-RADS v2.1评分联合PSAD对移行带前列腺癌的诊断价值
陈维娟 赵飞 李新红 王志岗 苏贝贝 马妮

本文引用格式:陈维娟, 赵飞, 李新红, 等. 基于双参数磁共振成像的PI-RADS v2.1评分联合PSAD对移行带前列腺癌的诊断价值[J]. 磁共振成像, 2025, 16(8): 95-99, 105. DOI:10.12015/issn.1674-8034.2025.08.014.


[摘要] 目的 探讨基于双参数磁共振成像(biparametric magnetic resonance imaging, bpMRI)前列腺影像报告和数据系统2.1版(prostate imaging reporting and data system version 2.1, PI-RADS v2.1)评分联合前列腺特异性抗原密度(prostate specific antigen density, PSAD)对移行带前列腺癌(transitional zone prostate cancer, TZPCa)的诊断价值。材料与方法 回顾性分析115例经病理证实的前列腺疾病患者资料,分为TZPCa组和良性前列腺增生(benign prostatic hyperplasia, BPH)组,依据PI-RADS v2.1评分对MRI图像进行评分,采用单因素和多因素logistic回归分析患者的年龄、前列腺体积(prostate volume, PV)、总前列腺特异性抗原(total prostate specific antigen, tPSA)、游离前列腺特异性抗原(free PSA, fPSA)与tPSA的比值(fPSA/tPSA)、PSAD及PI-RADS v2.1评分等指标。通过受试者工作特征(receiver operating characteristic, ROC)曲线分析PI-RADS V2.1、PSAD及联合诊断对TZPCa的诊断效能,并计算曲线下面积(area under the curve, AUC)。结果 tPSA、fPSA/tPSA、PSAD与PI-RADS v2.1评分在TZPCa组与BPH组差异具有统计学意义(P<0.05);PI-RADS v2.1评分、PSAD是TZPCa的独立预测因子;PI-RADS v2.1评分、PSAD及联合模型诊断TZPCa的AUC分别为0.916 [95%置信区间(confidence interval, CI):0.864~1.000],0.812(95% CI:0.702~0.921),0.952(95% CI:0.903~1.000),联合模型诊断效能最优。结论 PI-RADS v2.1评分联合PSAD提高了对TZPCa的诊断价值,减少不必要的穿刺活检。
[Abstract] Objective To explore the diagnostic value of prostate imaging reporting and data system version 2.1 (PI-RADS v2.1) score based on biparametric magnetic resonance imaging (bpMRI) combined with prostate specific antigen density (PSAD) for transitional zone prostate cancer (TZPCa).Materials and Methods A retrospective analysis was conducted on 115 patients with prostate diseases confirmed by pathology, and patients were divided into TZPCa group and benign prostatic hyperplasia (BPH) groups. The MRI images were scored according to PI-RADS v2.1, univariate and multivariate logistic regression analyses were performed on the patients' age, prostate volume (PV), total prostate specific antigen (tPSA), the ratio of free PSA to tPSA (fPSA/tPSA), PSAD and PI-RADS v2.1 score. The diagnostic efficacy of PI-RADS V2.1, PSAD and combined diagnosis for TZPCa was analyzed by receiver operating characteristic (ROC) curve , and the area under the curve (AUC) was calculated.Results tPSA, fPSA/tPSA, PSAD, and PI-RADS v2.1 scores were statistically significant between TZPCa group and BPH group (P < 0.05); PI-RADS v2.1 score and PSAD were independent predictors of TZPCa; the AUC values of PI-RADS v2.1 score, PSAD and combined model for diagnosing TZPCa are 0.916 [95% confidence interval (CI): 0.864 to 1.000], 0.812 (95% CI: 0.702 to 0.921), and 0.952 (95% CI: 0.903 to 1.000) respectively. The combined model have the best diagnostic performance.Conclusions The combination of PI-RADS v2.1 score and PSAD improves the diagnostic value for TZPCa and reduces unnecessary biopsy.
[关键词] 前列腺癌;磁共振成像;前列腺特异性抗原密度;前列腺影像报告和数据系统
[Keywords] prostate cancer;magnetic resonance imaging;prostate specific antigen density;prostate imaging reporting and data system

