分享:
分享到微信朋友圈
X
技术研究
胸部PET/MR检查18F-FDG剂量减低的可行性研究
顾海峰 李昂 蔡军 张龙江

本文引用格式:顾海峰, 李昂, 蔡军, 等. 胸部PET/MR检查18F-FDG剂量减低的可行性研究[J]. 磁共振成像, 2025, 16(8): 123-130. DOI:10.12015/issn.1674-8034.2025.08.018.


[摘要] 目的 探究胸部正电子发射断层/磁共振(positron emission tomography/magnetic resonance, PET/MR)检查中18F-氟代脱氧葡萄糖(18F-fluorodeoxyglucose, 18F-FDG)使用剂量降低对正电子发射断层(positron emission tomography, PET)图像质量及病变可检测性的影响。材料与方法 回顾性分析2022年3月至2023年8月于东部战区总医院放射诊断科使用SIGNA PET/MR行18F-FDG胸部PET/MR检查(注射剂量3.70 MBq/kg)的患者图像118例,所有图像中均有异常放射性核素浓聚病灶。用5个不同PET采集时间(20、10、5、2、1 min)对列表(list-mode, list)数据回顾性重建,分别模拟100%、50%、25%、10%、5% 18F-FDG注射剂量,记作G100、G50、G25、G10、G5。用李克特5分法对5组图像整体质量进行主观评分,采用Friedman检验比较各组间差异。客观分析指标包括病变标准化摄取值(standardized uptake value, SUV)的最大值(maximum SUV of lesion, L-SUVmax)、平均值(mean SUV of lesion, L-SUVmean)、标准差(standard deviation of lesion SUV, L-SUVsd)、背景SUV标准差(standard deviation of background SUV, B-SUVsd)、病变信噪比(signal-to-noise ratio of lesion, L-SNR)、图像噪声比(image noise ratio, IN)和L-SUVmax相对背景噪声比(lesion-to-background ratio, LBR),采用单因素重复测量方差分析比较各指标组间整体差异,组间两两比较采用Bonferroni校正。以G100为参考,评估其他组病变可检测性。结果 5组18F-FDG模拟剂量越高图像整体质量的主观评分也越高(P<0.05)。G25、G50、G100图像质量可满足临床诊断需求,均评分>4分。各组L-SUVmax、L-SUVmean、L-SUVsd、IN和LBR随18F-FDG模拟剂量增加而降低,差异有统计学意义(均P<0.05),L-SNR随18F-FDG模拟剂量增加而增加,差异亦有统计学意义(P<0.05)。组间比较结果:在L-SUVmax和L-SUVsd上G25、G50、G100任意两组相比差异均无统计学意义(均P>0.05),其余任意两组相比差异均有统计学意义(均P<0.05);L-SUVmean和L-SNR上,G5、G10两组之间或G25、G50、G100三组之间对比差异均无统计学意义(均P>0.05),其余任意两组相比差异均有统计学意义(均P<0.05);IN上,5组之间任意两组对比差异均有统计学意义(均P<0.05);LBR上,G5和G10、G25和G100、G50和G100对比差异均无统计学意义(均P>0.05),余任意两组相比差异均有统计学意义(均P<0.05)。以G100为参考,G50、G25、G10、G5漏检率分别为1.4%、2.4%、4.4%、6.8%。结论 使用SIGNA PET/MR,若胸部18F-FDG PET/MR检查PET时间为20 min,18F-FDG剂量可由3.70 MBq/kg减少至0.93 MBq/kg,用量减少了75%,这不会改变PET图像质量及定量评估结果。
[Abstract] Objective To investigate whether the dose of 18F-fluorodeoxyglucose (18F-FDG) used in chest positron emission tomography/magnetic resonance (PET/MR) examinations can be reduced while ensuring image quality and diagnostic accuracy.Materials and Methods A total of 118 patients with abnormal radionuclide accumulation lesions who underwent 18F-FDG chest PET/MR examination (injected dose of 3.70 MBq/kg) using SIGNA PET / MR in the General Hospital of Eastern Theater Command between March 2022 and August 2023 were retrospectively analyzed. Five different PET acquisition times (20 min, 10 min, 5 min, 2 min, 1 min) were used to retrospectively reconstruct the list-mode (list) data, which were used to simulate 100%, 50%, 25%, 10%, and 5% 18F-FDG injection dose, named as G100, G50, G25, G10, and G5 groups. The overall image quality of the five groups was subjectively scored on a 5-point Likert scale, and the Friedman test was used to compare the differences between the groups. Objective analysis metrics included maximum standardized uptake value (SUV) (L-SUVmax), mean SUV (L-SUVmean), and standard deviation (L-SUVsd) of the lesions SUV, standard deviation of background SUV (B-SUVsd), signal-to-noise ratio of the lesions (L-SNR), image noise ratio (IN), and L-SUVmax relative to background noise ratio (LBR), and the differences of the metrics between groups were compared using the One-Way Repeated Measures ANOVA, with post hoc inter-subgroups analyses using Bonferroni correction. G100 served as the reference for the other 4 groups to assess their lesion detectability.Results Higher 18F-FDG doses also resulted in higher subjective scores in all 5 groups (P < 0.05). G25, G50, and G100 had high image quality to satisfy clinical diagnostic needs (all scores > 4). The L-SUVmax, L-SUVmean, L-SUVsd, IN and LBR decreased with the increase of 18F-FDG dose in each dose group, and the difference was statistically significant (all P < 0.05), and L-SNR decreased with the 18F-FDG dose increased, and the difference was also statistically significant (P < 0.05). In post hoc inter-subgroups analyses, there was no significant difference in G25, G50 and G100 between any two groups at L-SUVmax and L-SUVsd (all P > 0.05), but there was significant difference between any other two groups (all P < 0.05). There was no significant difference in L-SUVmean and L-SNR between G5 and G10 groups or between G25, G50 and G100 groups (all P > 0.05), and there was significant difference between the other two groups (all P < 0.05). There were significant differences between any two groups in IN (all P < 0.05). There was no significant difference between G5 and G10, G25 and G100, G50 and G100 on LBR (all P > 0.05), and there was significant difference between any other two groups (all P < 0.05). With G100 as the reference, the missed detection rates in G50, G25, G10 and G5 groups were 1.4%, 2.4%, 4.4% and 6.8%, respectively.Conclusions Using SIGNA PET/MR, if the PET scan time of the chest 18F-FDG PET/MR examination is 20 min, the 18F-FDG injection dose can be reduced from 3.70 MBq/kg to 0.93 MBq/kg, and the dosage is reduced by 75%, which will not affect PET image quality and quantitative assessment results.
[关键词] 肺结节;非小细胞肺癌;18F-氟代脱氧葡萄糖;标准摄取值;低剂量;正电子发射断层成像;磁共振成像
[Keywords] lung nodule;non-small cell lung cancer;18F-fluorodeoxyglucose;standardized uptake value;low dose;positron emission tomography;magnetic resonance imaging

