分享:
分享到微信朋友圈
X
综述
脊髓型颈椎病患者磁共振脑影像研究进展
易佳媛 何来昌

本文引用格式:易佳媛, 何来昌. 脊髓型颈椎病患者磁共振脑影像研究进展[J]. 磁共振成像, 2025, 16(8): 188-193. DOI:10.12015/issn.1674-8034.2025.08.028.


[摘要] 脊髓型颈椎病(cervical spondylotic myelopathy, CSM)是颈椎病中最严重的类型,也是全球范围内成人脊髓功能障碍的主要原因。最近研究表明CSM患者的上位中枢大脑可能发生了潜在的不可逆损伤、神经修复及重组过程,因此,探索其背后的病理生理学机制对推进CSM的识别、治疗等方面的发展至关重要。当前,尽管已有部分综述关注CSM神经重塑的影像学改变,但对于其神经影像学近期的相关研究仍缺乏系统性的梳理和分析。本文回顾并总结了近年来使用MRI从结构、功能及代谢和血流灌注方面对CSM患者大脑损伤、修复及重组的相关研究,分析当前的挑战并提出未来发展方向,旨在为CSM相关神经生物学机制研究提供影像学依据,以期采用无创影像学技术对CSM的诊疗提供新的思路。
[Abstract] Cervical spondylotic myelopathy (CSM) is the leading cause of spinal cord dysfunction in adults worldwide. Recent studies have indicated the potential for irreversible damage, neural repair, and reorganization processes in the superior median brain of CSM patients. Therefore, exploring the underlying pathophysiological mechanisms is imperative for advancing the identification, treatment, and other aspects of CSM. Currently, although several review articles have focused on imaging alterations in neural remodeling of CSM, there remains a lack of systematic collation and analysis of recent neuroimaging studies in this field. This paper summarizes and reviews recent studies that used MRI to investigate cerebral damage, repair, and reorganization in CSM patients across structural, functional, metabolic, and hemodynamic perfusion domains. We critically examine current methodological challenges and propose future research trajectories, aiming to establish an imaging-derived framework for deciphering CSM-related neurobiological mechanisms. Ultimately, this work seeks to pioneer non-invasive diagnostic strategies and stimulate novel therapeutic approaches.
[关键词] 脊髓损伤;脊髓型颈椎病;磁共振成像;结构磁共振成像;静息态功能磁共振成像;神经影像标志物
[Keywords] spinal cord injury;cervical spondylotic myelopathy;magnetic resonance imaging;structural magnetic resonance imaging;resting-state functional magnetic resonance imaging;neuroimaging biomarkers

易佳媛    何来昌 *  

南昌大学第一附属医院影像中心,南昌 330006

通信作者:何来昌,E-mail:laichang_he@163.com

作者贡献声明:何来昌设计本研究的方案,对稿件重要内容进行了修改;易佳媛起草和撰写稿件,获取、分析或解释本研究的数据;何来昌和易佳媛获得了国家自然科学基金、江西省自然科学基金项目资金资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81460329 江西省自然科学基金项目 20192ACBL20039,2018BAB205063 江西省医学影像临床医学研究中心项目 20223BCG7400
收稿日期:2025-04-15
接受日期:2025-08-05
中图分类号:R445.2  R681.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.028
本文引用格式:易佳媛, 何来昌. 脊髓型颈椎病患者磁共振脑影像研究进展[J]. 磁共振成像, 2025, 16(8): 188-193. DOI:10.12015/issn.1674-8034.2025.08.028.

0 引言

       脊髓型颈椎病(cervical spondylotic myelopathy, CSM)是颈椎病中最严重的类型,也是全球成人脊髓功能障碍的主要原因[1]。其是以颈椎管获得性(颈椎或椎间盘退变、后纵韧带骨化等)和/或先天性狭窄为病理基础,导致脊髓受压或供血障碍出现相应的症状和体征,严重者甚至四肢瘫痪[2, 3, 4]。多项研究发现CSM严重影响患者的生活质量,CSM患者的生活质量较其他慢性疾病(如癌症、糖尿病和抑郁症)患者的生活质量更差[5]。且随着全球人口老龄化的加剧、人们日常生活及工作习惯的改变,CSM的发病率及患病率呈逐年上升趋势,目前全球患病率约2.3%,正在成为日益严重的公共卫生问题[6, 7, 8]。临床上,手术减压是目前治疗CSM的首选且有效的方法,但也有部分患者在减压术后3~12个月时,部分症状会复发,其神经功能和生活质量改善情况仍不满意,这暗示了脊髓及其上位中枢大脑可能发生了潜在的不可逆损伤、神经修复及重组过程[9, 10, 11]。因此,探索其背后的病理生理学机制对提高CSM的认识和临床管理,推进疾病的识别、治疗等方面的发展至关重要[12, 13, 14]