陈维娟 1   赵飞 1*   李新红 2   王志岗 1   苏贝贝 1   马妮 1  

1 兵器工业总医院影像科,西安 710065

2 兵器工业总医院肿瘤科,西安 710065

通信作者:赵飞,E-mail:zhaocwj2021@163.com

作者贡献声明:陈维娟,赵飞,李新红,王志岗,苏贝贝,马妮参与选题和设计、资料的分析与解释;赵飞设计本研究的方案,对稿件的重要内容进行了修改;陈维娟起草和撰写稿件,获取、分析或解释本研究的数据;李新红,王志岗,苏贝贝,马妮获取、分析或解释本研究的数据,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-03-13
接受日期:2025-07-31
中图分类号:R445.2  R735.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.014
本文引用格式:陈维娟, 赵飞, 李新红, 等. 基于双参数磁共振成像的PI-RADS v2.1评分联合PSAD对移行带前列腺癌的诊断价值[J]. 磁共振成像, 2025, 16(8): 95-99, 105. DOI:10.12015/issn.1674-8034.2025.08.014.

0 引言

       前列腺癌(prostate cancer, PCa)是老年男性最常见的恶性肿瘤之一,在我国也已成为发病率最高的男性泌尿系统恶性肿瘤[1],早期筛查PCa可显著降低发病率和死亡率[2, 3]。移行带PCa(transitional zone PCa, TZPCa)占所有PCa的20%~30%,然而因前列腺的活检标本不能完全囊括移行区,因此初次活检中PCa的检出率非常低(2%~4%);老年人的前列腺移行带常见增生,往往包含大量的良性前列腺增生(benign prostatic hyperplasia, BPH)结节,与TZPCa很难区分,因此,通过影像学检查和精准诊断TZPCa对于临床选择合适的治疗方案显得尤为重要[4]。临床常用血清前列腺特异性抗原(prostate specific antigen, PSA)早期筛查PCa,但其特异性较低,PSA密度(PSA density, PSAD),是总PSA(total PSA, tPSA)与前列腺体积(prostate volume, PV)的比值,表示单位体积前列腺的tPSA值[5]。双参数磁共振成像(biparametric magnetic resonance imaging, bpMRI)与多参数磁共振成像(multiparametric magnetic resonance imaging, mpMRI)相较,省去了磁共振动态增强(dynamic contrast-enhanced images, DCE)扫描,不需要静脉注射对比剂,安全性更高,节省扫描时间,而诊断效能与mpMRI相当,因此,不包含DCE的bpMRI得到了广泛的关注[6, 7, 8]

       2019年发布的前列腺影像报告和数据系统2.1版(prostate imaging reporting and data system version 2.1,PI-RADS v2.1)对PCa的早期诊断及分期具有较高价值[9, 10],评分3~5分时,则需采取穿刺活检,部分患者仍会检出BPH,有过度穿刺的风险,有研究发现,PI-RADS v2.1评分联合PSAD已被证明可以预测活检结果,并可以减少不必要的活检[11, 12, 13]。既往PI-RADS v2.1评分联合PSAD诊断多研究外周带PCa,缺乏针对TZPCa的联合分析,本研究基于bpMRI的PI-RADS v2.1联合PSAD评估对TZPCa的诊断效能,提出适合中国人群的最佳阈值,减少不必要的活检。

1 材料与方法

1.1 研究对象

       回顾性分析我院2022年5月至2025年1月经手术病理或经穿刺活检证实的115例前列腺疾病患者资料。纳入标准:(1)前列腺活检前2个月内血清PSA值升高(>4 ng/mL);(2)行前列腺bpMRI检查前未行前列腺穿刺、手术、内分泌治疗,图像质量符合PI-RADS v2.1评分要求;(3)患者病灶位于移行带,并局限于前列腺内,MRI检查后1个月内经术后或穿刺病理证实。排除标准:(1)外周带前列腺癌;(2)PCa伴有包膜外侵犯,有远处转移者;(3)血清PSA>100 ng/mL的患者;(4)临床资料不完整者。本研究遵守《赫尔辛基宣言》,通过了兵器工业总医院伦理委员会批准,免除受试者知情同意,批准文号:202503142212000059819。