顾海峰    李昂    蔡军    张龙江 *  

南京大学医学院附属金陵医院(东部战区总医院)放射科,南京 210002

通信作者:张龙江,E-mail:kevinzhlj@163.com

作者贡献声明:张龙江设计本研究的方案,对稿件重要内容进行了修改;顾海峰起草和撰写稿件,获取、分析本研究的数据;李昂、蔡军获取、分析或解释本研究的数据,对稿件重要内容进行了修改;顾海峰获得了东部战区总医院临床诊疗新技术项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 东部战区总医院临床诊疗新技术项目 22LCZLXJS64
收稿日期:2025-05-14
接受日期:2025-07-31
中图分类号:R445.2  R816.41  R323.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.018
本文引用格式:顾海峰, 李昂, 蔡军, 等. 胸部PET/MR检查18F-FDG剂量减低的可行性研究[J]. 磁共振成像, 2025, 16(8): 123-130. DOI:10.12015/issn.1674-8034.2025.08.018.

0 引言

       胸部疾病尤其是肺癌是全球癌症相关死亡的重要原因之一[1]。原发性肺肿瘤及远处转移的存在,不仅影响治疗方案的选择,还对患者的预后产生显著影响[2]。影像学检查凭借其独特的优势,在胸部疾病的诊断中发挥着不可或缺的作用,为临床决策提供了重要依据。计算机断层扫描(computed tomography, CT)被公认为识别胸部病变的金标准[3]。正电子发射体层成像(positron emission tomography, PET)/CT不仅能提供病变的良恶性信息,还能准确评估淋巴结转移情况[4]。然而,频繁进行CT或PET/CT扫描会因潜在的电离辐射伤害而对患者造成不利影响[5]。MRI因无电离辐射且被证实可作为评价肺结节和胸部恶性肿瘤的重要方法之一[6, 7, 8],尤其与PET结合后的PET/MR,不仅避免了CT的电离辐射,还能同时提供功能代谢信息和高分辨力的MRI解剖图像,其优势更加明显[9, 10, 11]。鉴于PET/MR在减少辐射暴露和提供综合诊断信息方面的独特优势,其在胸部疾病的诊断评估、鉴别诊断、肿瘤定性、良恶性鉴别、肿瘤分期、治疗后复查、放化疗评估、复发检测及纵隔病变评估等方面具有重要的应用价值[12, 13],尤其适合对射线敏感的高风险人群,包括长期吸烟、有家族病史及职业暴露等重点人群的肿瘤早期探查[14, 15, 16]

       PET/MR虽无电离辐射,但为获得PET图像,仍需注射一定剂量放射性示踪剂,这对患者、陪同人员及医务人员均有一定γ辐射暴露风险。高剂量γ辐射会增加致癌风险[17, 18]。降低γ射线辐射暴露最直接有效的方法就是降低核素使用剂量[19]。然而,PET图像形成基于对光子湮灭事件的检测与记录,其图像质量与核素剂量和PET采集时间乘积成正比。临床上18F-氟代脱氧葡萄糖(18F-fluorodeoxyglucose, 18F-FDG)常规推荐剂量为3.70 MBq/kg[20],直接降低其使用剂量会导致PET光子计数减少,从而降低图像质量,这在临床上通常不被推荐[21, 22]。现代PET/MR设备由于配备了更高灵敏度PET探测器、更先进飞行时间(time-of-flight, TOF)技术[23]、更新迭代重建算法[24, 25, 26]以及与PET/CT相比更长PET采集时间以匹配较长的MRI扫描时间,有能力在保证图像质量前提下减少核素使用剂量。另外,目前PET/MR核素使用指南仍沿用了PET/CT标准[20],主要基于体模研究、理论模型计算或对不同人群检查的回顾性评价来获得,对不同剂量在同一个体内对图像质量影响的前瞻性研究伦理上行不通,因此,GATIDIS等[27]提出了一种新方法,通过对PET列表(list-mode, list)数据随机欠采样来模拟PET的核素剂量降低,开创了核素前瞻性研究新思路。目前,国内外关于PET/MR降低核素使用剂量研究多集中在单床位颅脑[28, 29]或儿童全身多床位[30, 31, 32]扫描中,对受限MRI检查的胸部并没涉及,也没在成人中开展更多研究。本研究旨在通过对list数据采用不同PET采集时间回顾性重建,来模拟同一患者较低的核素使用剂量,以此来寻找成人胸部PET/MR检查时最佳核素使用剂量,最大限度降低患者的辐射暴露。