       目前,CSM的病理生理机制尚不完全明确,且缺乏能够早期识别CSM的客观且有效的诊断工具,临床上常常“影症不一”,既往研究也多集中于脊髓的局部病变,可能涉及缺血、血脊髓屏障破坏、炎症、凋亡、线粒体功能障碍、轴突损伤和Wallerian变性等[15, 16]。近年来,随着MRI的蓬勃发展,探索CSM患者背后的神经生物学机制的新方法、新技术层出不穷,从微观和宏观结构上揭示了CSM患者大脑结构和功能的变化在疾病发生、发展中的重要作用,这些变化与临床症状、严重程度、治疗预后等有着显著的相关性,采用这些影像学指标构建模型可以为理解CSM的神经病理学机制、临床上进行早期干预和提供个性化治疗策略提供客观有效的工具。目前,使用MRI的神经成像技术可分为结构、功能和其他技术。结构磁共振成像(structural MRI, sMRI)技术分析颅脑的三维解剖结构,研究如形态、体积、厚度等几何特性的变化。功能磁共振成像(functional MRI, fMRI)技术则关注大脑执行特定功能或静息态时的神经活动情况,如功能连接(functional connectivity, FC)、低频波动振幅(amplitude of low-frequency fluctuation, ALFF)、激活量(volume of activation, VOA)、局部一致性(regional homogeneity, ReHo)等。其他技术包括动脉自旋标记(arterial spin labeling, ASL)成像技术、磁共振波谱成像(magnetic resonance spectroscopy, MRS)等,用于研究中枢代谢、脑血流灌注。当前对于CSM的传统影像学研究日益增多,但仍较为分散,缺乏系统性的梳理和分析。

       因此,本文回顾并总结了近年来使用MRI从结构、功能及代谢和血流动力学方面对CSM患者大脑损伤、修复及重组的相关研究,旨在为CSM相关神经生物学机制研究提供影像学依据,以期采用无创影像学技术对CSM的诊疗提供新的思路。

1 微观结构改变

1.1 CSM患者灰、白质形态学改变

       基于体素的形态学分析(voxel based morphometry, VBM)是一种基于三维T1加权成像序列图像在体素水平上对脑灰质、脑白质及脑脊液进行精确分割及定量分析差异脑组织的技术[17]。而基于表面的形态学分析(surface-based morphometry, SBM)与VBM处理步骤相似但具体方法不同,它通过分析大脑皮层表面的形态学特征,如皮层厚度、沟深等,对皮层表面形态的细微变化进行多维度的评估,是纹理分析的进阶[18]

       既往研究发现,CSM患者存在广泛的灰质及白质体积减小,包括初级运动皮层(primary motor cortex, M1)、初级体感觉皮层(primary somatosensory cortex, S1)、辅助运动区(supplementary motor area, SMA)、躯体感觉关联皮层、丘脑及其细分结构,且与临床症状的严重程度及治疗预后密切相关[19, 20, 21]。周纯[22]基于VBM分析发现CSM患者M1亚区的灰质体积较健康对照者(healthy control, HC)下降,并揭示了M1亚区在CSM患者术后功能康复中的潜在应用价值。JÜTTEN等[23]则分析了CSM组和HC在S1、M1、SMA以及小脑的白质体积的变化,发现在上述区域中CSM患者的白质体积均存在显著缩小,且与症状的严重程度相关,这支持了脊髓损伤逆行致神经元变性,进而皮层内信号传递减少,最终导致相应区域发生萎缩性改变,但该研究并未发现减压术前后有白质体积的变化,这可能是皮层为补偿神经功能障碍而启动更多代偿性改变所致。与之不同的是,另一项评估减压术前后CSM患者灰质体积变化的研究发现,术后CSM患者的双侧小脑后叶、右侧丘脑、左侧尾状核存在明显的灰质体积缩小,而在涉及视觉处理的相关区域和默认网络内灰质体积显著增高,这揭示了灰质体积与术后神经功能改善有关[24]。TIAN等[25]招募了62例CSM患者(根据有无术后轴向疼痛将其分为两组)并进行减压术后随访,研究发现与HC组相比,CSM患者术前楔前叶的灰质体积缩小,同时还发现在患者的亚组分析中发现楔前叶的灰质体积改变与术后疼痛强度呈负相关。一项基于VBM的多中心研究也在CSM患者的丘脑中发现了体积的减小[26]。而另一项基于SBM的研究发现CSM患者存在额上回、楔前叶、前扣带回皮质厚度的减少,以及壳核体积缩小,并与神经功能障碍及疼痛加剧有关[27]。MUHAMMAD等[28]研究发现CSM患者中前额叶皮层、前运动区和SMA皮质厚度的减少与运动的灵巧性降低相关,且视觉相关皮层厚度的减少与步态功能障碍相关,进一步揭示了与运动障碍相关的皮层变化模式。这些结果均说明CSM会导致不同脑区灰质、白质体积缩小且这些脑内改变在术后神经功能恢复过程中有着重要价值,证明了CSM是大脑结构性损伤与神经元重塑交互调节所致。