1.2 扫描方法

       115例患者使用德国西门子Simens Verio 3.0 T超导型MRI扫描仪,行常规MRI扫描,包括矢状面、冠状面、横断面的T1WI、T2WI、T2WI压脂序列,以及横断位扩散加权成像(diffusion weighted imaging, DWI)。扫描参数:T1WI序列,TR 680 ms,TE 11 ms,层厚6 mm,FOV 380 mm×380 mm;T2WI序列,TR 8500 ms,TE 139 ms,层厚3 mm,FOV 200 mm×200 mm;DWI序列:TR 5500 ms,TE 85 ms,FOV 200 mm×200 mm,层厚3 mm,b值分别为50、800、1500 s/mm2,选取b值为1500 s/mm2的图像进行分析,ADC图采用机器软件自动生成。

1.3 图像分析

       由两名具有10年磁共振经验的影像科副主任医师在不知病理结果情况下,独立盲法使用移行带T2WI、DWI图像对病灶进行PI-RADS v2.1评分,评分不一致时相互协商,最终结果达成一致。在MRI图像上测量前列腺大小,计算PV(最大横径×最大前后径×最大纵径×0.52)和PSAD(PSAD=tPSA/PV)值。详见图1图2

图1  男,67岁,前列腺增生,血清tPSA为13.0 ng/mL,前列腺体积为67.43 mL,PSAD为0.19 ng/mL2。1A:轴位T2WI示右侧移行带9点钟方向低信号结节(箭),直径约1.1 cm;1B:DWI(b值=1500 s/mm2)示病灶呈高信号;1C:ADC示病灶呈低信号,PI-RADS v2.1评分3分;1D:病理结果(HE ×40)为前列腺增生。
图2  男,60岁,前列腺癌,血清tPSA为32.1 ng/mL,前列腺体积为46.56 mL,PSAD为0.69 ng/mL2。2A:轴位T2WI示移行带左缘低信号病灶(箭),边缘模糊;2B:DWI(b值=1500 s/mm2)示病灶呈明显高信号;2C:ADC示病灶呈明显低信号,PI-RADS v2.1评分5分;2D:病理结果(HE ×40)为前列腺癌(Gleason评分4+4=8分)。tPSA:总前列腺特异性抗原;PSAD:前列腺特异性抗原密度;DWI:扩散加权成像;ADC:表观扩散系数;PI-RADS v2.1:前列腺影像报告和数据系统2.1版。
Fig. 1  Male, 67 years old, benign prostatic hyperplasia, serum tPSA: 13.0 ng/mL, prostate volume: 67.43 mL, PSAD: 0.19 ng/mL2. 1A: Axial T2WI shows a low signal nodule in the right transition zone at 9 o'clock (arrow), with a diameter of approximately 1.1 cm; 1B: DWI (b value = 1500 s/mm²) shows the lesion as a high signal; 1C: ADC shows the lesion as a low signal, PI-RADS v2.1 score 3; 1D: Pathological (HE × 40) result: benign prostatic hyperplasia.
Fig. 2  Male, 60 years old, prostate cancer, serum tPSA: 32.1 ng/mL, prostate volume: 46.56 mL, PSAD: 0.69 ng/mL². 2A: Axial T2WI shows a low-signal lesion at the left edge of the transition zone (arrow), with blurred margins; 2B: DWI (b value = 1500 s/mm2) shows the lesion as a significantly high signal; 2C: ADC shows the lesion as a significantly low signal, PI-RADS v2.1 score 5; 2D: Pathological (HE × 40) result: prostate cancer (Gleason score 4 + 4 = 8). tPSA: total prostate specific antigen; PSAD: prostate specific antigen density; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; PI-RADS v2.1: prostate imaging reporting and data system version 2.1.