1 材料与方法

1.1 研究对象

       本研究为回顾性研究。连续收集了2023年1月至2024年12月在东部战区总医院放射诊断科行18F-FDG胸部PET/MR检查的患者图像118例,其中男85例,女33例,年龄39~84(63.6±9.5)岁。纳入标准:胸部PET/MR图像中存在异常放射性核素浓聚病灶。排除标准:(1)存在明显运动伪影(图像出现呼吸或心跳导致的拖尾或重影等,被2位医师共同判定为无法诊断);(2)单床位胸部PET时间<20 min;(3)近期内接受过肿瘤相关治疗(末次化学治疗、注射升蛋白针等<1个月,末次放射治疗<2个月)[33]。本研究遵守《赫尔辛基宣言》,获得东部战区总医院医学伦理委员会批准,免除受试者知情同意书,批准号:2025DZKY-047-01。

1.2 胸部PET/MR扫描

       所有检查均在一台一体化3.0 T TOF PET/MR(SIGNA PET/MR, GE Healthcare)成像系统上完成。患者检前24 h内禁止剧烈运动,检前4~6 h禁食以便血糖浓度控制在11.0 mmol/L以内,糖尿病患者应保持治疗以控制血糖。检查时需要采集患者身高、体质量、血糖等信息,18F-FDG(南京江原安迪科正电子研究发展有限公司)放化纯度>90%,严格按照患者体质量3.70 MBq/kg给药,然后引导患者到候检室静卧休息,60 min后嘱患者排空小便、去除各种异物、更换衣物后开始检查。采用头先进、仰卧位体位进行扫描,使用呼吸波纹管监测呼吸运动。先进行4~5个床位(2 min/床位)快速全身PET/MR扫描,扫描范围从颅顶到大腿根部,然后再行胸部PET/MR扫描。

       胸部PET采用呼吸门控1床位扫描并以list形式记录与存储,具体扫描位置参照快速全身PET/MR结果来设置。胸部MR与胸部PET同时进行,先进行MR衰减校正(MR attention correction, MRAC)扫描,然后再依次行常规序列扫描,包括:(1)横断面快速恢复快速自旋回波T2加权成像(T2 weighted imaging, T2WI)序列,呼吸门控,层厚4.0 mm,层间距0.4 mm,FOV 420 mm×378 mm,时长约6 min;(2)横断面伴有容积加速的肝脏采集T1加权成像(T1 weighted imaging, T1WI)序列,屏气采集,层厚2.0 mm,无层间距,FOV 420 mm×336 mm,时长约4 min 25 s;(3)横断面扩散加权(diffusion weighted imaging, DWI)序列,呼吸门控,层厚4.0 mm,层间距0.8 mm,FOV 420 mm×378 mm,时长约4 min 27 s;(4)冠状面螺旋桨扫描序列,呼吸门控,层厚4.0 mm,层间距0.8 mm,FOV 420 mm×420 mm,时长约4 min 25 s。以上所有胸部MRI扫描时长合计约为20 min,PET时长故设为20 min。

1.3 低剂量胸部PET图像重建

       参照GATIDIS等[27]结果,将胸部PET扫描获得的list数据依次按照20、10、5、2、1 min采集时间进行回顾性重建,分别用来模拟注射18F-FDG全剂量的100%、50%、25%、10%、5%剂量图像,对应于注射核素剂量为3.70、1.85、0.93、0.37、0.19 MBq/kg,并分别记为G100、G50、G25、G10、G5。其余PET重建参数均相同:静态采集模式、TOF技术、点扩散函数、2次迭代28个子集的有序子集最大期望值迭代算法、5.0 mm截止频率、标准Z轴滤过算法、600 mm×250 mm显示野、256×256矩阵、2.8 mm层厚。

1.4 PET图像质量评价

1.4.1 主观图像质量评价

       主要对整体图像质量进行主观评分。由2位分别在胸部诊断方面有16年经验的主任医师和14年经验的副主任医师利用AW 4.7工作站(Advantage Workstation, version 4.7, GE Healthcare)的PET VCAR软件分别对5组不同18F-FDG模拟剂量图像进行分析。每位患者的诊断结果对2位医生不设盲,但病灶位置、大小、数量、分布以及患者身份信息设盲。同一患者不同模拟剂量组图像随机排序同时呈现并对2位医生设盲,然后采用李克特5分法进行评分[34]:1分,背景噪声极大、图像质量很差,无法将病灶从背景里分辨出来;2分,背景噪声明显、图像质量受限,仅能隐约将病灶从背景里分辨出来;3分,背景噪声中等、图像质量尚可,能将病灶从中等背景噪声里区分出来;4分,背景噪声轻微、图像质量较好,能将病灶从轻微背景噪声里区分出来;5分,无背景噪声、图像质量极好,能将病灶从无背景噪声里直接找到。其中,4~5分被认为图像质量能满足诊断要求。2位医生评分过程中如遇分歧则通过联合读片后商议解决。

1.4.2 客观图像质量评价

       主要对图像相关定量指标进行评价。由1位参与主观评价的医生(有14年经验的副主任医师)在其完成主观评价后再利用PET VCAR软件进行图像客观参数测量与计算,评价中对患者及病灶各种信息均不设盲,以更好识别病变。每例患者5组不同模拟剂量图像按照从高到低顺序同时呈现,测量者在G100上测量病变,软件自动同步扩展到其他各组,病灶大小阈值的识别通过迭代自适应算法自动分割[35],测量者核对自动分割的准确性。另外,在G100上选取气管分叉处升主动脉管腔作背景,避开钙化及血管壁,手动放置直径1~2 cm的圆形兴趣区(region of interest, ROI)并复制到其他各组进行背景信息测量。需要测量或计算的参数如下:

       (1)标准化摄取值(standardized uptake value, SUV)相关指标:病变SUV最大值(maximum SUV of lesion, L-SUVmax)、病变SUV平均值(mean SUV of lesion, L-SUVmean)、病变SUV标准差(standard deviation of lesion SUV, L-SUVsd)、背景SUV平均值(mean SUV of background, B-SUVmean)、背景SUV标准差(standard deviation of background SUV, B-SUVsd);(2)计算病变信噪比(signal-to-noise ratio of lesion, L-SNR);(3)计算图像噪声比(image noise ratio, IN);(4)计算L-SUVmax相对背景噪声比(lesion-to-background ratio, LBR)。相关计算公式见式(1)~(3[36]