1.2 白质微结构改变

       既往有研究证实,CSM患者不仅存在局部颈髓的变性与萎缩,也存在沿着颈髓内纤维束(如皮质脊髓束、脊髓丘脑束、脊髓小脑束等)上行所致的大脑皮层及皮层下结构的损害及重塑[29]。占雅如[30]研究发现,CSM患者放射冠、胼胝体、内囊、外囊、皮质脊髓束等区域的各向异性分数值、平均扩散系数、径向扩散系数较HC存在显著差异,且与感觉运动功能障碍有关。此外,弥散频谱成像(diffusion spectrum imaging, DSI)利用概率密度函数描绘人体组织体素内的水分子布朗运动的完整空间分布,并以高角度分辨率精确分辨组织内复杂错行的纤维信息在疾病的诊断评估中展示了良好的应用潜力[31, 32]。WANG等[33]利用DSI探究CSM患者白质纤维束内的重组效应,结果显示连接初级运动和感觉皮层的白质纤维束完整性发生了改变,这与既往研究发现的一致。上述改变提示CSM患者大脑白质微结构出现广泛的损害,这可能进一步为患者的相关临床症状、感觉运动障碍提供了更多定量且客观的神经影像学证据。

2 脑功能活动改变

2.1 任务态fMRI相关研究

       任务态fMRI是指受试者在进行某种特定的刺激或任务时通过分析血氧水平依赖(blood oxygen level dependent, BOLD)信号的变化来推断特定的刺激或任务和脑功能活动改变之间的关系[34]。一项探索CSM患者执行手指敲击任务时脊髓压迫严重程度与M1、S1、皮层下区域(壳核、尾状核、丘脑及小脑)神经可塑性之间关系的研究显示了上述脑区的BOLD信号量、VOA与脊髓受压程度呈正比,与临床量表评分呈反比,这与之前的研究结果相似,表明随着脊髓压迫程度的加重,CSM患者会募集更为广泛的运动皮层和皮层下区域来执行敲击任务,但这种广泛的脑激活模式并未发现与患者的神经功能的改善有关[35]。此外,进一步研究CSM患者减压手术前后特定感觉运动皮层的激活模式改变,可以为术后感觉运动功能改善的机制提供了新的见解。DONG等[36]比较了CSM患者S1、M1等在减压术前后的差异,结果显示术前患者在手腕伸展时同侧S1、M1比三指捏合时表现出更广泛的激活,但术后的激活水平与HC相似;同时,术后三指捏合动作时同侧S1、M1以及手腕伸展时对侧SMA的激活水平随时间呈线性变化,且与神经功能改善有关。随后,一项研究基于手指敲击运动的研究发现,减压术前CSM患者仅存在中央前回的VOA增高,而术后左侧中央后回、中央前回的VOA虽有所降低,但仍高于HC组,提示手术治疗后神经功能的恢复可能与脑皮质重组效应有关[37]。此后,又有研究发现,在执行手指敲击运动或手腕伸展运动时,CSM患者存在S1、M1、SMA、小脑等区域的异常激活,均表明神经可塑性改变在补偿CSM患者感觉运动功能方面起着重要作用,在术后的神经恢复阶段也至关重要[38]