1.4 统计学分析

       采用SPSS 27.0、Medcalc20.0软件进行统计学分析。计量资料采用Kolmogorov-Smirnov检验进行正态性检验,符合正态分布以均数±标准差表示,使用独立样本t检验进行组间比较,不符合正态分布用中位数(上、下四分位数)表示,使用秩和检验进行组间比较,计数资料采用频数(百分比)表示,使用独立样本χ2检验进行组间比较。采用二次加权Kappa一致性检验评估两位医师PI-RADS v2.1评分的一致性。采用二元logistic回归分析对年龄、PV、TPSA、fPSA/tPSA、PSAD及PI-RADS v2.1评分进行分析,向后剔除法筛选独立预测因子。使用受试者工作特征(receiver operating characteristic, ROC)曲线分析PI-RADS V2.1、PSAD及联合诊断TZPCa的诊断效能,计算曲线下面积(area under the curve, AUC)、敏感度、特异度、阈值,采用DeLong检验比较不同模型AUC值的差异性,P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       共纳入115例前列腺疾病患者的资料,其中:TZPCa组41例,年龄49~85岁(73.04±11.01)岁;BPH组74例,年龄50~87(69.56±7.27)岁。PI-RADS v2.1评分为3分者中检出6例TZPCa(13%,6/47),4分者检出12例TZPCa(71%,12/17),5分者检出23例TZPCa(88%,23/26)。tPSA、fPSA/tPSA、PSAD与PI-RADS v2.1评分在TZPCa组与TZ-BPH组差异具有统计学意义(P<0.05)。详见表1

表1  移行带前列腺癌组和前列腺增生组指标的差异性比较
Tab. 1  Comparison of the differences in indicators between transitional zone prostate cancer group and benign prostatic hyperplasia group

2.2 两位医师间PI-RADS v2.1评分的一致性

       Kappa系数值为0.85 [95%置信区间(confidence interval, CI):0.78~0.92;P<0.001],两位医师PI-RADS v2.1评分具有很强的一致性。

2.3 多因素logistic回归分析结果

       多因素logistic回归分析结果显示PI-RADS v2.1评分(OR=3.009,P=0.003)、PSAD(OR=2.017,P=0.009)是TZPCa的独立预测因子(表2)。

表2  多因素二元logistic回归分析结果
Tab. 2  Results of multivariate binary Logistic regression analysis

2.4 TZPCa诊断效能ROC曲线分析结果

       PI-RADS v2.1评分、PSAD、联合模型诊断TZPCa的AUC分别为0.916、0.812、0.952;联合诊断AUC值高于PI-RADS v2.1评分或PSAD单独使用,差异具有统计学意义(P<0.05)。联合模型较PI-RADS v2.1的AUC提升0.036(Z=3.27,P=0.001),较PSAD的AUC提升0.140(Z=6.09,P<0.001)。详见图3表3, 表4

图3  PI-RADS v2.1、PSAD及联合模型诊断TZPCa的ROC曲线。PI-RADS v2.1:前列腺影像报告和数据系统2.1版;PSAD:前列腺特异性抗原密度;TZPCa:移行带前列腺癌;ROC:受试者工作特征。
Fig. 3  The ROC curve analysis of PI-RADS v2.1, PSAD and combined model for diagnosing TZPCa. PI-RADS v2.1: prostate imaging reporting and data system version 2.1; PSAD: prostate specific antigen density; TZPCa: transitional zone prostate cancer; ROC: receiver operating characteristic.
表3  PI-RADS v2.1、PSAD及联合模型诊断TZPCa的ROC曲线分析
Tab. 3  The ROC curve analysis of PI-RADS v2.1, PSAD and combined model for diagnosing TZPCa
表4  不同模型AUC值的DeLong检验比较
Tab. 4  Comparison of AUC values between different models by DeLong test

3 讨论

       本文探讨了PI-RADS v2.1评分联合PSAD对TZPCa的诊断效能,结果表明两者是TZPCa的独立预测因子,PI-RADS v2.1评分联合PSAD后提高了对TZPCa的诊断价值,可减少假阳性,做到早期诊断和治疗,并为穿刺活检提供依据,指导靶向活检,避免过度穿刺活检。