1.4.3 病变可检测性评价

       与客观图像质量评价同时进行,主要通过计算5组图像的病变漏检率来完成。测量者在利用PET VCAR测量图像客观参数同时,记录每例患者的病灶总数,以G100的结果作参考,记录其他4组未被正确识别以及被漏掉的病变个数,并由主观评价时另一位诊断医生完成最终确认,意见不一致时通过协商解决。

1.5 统计学分析

       使用IBM SPSS 23.0进行统计学分析处理。所有计量资料符合正态分布采用x¯±s表示,不符合正态分布采用MQ1,Q3)表示。利用Cohen's Kappa检验评价2位医生主观评分的一致性,当Kappa值在0.41~0.60、>0.60~0.80、>0.80~0.99分别表示一致性中等、良好、极佳;2位医生主观评分结果比较采用Friedman检验,客观图像质量结果比较采用单因素重复测量方差分析,进一步组间比较采用Bonferroni校正。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       以G100为标准,118例胸部疾病的患者中,每位患者至少有1例病灶,最多有9个病灶,异常高摄取病灶累计共295个。

2.2 图像质量

2.2.1 主观图像质量

       全部118例患者图像均纳入了本次评价。2位医生主观评分及各组间比较结果见表1。随着18F-FDG模拟剂量的增加每位医生的主观评分也越高(均P<0.05)。两位医生联合读片的李克特评分从G5的2(2,3)增加到G100的5(5,5),5组之间差异有统计学意义(P<0.05)。两两比较中,除G50和G100差异无统计学意义(P>0.05)外,其余各组之间差异均有统计学意义(均P<0.05)。另外,联合读片结果在G25、G50、G100上均≥4分,图像质量很高,可满足临床诊断需求;在G5、G10分别有118例和77例评分低于4分,不能满足临床诊断需求。主观评分中,2位医生对G5评分的一致性中等(Kappa值:0.56,P<0.05)、对G10、G25、G50评分的一致性良好(Kappa值:0.66、0.68、0.72,均P<0.05)、对G100评分的一致性极佳(Kappa值:0.86,P<0.05)。

图1  胸部PET/MR检查5种不同18F-FDG模拟剂量下L-SUVmax(1A)、L-SUVmean(1B)、L-SUVsd(1C)、IN(1D)、L-SNR(1E)及LBR(1F)小提琴图。PET/MR:正电子发射断层/磁共振;18F-FDG:18F-氟代脱氧葡萄糖;L-SUVmax:病变标准化摄取值最大值;L-SUVmean:病变标准化摄取值平均值;L-SUVsd:病变标准化摄取值标准差;IN:图像噪声比;L-SNR:病变信噪比;LBR:L-SUVmax相对背景噪声比;G5~G100分别表示18F-FDG模拟剂量为0.19、0.37、0.93、1.85、3.70 MBq/kg图像。小提琴图内部黄色横虚线代表中位数,上下黑横实线代表上下四分位数;小提琴图顶部小写字母a、b、c、d代表组间对比差异是否有统计学意义,相同字母表示差异无统计学意义,不同字母表示差异有统计学意义(如LBR中,G5为“a”、G10为“a”、G25为“b”、G100为“bc”,代表两两比较中G5与G10、G25与G100差异无统计学意义,G5与G25、G5与G100差异有统计学意义)。
Fig. 1  L-SUVmax (1A), L-SUVmean (1B), L-SUVsd (1C), IN (1D), L-SNR (1E), and LBR (1F) violin plots of 5 different 18F-FDG simulated doses for chest PET/MR examination. PET/MR: positron emission tomography/magnetic resonance; 18F-FDG: 18F-fluorodeoxyglucose; L-SUVmax: maximum standardized uptake value (SUV) of lesion; L-SUVmean: mean SUV of lesion; L-SUVsd: standard deviation of lesion SUV; IN: image noise ratio; L-SNR: signal-to-noise ratio of lesion; LBR: lesion-to-background ratio; G5-G100: represent the 5%, 10%, 25%, 50%, and 100% photon counting images of 3.70 MBq/kg administered by patient body mass and PET acquisition time of 20 min, i.e., 18F-FDG simulated doses of 0.19 MBq/kg, 0.37 MBq/kg, 0.93 MBq/kg, and 1.85 MBq/kg, respectively, 3.70 MBq/kg images. The yellow horizontal dashed line inside the violin plots represents the median, and the black horizontal solid lines above and below represent the upper and lower quartiles; The letters a, b, c, and d at the top of the violin plots represent whether or not there is a statistical difference in the between-group comparison, with the same letter indicating that the difference is not statistically significant, and different letters indicating that the difference is statistically significant (e.g., in the LBR, “a” for G5, “a” for G10, G25 is “b” and G100 is “bc”, which means that the difference between G5 and G10, G25 and G100 in two-by-two comparison is not statistically significant, and the difference between G5 and G25, G5 and G100 is statistically significant).
图2  胸部PET/MR检查5种不同18F-FDG模拟剂量下L-SUVmax(2A)、L-SUVmean(2B)、L-SUVsd(2C)、IN(2D)、L-SNR(2E)及LBR(2F)折线图。PET/MR:正电子发射断层/磁共振;18F-FDG:18F-氟代脱氧葡萄糖;L-SUVmax:病变标准化摄取值最大值;L-SUVmean:病变标准化摄取值平均值;L-SUVsd:病变标准化摄取值标准差;IN:图像噪声比;L-SNR:病变信噪比;LBR:L-SUVmax相对背景噪声比;G5~G100:分别表示18F-FDG模拟剂量为0.19、0.37、0.93、1.85、3.70 MBq/kg图像。
Fig. 2  L-SUVmax (2A), L-SUVmean (2B), L-SUVsd (2C), IN (2D), L-SNR (2E), and LBR (2F) line charts of 5 different 18F-FDG simulated doses for chest PET/MR examination. PET/MR: positron emission tomography/magnetic resonance; 18F-FDG: 18F-fluorodeoxyglucose; SUV: standardized uptake value; L-SUVmax: maximum SUV of lesion; L-SUVmean: mean SUV of lesion; L-SUVsd: standard deviation of lesion SUV; IN: image noise ratio; L-SNR: signal-to-noise ratio of lesion; LBR: lesion-to-background ratio; G5-G100: represent the 5%, 10%, 25%, 50%, and 100% photon counting images of 3.70 MBq/kg administered by patient body mass and PET acquisition time of 20 min, i.e., 18F-FDG simulated doses of 0.19 MBq/kg, 0.37 MBq/kg, 0.93 MBq/kg, and 1.85 MBq/kg, respectively, 3.70 MBq/kg images.
表1  5种不同18F-FDG模拟剂量下图像的主观评分结果
Tab. 1  Results of subjective scores of 5 different 18F-FDG simulated doses

2.2.2 客观图像质量

       118例患者图像中共有275个在5组图像中都能被检测到的异常放射性核素浓聚病灶,纳入了本次评价,具体结果见表2图1图2。5组比较中,L-SUVmax、L-SUVmean、L-SUVsd、IN和LBR都随着18F-FDG模拟剂量增加而降低,差异均有统计学意义(均P<0.05),而L-SNR随着18F-FDG模拟剂量增加而增加,差异亦有统计学意义(P<0.05)。

       事后两两比较结果:在L-SUVmax和L-SUVsd上,G25、G50、G100任意两组相比差异均无统计学意义(均P>0.05),其余任意两组相比差异均有统计学意义(均P<0.05);在L-SUVmean和L-SNR上,G5组和G10组之间对比或G25、G50、G100三组之间对比差异均无统计学意义(均P>0.05),其余任意两组相比差异均有统计学意义(均P<0.05);在IN上,5组之间任意两组对比差异均有统计学意义(均P<0.05);在LBR上,G5和G10、G25和G100、G50和G100对比时差异均无统计学意义(均P>0.05),余下任意两组相比差异均有统计学意义(均P<0.05)。另外,通过绘制的小提琴图(图1)可以得到大致的数据分布情况:G5和G10分别在L-SUVmax、L-SUVmean、L-SUVsd、LBR对应的15、8、2、25以上区域有更大的上限值和离散程度,表示两组数据偏度(右偏)和数据波动更大。

表2  5种不同18F-FDG模拟剂量下图像的L-SUVmax、L-SUVmean、L-SUVsd、L-SNR、IN及LBR测量对比结果
Tab. 2  Results of comparison of 5 different 18F-FDG simulated doses in L-SUVmax, L-SUVmean, L-SUVsd, L-SNR, IN and LBR

2.2.3 病变可检测性

       118例患者图像中共包含295个病灶,各组病灶检出情况:G100内检出了全部295个病灶;G50、G25漏检率分别为1.4%(4/295)、2.4%(7/295);G10中漏检11个病灶,多检出2个假阳性病灶被手动剔除,总漏检率为4.4%(13/295);G5中漏检17个病灶,多检出3个假阳性病灶被手动剔除,总漏检率为6.8%(20/295)。患者典型图像见图3

图3  同一患者(男,69岁,肺癌)5种不同18F-FDG模拟剂量20 min胸部PET/MR图像。图为18F-FDG模拟剂量为5%、10%、25%、50%、100%的3D最大密度投影(3A~3E)、横断面图像(3F~3J)以及PET与MR横断面融合图像(3K~3O)。可见25%、50%、100%模拟剂量组图像噪声较小、病灶(箭)清晰可见,10%模拟剂量组图像噪声明显、病灶(箭)隐约可见,5%模拟剂量组噪声很大、病灶(箭)不容易分辨。PET/MR:正电子发射断层/磁共振;18F-FDG:18F-氟代脱氧葡萄糖。
Fig. 3  PET/MR images of the same patient (male, 69 years old, lung cancer) with 5 different 18F-FDG simulated doses. The figures show 3D maximum intensity projections (3A-3E), axial images (3F-3J), and PET and MR cross-sectional fusion images (3K-3O) for 18F-FDG simulated doses of 5%, 10%, 25%, 50%, and 100%, respectively. The image noise of the 25 %, 50 % and 100 % simulated dose groups is small and the lesions (arrows) are clearly visible. The image noise of the 10 % simulated dose group is obvious and the lesions (arrows) are vaguely visible. The noise of the 5 % simulated dose group is very large and the lesions (arrows) are not easy to distinguish. PET/MR: positron emission tomography/magnetic resonance; 18F-FDG: 18F-fluorodeoxyglucose.

3 讨论

       本研究采用一体化3.0 T TOF PET/MR成像系统,通过利用list数据来模拟低光子计数PET重建,从而获得18F-FDG模拟剂量为100%、50%、25%、10%、5%的PET图像。然后对这5种图像对比分析,探讨了降低18F-FDG剂量对PET图像质量及病变可检测性的影响。研究结果显示,当胸部PET时间为20 min时,18F-FDG剂量可从常规剂量3.70 MBq/kg降低至25%(即0.93 MBq/kg),而不影响图像质量及病变可检测性。这是国内首次在胸部PET/MR检查中系统验证了如此大幅度降低18F-FDG剂量的可行性和有效性。此外,本研究还提出了在保持图像质量的前提下,通过延长PET扫描时间来进一步降低核素使用剂量的策略,这一策略不仅适用于胸部PET/MR检查,还可以尝试推广到其他部位,具有重要的临床应用前景。