3.1 基于bpMRI的PI-RADS v2.1评分对TZPCa的诊断价值

       MRI已经成为PCa定位、诊断和分期的关键成像技术[14],mpMRI包括T1WI、T2WI、DCE序列和DWI序列,bpMRI省去了DCE序列,节省了对比剂的成本,扫描速度更快,并且可以减少阅片时间,避免潜在的对比剂风险[15]。GREER等[16]研究表明虽然DCE可以提高外周带PI-RADS 2、3、4分病灶的癌检出率(cancer detection rate, CDR),但DCE可导致假阳性率高。bpMRI与mpMRI相比具有相似的诊断准确性,DCE是不必要的或次要的,尤其是在外周带病变[14, 17]

       PI-RADS是前列腺MRI的结构化报告系统,2019年欧洲泌尿生殖放射学协会在PI-RADS v2.0基础上修改,更新为PI-RADS v2.1版[18]。PI-RADS 5分的CDR为83%,PI-RADS 4分的CDR为60%,PI-RADS 3分的CDR为12%[19]。本组结果示PI-RADS v2.1是TZPCa的独立预测因子。VENDERINK等[20]研究报道对PI-RADS v2评分为3分并PSAD≥0.15 ng/mL2的患者进行穿刺活检时,可使42%的患者免于不必要的穿刺活检。姜安谧等[21]研究PI-RADS v2.1评分阈值为4分时,特异度为94%,敏感度为66%,特异度反而高于敏感度,进行联合应用后,敏感性度有一定提高。常规PI-RADS 4分组有更高的PCa诊断比例[22]。本研究PI-RADS v2.1评分诊断TZPCa阈值为4分时,特异度为95%,敏感度为77%,与姜安谧等[21]一致。我们研究发现移行带PI-RADS v2.1评分3分病灶的CDR为13%,4分病灶的CDR为71%,5分病灶的CDR为88%,评分3分时TZPCa的CDR较低,结合PSAD值可以减少不必要的穿刺活检,与文献报道[19]的研究结果基本一致。

3.2 PSAD对TZPCa的诊断价值

       PSA是由正常和恶变的前列腺细胞产生,可早期筛查PCa,但前列腺增生、前列腺炎等因素都可以导致PSA水平升高,其缺乏特异性[23, 24]。PSAD可以提高PSA的诊断价值并降低假阳性结果的可能性[12]。本研究回归分析结果显示PSAD是TZPCa的独立预测因子,表明对TZPCa有一定的诊断价值。PSA值在4~10 ng/mL之间时,PSAD值可以提高PSA对PCa的阳性预测值,从而减少不必要的穿刺活检[25]。WASHINO等[26]研究认为PSAD值阈值为0.15 ng/mL2时,诊断临床显著性PCa(clinically significant PCa, csPCa)的敏感度为99%,特异度为34%。YUSIM等[27]发现PSAD高于0.19 ng/mL2的患者30%~60%被诊断为csPCa,而PSAD低于0.09 ng/mL2的患者csPCa概率非常低(4%)。辛建英等[28]研究表明PSAD的诊断界值为0.47 ng/mL2,敏感度为79.1%,特异度分别为100.0%。我们的结果显示TZPCa组的PSAD值显著高于BPH组,差异具有统计学意义,PSAD的阈值为0.31 ng/mL2,敏感度为81%,特异度为75%。本研究阈值高于西方国家公认的0.15 ng/mL2,可能原因为我国患者体检意识较薄弱,部分患者就诊较晚,tPSA值比较高。

3.3 PI-RADS v2.1评分、PSAD单独及两者联合对TZPCa的诊断效能

       有研究表明,对于PI-RADS评分≥3分的患者,联合应用PSAD比单独使用PI-RADS可获得更高的CDR(50.0%~66.7% vs. 48%),可避免不必要的活检[29]。先前研究发现PI-RADS v2.1评分4分为阈值时AUC为0.948,证实了PI-RADS v2.1评分的诊断效能[30],较本研究的AUC值稍高。王焰峰等[31]评估PI-RADS v2.1评分联合PSAD诊断csPCa的价值,发现其联合应用(AUC=0.939)比PI-RADS v2.1评分(AUC=0.887)、PSAD(AUC=0.777)单独诊断csPCa的诊断效能更高。WEN等[32]研究单独使用PI-RADS 2.1和PSAD的AUC分别为0.875、0.712,联合使用时,AUC为0.893。本研究ROC曲线分析显示,PI-RADS v2.1评分AUC值为0.916,在单独指标中最高,表明在诊断TZPCa单一指标中诊断效能最高,与PSAD(AUC=0.812)联合后(AUC=0.952)诊断效能提升,优于单一指标,本研究与王焰峰等[31]的研究结果相似。