3.1 胸部PET/MR临床应用价值

       本研究进一步证实了PET/MR在胸部疾病评估中的优势。研究结果显示,当PET扫描时间为20 min时,18F-FDG剂量可从3.70 MBq/kg降低至0.93 MBq/kg,而不影响图像质量及病变可检测性。这一发现严格遵循了辐射防护与安全最优化(As Low As Reasonably Achievable, ALARA)原则在PET/MR检查中的应用,即在不影响诊断的前提下尽可能降低辐射剂量。这一发现不仅为临床研究中降低辐射剂量提供了新思路,更为临床实践中降低辐射剂量提供了重要的参考依据,显著减少了患者的辐射暴露,提高检查的安全性。值得注意的是,已有研究表明,PET/MR在胸部疾病评估中具有显著优势,尤其是在非小细胞肺癌的分期中,能够更准确地评估胸壁、横膈及纵隔的受侵情况[37, 38, 39]。这些优势为临床提供了更全面的诊断信息,有助于更精准的治疗决策。

3.2 胸部PET/MR 18F-FDG剂量结果及原因分析

       本研究发现,100%、50%、25%的18F-FDG模拟剂量组在主观和客观图像质量评价中均无显著差异,且图像质量能满足临床诊断要求。这一结果与SORET等[40]在颅脑PET/MR研究中发现的18F-FDG剂量降低50%而不损失诊断性能的结果一致,但本研究进一步验证了在胸部PET/MR检查中,剂量可以降低至25%(即0.93 MBq/kg),而不影响图像质量及病变可检测性。这一发现表明,胸部PET/MR检查在降低核素使用剂量方面有更大潜力,尤其是在现代PET/MR设备的高灵敏度和先进重建算法的加持下。然而,10%和5%剂量组光子计数过低,图像噪声显著增加,导致病变漏检率上升。这与SCHAEFFERKOETTER等[41]的研究结果相符,即极低剂量下的图像噪声会显著影响病变的可检测性。因此本研究推荐使用25%剂量(0.93 MBq/kg)作为胸部PET/MR检查的最优剂量,这一剂量在保证图像质量的同时,显著降低了患者的辐射暴露。

3.3 18F-FDG剂量减低临床价值与等效意义

       根据美国电器制造商协会的测试结果,核素使用剂量、PET采集时间与设备获得的有效光子计数在一定范围内呈线性正相关[42],是影响PET图像质量的共同因素。本研究发现,通过延长PET扫描时间来进一步降低核素使用剂量是可行的,OEHMIGEN等[22]的研究也表明,在图像质量不变的情况下,将PET时间延长一倍可使注入示踪剂的剂量减半。另外一个潜在的临床意义是,可以保持现有的3.70 MBq/kg剂量,将PET扫描时间同步减少25%,即缩短至5 min应该是可行的,再配合快速MRI检查方案[43],就能大幅度缩短PET/MR检查时间、提高患者检查量与检查的舒适性。

3.4 本研究的局限性

       首先,通过缩短PET采集时间来模拟核素使用剂量的减少,并不是真实剂量的减少。其次,纳入研究的病例男性显著高于女性,未考虑性别可能对结果影响。再次,本研究属于单中心、单PET/MR系统、单核素类型研究,其他情况还需要更多后续研究来验证。最后,只研究了胸部及固定扫描时间,未能推广到其他部位中,还需要进一步研究验证。