3.4 本研究的局限性

       首先,我们的研究为回顾性分析,可能产生选择偏倚影响结果的精确性,因此需要多中心研究结果验证;其次,本研究的病理结果28例来自手术病理,87例来自穿刺活检,穿刺活检可能会有假阴性,个别TZPCa有可能被遗漏;最后,研究的样本量比较少。在今后的研究中,我们将进一步扩大样本量进行深入研究。

4 结论

       综上所述,PI-RADS v2.1评分与PSAD联合后提高了对TZPCa诊断效能,联合模型优于使用单独指标,PI-RADS v2.1评分与PSAD的协同作用可减少假阳性,可以避免不必要的穿刺活检。

[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
VAN POPPEL H, ROOBOL M J, CHANDRAN A. Early detection of prostate cancer in the European union: combining forces with PRAISE-U[J]. Eur Urol, 2023, 84(6): 519-522. DOI: 10.1016/j.eururo.2023.08.002.
[3]
DE VOS I I, MEERTENS A, HOGENHOUT R, et al. A detailed evaluation of the effect of prostate-specific antigen-based screening on morbidity and mortality of prostate cancer: 21-year follow-up results of the Rotterdam section of the European randomised study of screening for prostate cancer[J]. Eur Urol, 2023, 84(4): 426-434. DOI: 10.1016/j.eururo.2023.03.016.
[4]
LEE M S, KIM Y J, MOON M H, et al. Transitional zone prostate cancer: Performance of texture-based machine learning and image-based deep learning[J/OL]. Medicine (Baltimore), 2023, 102(39): e35039 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/37773806/. DOI: 10.1097/MD.0000000000035039.
[5]
张云, 董喆, 刘百川, 等. 前列腺影像报告和数据系统2.1版联合前列腺特异性抗原密度对特异性抗原灰区前列腺临床显著癌的诊断价值[J]. 中国医学影像学杂志, 2024, 32(5): 492-498. DOI: 10.3969/j.issn.1005-5185.2024.05.015.
ZHANG Y, DONG Z, LIU B C, et al. Diagnosis of prostate imaging reporting and data system version 2.1 combined with PSAD for clinically significant prostate cancer in the gray zone of prostate-specific antigen[J]. Chin J Med Imag, 2024, 32(5): 492-498. DOI: 10.3969/j.issn.1005-5185.2024.05.015.
[6]
MICHAELY H J, ARINGHIERI G, CIONI D, et al. Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer: a systematic review[J/OL]. Diagnostics (Basel), 2022, 12(4): 799 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/35453847/. DOI: 10.3390/diagnostics12040799.
[7]
HU B B, ZHANG H L, ZHANG Y Y, et al. A nomogram based on biparametric magnetic resonance imaging for detection of clinically significant prostate cancer in biopsy-naïve patients[J/OL]. Cancer Imaging, 2023, 23(1): 82 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/37667393/. DOI: 10.1186/s40644-023-00606-2.
[8]
GONG L X, XU M, FANG M J, et al. Noninvasive prediction of high-grade prostate cancer via biparametric MRI radiomics[J]. J Magn Reson Imaging, 2020, 52(4): 1102-1109. DOI: 10.1002/jmri.27132.
[9]
王慧慧, 高歌, 何群, 等. 基于前列腺逐层切片病理PI-RADS v2.1与PI-RADS v2的评分比较[J]. 磁共振成像, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
WANG H H, GAO G, HE Q, et al. Comparison of scores between PI-RADS v2.1 and PI-RADS v2 based on prostate slice-by-slice pathology[J]. Chin J Magn Reson Imag, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
[10]
CHAI J G, LI Y H, KE C X. Development of novel nomograms for predicting prostate cancer in biopsy-naive patients with PSA < 10 ng/ml and PI-RADS≤3 lesions[J/OL]. Front Oncol, 2025, 14: 1500010 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/39839793/. DOI: 10.3389/fonc.2024.1500010.