4 结论

       综上,本研究表明,当使用SIGNA PET/MR扫描仪进行胸部18F-FDG PET/MR检查时,若PET扫描时间为20 min,18F-FDG推荐剂量可以由常规3.70 MBq/kg减少至0.93 MBq/kg,用量减少了75%,并不会改变PET图像质量及病变可检测性结果。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
XIE T, QIU B M, LUO J, et al. Distant metastasis patterns among lung cancer subtypes and impact of primary tumor resection on survival in metastatic lung cancer using SEER database[J/OL]. Sci Rep, 2024, 14(1): 22445 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39341901/. DOI: 10.1038/s41598-024-73389-6.
[3]
AKRAM F, HUSSAIN S, ALI A, et al. Diagnostic accuracy of chest radiograph in interstitial lung disease as confirmed by high resolution computed tomography (HRCT) chest[J/OL]. J Ayub Med Coll Abbottabad, 2022, 34(Suppl 1)(4): S1008-S1012 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36550664/. DOI: 10.55519/JAMC-04-S4-11183.
[4]
FERRARA D, ABENAVOLI E M, BEYER T, et al. Detection of cancer-associated Cachexia in lung cancer patients using whole-body [18F] FDG-PET/CT imaging: a multi-centre study[J]. J Cachexia Sarcopenia Muscle, 2024, 15(6): 2375-2386. DOI: 10.1002/jcsm.13571.
[5]
VALENTE D, GENTILESCHI M P, VALENTI A, et al. Cumulative dose from recurrent CT scans: exploring the DNA damage response in human non-transformed cells[J/OL]. Int J Mol Sci, 2024, 25(13): 7064 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39000171/. DOI: 10.3390/ijms25137064.
[6]
LIN Q X, CHENG C, BAO Y Y, et al. A clinically-recommended MR whole lung imaging protocol using free-breathing 3D isotropic zero echo time sequence[J/OL]. Heliyon, 2024, 10(13): e34098 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/39071690/. DOI: 10.1016/j.heliyon.2024.e34098.
[7]
OHNO Y, OZAWA Y, KOYAMA H, et al. State of the art MR imaging for lung cancer TNM stage evaluation[J/OL]. Cancers (Basel), 2023, 15(3): 950 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36765907/. DOI: 10.3390/cancers15030950.
[8]
TAKENAKA D, OZAWA Y, YAMAMOTO K, et al. Deep learning reconstruction to improve the quality of MR imaging: evaluating the best sequence for T-category assessment in non-small cell lung cancer patients[J]. Magn Reson Med Sci, 2024, 23(4): 487-501. DOI: 10.2463/mrms.mp.2023-0068.
[9]
LIU X, MENG N, ZHOU Y H, et al. Tri-compartmental restriction spectrum imaging based on 18F-FDG PET/MR for identification of primary benign and malignant lung lesions[J]. J Magn Reson Imaging, 2025, 61(2): 830-840. DOI: 10.1002/jmri.29438.
[10]
WANG M L, ZHANG H, YU H J, et al. An initial study on the comparison of diagnostic performance of 18F-fdg pet/mr and 18F-fdg pet/ct for thoracic staging of non-small cell lung cancer: Focus on pleural invasion[J]. Rev Esp Med Nucl Imagen Mol (Engl Ed), 2023, 42(1): 16-23. DOI: 10.1016/j.remnie.2021.12.007.
[11]
ZENG F B, NOGAMI M, UENO Y R, et al. Diagnostic performance of zero-TE lung MR imaging in FDG PET/MRI for pulmonary malignancies[J]. Eur Radiol, 2020, 30(9): 4995-5003. DOI: 10.1007/s00330-020-06848-z.
[12]
ZHANG A N, MENG X X, YAO Y, et al. Predictive value of 18F-FDG PET/MRI for pleural invasion in solid and subsolid lung adenocarcinomas smaller than 3 cm[J]. J Magn Reson Imag, 2023, 57(5): 1367-1375. DOI: 10.1002/jmri.28422.
[13]
TANG X, WU J J, LIANG J T, et al. The value of combined PET/MRI, CT and clinical metabolic parameters in differentiating lung adenocarcinoma from squamous cell carcinoma[J/OL]. Front Oncol, 2022, 12: 991102 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36081569/. DOI: 10.3389/fonc.2022.991102.
[14]
SHAHRAKI MOJAHED B, SARAVANI K, PAROOIE F. Thoracic staging in patients with non-small cell lung cancer: a systematic review and meta-analysis on diagnostic accuracy of [18f] fdg pet/MRI and [18f] fdg pet/ct[J/OL]. Nucl Med Rev Cent East Eur, 2023, 26: 11-19 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36584217/. DOI: 10.5603/NMR.a2022.0037.
[15]
BESSON F L, FERNANDEZ B, FAURE S, et al. Fully integrated quantitative multiparametric analysis of non-small cell lung cancer at 3-T PET/MRI: toward one-stop-shop tumor biological characterization at the supervoxel level[J/OL]. Clin Nucl Med, 2021, 46(9): e440-e447 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/34374682/. DOI: 10.1097/RLU.0000000000003680.
[16]
VERMERSCH M, EMSEN B, MONNET A, et al. Chest PET/MRI in solid cancers: comparing the diagnostic performance of a free-breathing 3D-T1-GRE stack-of-stars volume interpolated breath-hold examination (StarVIBE) acquisition with that of a 3D-T1-GRE volume interpolated breath-hold examination (VIBE) for chest staging during whole-body PET/MRI[J]. J Magn Reson Imaging, 2022, 55(6): 1683-1693. DOI: 10.1002/jmri.27981.
[17]
MARENGO M, MARTIN C J, RUBOW S, et al. Radiation safety and accidental radiation exposures in nuclear medicine[J]. Semin Nucl Med, 2022, 52(2): 94-113. DOI: 10.1053/j.semnuclmed.2021.11.006.
[18]
GÜNAY O, ABAMOR E. Environmental radiation dose rate arising from patients of PET/CT[J]. Int J Environ Sci Technol, 2019, 16(9): 5177-5184. DOI: 10.1007/s13762-018-2040-0.
[19]
潘青青, 罗亚平, 李方, 等. 降低核素心肌灌注显像辐射剂量的方法[J]. 中华核医学与分子影像杂志, 2017, 37(8): 514-521. DOI: 10.2967/jnumed.112.115097.
PAN Q Q, LUO Y P, LI F, et al. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging[J]. Chin J Nucl Med Mol Imag, 2017, 37(8): 514-521. DOI: 10.2967/jnumed.112.115097.
[20]
陈曙光, 胡鹏程, 樊卫, 等. PET/MR全身显像工作流及协议规划专家共识[J]. 中国临床医学, 2020, 27(4): 713-721. DOI: 10.12025/j.issn.1008-6358.2020.20201589.
CHEN S G, HU P C, FAN W, et al. Expert consensus on PET/MR whole body imaging workflow and protocol planning[J]. Chin J Clin Med, 2020, 27(4): 713-721. DOI: 10.12025/j.issn.1008-6358.2020.20201589.
[21]