[11]
DENIFFEL D, HEALY G M, DONG X, et al. Avoiding unnecessary biopsy: MRI-based risk models versus a PI-RADS and PSA density strategy for clinically significant prostate cancer[J]. Radiology, 2021, 300(2): 369-379. DOI: 10.1148/radiol.2021204112.
[12]
REN L, CHEN Y L, LIU Z X, et al. Integration of PSAd and multiparametric MRI to forecast biopsy outcomes in biopsy-naïve patients with PSA 4~20 ng/ml[J/OL]. Front Oncol, 2024, 14: 1413953 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/39026982/. DOI: 10.3389/fonc.2024.1413953.
[13]
陈志远, 张艳, 周懂晶, 等. 前列腺特异性抗原密度在前列腺影像报告和数据系统第二版评分为3分患者临床决策中的应用[J]. 中国医学影像技术, 2018, 34(6): 906-910. DOI: 10.13929/j.1003-3289.201712009.
CHEN Z Y, ZHANG Y, ZHOU D J, et al. Value of prostate specific antigen density in clinical decision-making for prostate imaging reporting and data system v2 category 3 lesions[J]. Chin J Med Imag Technol, 2018, 34(6): 906-910. DOI: 10.13929/j.1003-3289.201712009.
[14]
LI W, XU H B, SHANG W W, et al. Comparisons of three scoring systems based on biparametric magnetic resonance imaging for prediction of clinically significant prostate cancer[J]. Prostate Int, 2024, 12(4): 201-206. DOI: 10.1016/j.prnil.2024.08.002.
[15]
WALLSTRÖM J, GETERUD K, KOHESTANI K, et al. Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI Results from the Göteborg prostate cancer screening 2 trial[J]. Eur Radiol, 2021, 31(11): 8692-8702. DOI: 10.1007/s00330-021-07907-9.
[16]
GREER M D, SHIH J H, LAY N, et al. Validation of the dominant sequence paradigm and role of dynamic contrast-enhanced imaging in PI-RADS version 2[J]. Radiology, 2017, 285(3): 859-869. DOI: 10.1148/radiol.2017161316.
[17]
CUOCOLO R, VERDE F, PONSIGLIONE A, et al. Clinically significant prostate cancer detection with biparametric MRI: a systematic review and meta-analysis[J]. AJR Am J Roentgenol, 2021, 216(3): 608-621. DOI: 10.2214/AJR.20.23219.
[18]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[19]
KASIVISVANATHAN V, RANNIKKO A S, BORGHI M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis[J]. N Engl J Med, 2018, 378(19): 1767-1777. DOI: 10.1056/NEJMoa1801993.
[20]
VENDERINK W, VAN LUIJTELAAR A, BOMERS J G R, et al. Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer[J]. Eur Urol, 2018, 73(3): 353-360. DOI: 10.1016/j.eururo.2017.02.021.
[21]
姜安谧, 赵新湘. PSAD与PI-RADS V2.1评分在多灶性临床显著前列腺癌中的研究[J]. 临床放射学杂志, 2021, 40(6): 1166-1171. DOI: 10.13437/j.cnki.jcr.2021.06.028.
JIANG A M, ZHAO X X. Study of PSAD and PI-RADS V2.1 score in multifocal and clinically significant prostate cancer[J]. J Clin Radiol, 2021, 40(6): 1166-1171. DOI: 10.13437/j.cnki.jcr.2021.06.028.
[22]
袁昌巍, 李德润, 李志华, 等. 多参数磁共振成像中动态对比增强状态在诊断PI-RADS 4分前列腺癌中的应用[J]. 北京大学学报(医学版), 2023, 55(5): 838-842. DOI: 10.19723/j.issn.1671-167X.2023.05.010.
YUAN C W, LI D R, LI Z H, et al. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion[J]. J Peking Univ Health Sci, 2023, 55(5): 838-842. DOI: 10.19723/j.issn.1671-167X.2023.05.010.
[23]