BAILEY J J, JORDAN E J, BURKE C, et al. Does extended PET acquisition in PET/MRI rectal cancer staging improve results?[J]. AJR Am J Roentgenol, 2018, 211(4): 896-900. DOI: 10.2214/AJR.18.19620.
[22]
OEHMIGEN M, ZIEGLER S, JAKOBY B W, et al. Radiotracer dose reduction in integrated PET/MR: implications from national electrical manufacturers association phantom studies[J]. J Nucl Med, 2014, 55(8): 1361-1367. DOI: 10.2967/jnumed.114.139147.
[23]
DE GALIZA BARBOSA F, DELSO G, ZEIMPEKIS K G, et al. WITHDRAWN: Evaluation and clinical quantification of neoplastic lesions and physiological structures in TOF-PET/MRI and non-TOF/MRI-a pilot study[J]. Q J Nucl Med Mol Imaging, 2021, 65(4): 386-395. DOI: 10.23736/S1824-4785.17.02790-X.
[24]
SVIRYDENKA H, MUEHLEMATTER U J, NAGEL H W, et al. 68Ga-PSMA-11 dose reduction for dedicated pelvic imaging with simultaneous PET/MR using TOF BSREM reconstructions[J]. Eur Radiol, 2020, 30(6): 3188-3197. DOI: 10.1007/s00330-020-06667-2.
[25]
马璐, 顾海峰, 周长圣, 等. 一体化PET/MR智能衰减校正ZTE MRAC技术及超级迭代Q.Clear技术的应用进展[J]. 医学研究生学报, 2021, 34(12): 1315-1319. DOI: 10.16571/j.cnki.1008-8199.2021.12.015.
MA L, GU H F, ZHOU C S, et al. Application progress of integrated PET/MR intelligent attenuation correction ZTE MRAC technology and super iterative Q.Clear technology[J]. J Med Postgrad, 2021, 34(12): 1315-1319. DOI: 10.16571/j.cnki.1008-8199.2021.12.015.
[26]
ROGASCH J M, SULEIMAN S, HOFHEINZ F, et al. Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF)[J/OL]. EJNMMI Phys, 2020, 7(1): 2 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/31925574/. DOI: 10.1186/s40658-020-0270-y.
[27]
GATIDIS S, WÜRSLIN C, SEITH F, et al. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data[J]. Hell J Nucl Med, 2016, 19(1): 15-18. DOI: 10.1967/s002449910333.
[28]
SORET M, MAISONOBE J A, DESARNAUD S, et al. Ultra-low-dose in brain 18F-FDG PET/MRI in clinical settings[J/OL]. Sci Rep, 2022, 12: 15341 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/36097015/. DOI: 10.1038/s41598-022-18029-7.
[29]
BRENDLE C, MAIER C, BENDER B, et al. Impact of 18F-FET PET/MRI on clinical management of brain tumor patients[J]. J Nucl Med, 2022, 63(4): 522-527. DOI: 10.2967/jnumed.121.262051.
[30]
SCHMALL J P, SURTI S, OTERO H J, et al. Investigating low-dose image quality in whole-body pediatric 18F-FDG scans using time-of-flight PET/MRI[J]. J Nucl Med, 2021, 62(1): 123-130. DOI: 10.2967/jnumed.119.240127.
[31]
梁江涛, 李峰, 王芳晓, 等. 18F-FDG PET/MRI全身显像在儿童神经母细胞瘤分期中的应用价值[J]. 临床放射学杂志, 2020, 39(10): 2072-2077. DOI: 10.13437/j.cnki.jcr.2020.10.036.
LIANG J T, LI F, WANG F X, et al. The value of 18F-FDG PET/MRI whole body imaging in staging of pediatric neuroblastoma[J]. J Clin Radiol, 2020, 39(10): 2072-2077. DOI: 10.13437/j.cnki.jcr.2020.10.036.
[32]
THERUVATH A J, SIEDEK F, MUEHE A M, et al. Therapy response assessment of pediatric tumors with whole-body diffusion-weighted MRI and FDG PET/MRI[J]. Radiology, 2020, 296(1): 143-151. DOI: 10.1148/radiol.2020192508.
[33]
DENG Y L, ZHANG X, HU F, et al. Quantitative 18F-FDG PET/CT Model for predicting pathological complete response to neoadjuvant immunochemotherapy in NSCLC: comparison with RECIST 1.1 and PERCIST[J/OL]. Eur J Nucl Med Mol Imaging, 2025 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/40418330/. DOI: 10.1007/s00259-025-07342-8.
[34]
DUAN H Y, BARATTO L, HATAMI N, et al. Reduced acquisition time per bed position for PET/MRI using 68Ga-RM2 or 68Ga-PSMA-11 in patients with prostate cancer: a retrospective analysis[J]. AJR Am J Roentgenol, 2022, 218(2): 333-340. DOI: 10.2214/AJR.21.25961.
[35]
XU W N, YU S P, MA Y, et al. Effect of different segmentation algorithms on metabolic tumor volume measured on 18F-FDG PET/CT of cervical primary squamous cell carcinoma[J]. Nucl Med Commun, 2017, 38(3): 259-265. DOI: 10.1097/MNM.0000000000000641.
[36]
YAN J, SCHAEFFERKOETTE J, CONTI M, et al. A method to assess image quality for Low-dose PET: analysis of SNR, CNR, bias and image noise[J/OL]. Cancer Imaging, 2016, 16(1): 26 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/27565136/. DOI: 10.1186/s40644-016-0086-0.
[37]
BURRIS N S, JOHNSON K M, LARSON P E Z, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system[J]. Radiology, 2016, 278(1): 239-246. DOI: 10.1148/radiol.2015150489.
[38]
SUGAWARA H, ITO K, WATANABE H, et al. Clinical usefulness of PET/MRI in differentiating anterior mediastinal masses[J]. Nucl Med Commun, 2022, 43(1): 92-99. DOI: 10.1097/MNM.0000000000001483.
[39]
ZHANG M, YANG W W, YUAN Y H, et al. Diagnostic potential of [18F] FDG PET/MRI in non-small cell lung cancer lymph node metastasis: a meta-analysis[J]. Jpn J Radiol, 2024, 42(1): 87-95. DOI: 10.1007/s11604-023-01477-0.
[40]
SORET M, PIEKARSKI E, YENI N, et al. Dose reduction in brain [18F] FDG PET/MRI: give it half a chance[J]. Mol Imaging Biol, 2020, 22(3): 695-702. DOI: 10.1007/s11307-019-01398-3.
[41]
SCHAEFFERKOETTER J D, YAN J H, SJÖHOLM T, et al. Quantitative accuracy and lesion detectability of low-Dose18F-FDG PET for lung cancer screening[J]. J Nucl Med, 2017, 58(3): 399-405. DOI: 10.2967/jnumed.116.177592.
[42]
QUEIROZ M A, DELSO G, WOLLENWEBER S, et al. Dose optimization in TOF-PET/MR compared to TOF-PET/CT[J/OL]. PLoS One, 2015, 10(7): e0128842 [2025-05-13]. https://pubmed.ncbi.nlm.nih.gov/26147919/. DOI: 10.1371/journal.pone.0128842.
[43]
JANNUSCH K, LINDEMANN M E, BRUCKMANN N M, et al. Towards a fast PET/MRI protocol for breast cancer imaging: maintaining diagnostic confidence while reducing PET and MRI acquisition times[J]. Eur Radiol, 2023, 33(9): 6179-6188. DOI: 10.1007/s00330-023-09580-6.

上一篇 基于多参数MRI影像组学模型鉴别良恶性椎体压缩性骨折
下一篇 基于Fast 3D和R波校正技术的无对比剂磁共振冠脉成像:与CTA对照研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2