赵莹莹, 方陈, 吴声连, 等. 基于Bp-MRI影像组学预测前列腺病变良恶性的效能及风险评估[J]. 磁共振成像, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
ZHAO Y Y, FANG C, WU S L, et al. Prediction and risk assessment of benign and malignant prostate lesions based on Bp-MRI radiomics[J]. Chin J Magn Reson Imag, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
[24]
CUSSENOT O, RENARD-PENNA R, MONTAGNE S, et al. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk[J]. BJU Int, 2023, 131(6): 745-754. DOI: 10.1111/bju.15968.
[25]
BAI X J, JIANG Y M, ZHANG X W, et al. The value of prostate-specific antigen-related indexes and imaging screening in the diagnosis of prostate cancer[J]. Cancer Manag Res, 2020, 12: 6821-6826. DOI: 10.2147/CMAR.S257769.
[26]
WASHINO S, OKOCHI T, SAITO K, et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients[J]. BJU Int, 2017, 119(2): 225-233. DOI: 10.1111/bju.13465.
[27]
YUSIM I, KRENAWI M, MAZOR E, et al. The use of prostate specific antigen density to predict clinically significant prostate cancer[J/OL]. Sci Rep, 2020, 10(1): 20015 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/33203873/. DOI: 10.1038/s41598-020-76786-9.
[28]
辛建英, 张文轩, 韩雨, 等. 基于PSAD及mp-MRI的联合模型对临床显著性前列腺癌诊断价值的研究[J]. 磁共振成像, 2025, 16(2): 72-76, 141. DOI: 10.12015/issn.1674-8034.2025.02.011.
XIN J Y, ZHANG W X, HAN Y, et al. Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer[J]. Chin J Magn Reson Imag, 2025, 16(2): 72-76, 141. DOI: 10.12015/issn.1674-8034.2025.02.011.
[29]
WANG Z B, WEI C G, ZHANG Y Y, et al. The role of psa density among PI-RADS v2.1 categories to avoid an unnecessary transition zone biopsy in patients with psa 4-20 ng/mL[J/OL]. Biomed Res Int, 2021, 2021: 3995789 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/34671673/. DOI: 10.1155/2021/3995789.
[30]
林燕顺, 张丽, 郑鹏翔, 等. 评估PI-RADS v2.1及多参数MRI衍生标志物用于移行带临床显著性前列腺癌检测价值的研究[J]. 磁共振成像, 2024, 15(10): 109-114. DOI: 10.12015/issn.1674-8034.2024.10.019.
LIN Y S, ZHANG L, ZHENG P X, et al. Evaluation of the value of PI-RADS v2.1 and multiparametric MRI-derived biomarkers in detecting clinically significant prostate cancer in transition zone[J]. Chin J Magn Reson Imag, 2024, 15(10): 109-114. DOI: 10.12015/issn.1674-8034.2024.10.019.
[31]
王焰峰, 魏超刚, 张跃跃, 等. 基于PI-RADS v2.1双参数MRI联合前列腺特异性抗原密度对显著性前列腺癌的诊断效能[J]. 放射学实践, 2021, 36(10): 1253-1258. DOI: 10.13609/j.cnki.1000-0313.2021.10.011.
WANG Y F, WEI C G, ZHANG Y Y, et al. Diagnostic performance of biparametric MRI combined with PSAD in the diagnosis of clinically significant prostate cancer based on PI-RADS v2.1[J]. Radiol Pract, 2021, 36(10): 1253-1258. DOI: 10.13609/j.cnki.1000-0313.2021.10.011.
[32]
WEN J, LIU W, SHEN X C, et al. PI-RADS v2.1 and PSAD for the prediction of clinically significant prostate cancer among patients with PSA levels of 4-10 ng/ml[J/OL]. Sci Rep, 2024, 14(1): 6570 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/38503972/. DOI: 10.1038/s41598-024-57337-y.

上一篇 MRI多b值DWI定量参数预测胃癌脉管侵犯的价值研究
下一篇 人体腰椎骨髓脂肪含量与增龄的相关性分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2