2.2 静息态fMRI技术相关研究

       静息态fMRI(resting-state fMRI, rs-fMRI)则是以受试者无需做任何特定任务的状态下获取的BOLD信号为中心,可以识别大脑中表现出同步低频振荡的区域(通常<0.1 Hz)。与任务态fMRI相比,rs-fMRI更加简单易于操作,且受试者相对容易接受,避免了个体间反映差异[39],因此在脑功能成像研究中得到了广泛的应用。目前,许多学者已经通过rs-fMRI的相关研究揭示了CSM患者各脑区(如M1、S1、SMA等[40])、环路(如丘脑皮层环路[41])、网络(如感觉运动网络、视觉网络、默认网络及小脑等[42, 43, 44])存在异常改变且这些改变与临床症状密切相关。

       ALFF与ReHo是基于功能分离的角度来探索脑功能改变常见的分析指标,都反映了局部脑神经活动。一项利用ReHo分析方法探讨CSM患者全脑范围内是否存在自发活动异常的研究发现,CSM患者左侧中央前回、右侧颞上回、左侧额中回、右侧尾状核头、左侧枕中回的ReHo值降低,而小脑及边缘叶的部分脑区ReHo值升高[45]。随后,KUANG等[46]发现CSM患者在左侧缘上回、左内侧额上回的zALFF以及zReHo值增加。FAN等[47]采用滑动时间窗口法研究发现CSM患者双侧中央后回的dALFF较HC组显著降低,均为研究CSM患者的大脑异常活动提供一个新视角。ALFF反映了体素水平下神经活动强弱。ZHAO等[40]探讨了CSM患者疾病严重程度与脊髓压迫程度不对应的大脑机制,结果显示CSM患者左侧M1、双侧额上回zALFF较高,右侧楔前叶和距状回zALFF较低,且症状较重的CSM患者M1内zALFF较高,提示CSM患者局部脑活动发生改变,这种改变与CSM的病情严重程度相关,这可能是因为症状较重的患者可能需要启动了更多的皮质重组以补偿神经功能的损害,同时,他们还发现CSM患者M1的zALFF与日本骨科协会(Japanese Orthopedic Association, JOA)恢复率呈负相关。随后,GUO等[42]通过研究不同频段的ALFF数据发现,CSM患者感觉运动网络、视觉网络和默认网络内的zALFF的频率特异性改变与CSM患者病情严重程度相关。SU等[48]研究发现,CSM患者中扣带皮层的ALFF值较HC组高,且与疼痛阈值和术后轴向疼痛强度相关。这些研究均表明了大脑局部神经活动可以为CSM患者的诊断、治疗预后提供额外的信息。

       上述研究仅研究了CSM患者局部脑区功能活动的改变,而大脑的各个脑区并非孤立运作,而是相互联系、协调互补的。度中心度(degree centrality, DC)是一种在体素水平上测量全脑连接矩阵内特定脑区与其他脑区之间的功能关系,从而间接反映该脑区在整个脑网络中的重要性[49]。TAN等[50]发现CSM患者的左侧颞中回的DC值增高且与症状的严重程度呈正相关,而在右侧颞上回和楔前叶则发现DC值呈先增加后下降的趋势。上述脑区均属于默认网络,这说明CSM患者默认网络在全脑的整合功能发生了显著的变化,表明默认网络是CSM病理生理机制中的关键枢纽。FC是基于功能整合的角度来探索脑功能改变常见的分析指标,表明不同大脑区域活动模式之间的关联程度[51]。WANG等[52]联合FC和链路预测模型分析了不同严重程度的CSM患者,发现感觉运动网络内的大部分FC中断,而初级和次级感觉运动区域、皮质下区域、视觉空间区域、脑干和小脑内部和之间均存在代偿性FC,表明CSM患者发生了大规模的功能网络重组且与症状的严重程度密切相关,且链路预测模型可以根据这一变化特点有效估计与CSM症状严重程度相关的脑功能网络的改变。此外,几项基于动态FC的相关研究发现,CSM患者存在多个脑网络内部及网络间的动态FC改变,而采用图论分析还发现动态脑网络时变特征和网络拓扑属性也存在着显著变化[53, 54, 55]。综上,广泛的脑网络内部及脑网络之间的异常FC可能是致使CSM患者产生相应临床症状的基础,进一步证明FC在评估CSM患者症状严重程度及预后方面的潜能。

3 中枢代谢与血流动力学改变

       MRS是一种非侵入性先进诊断技术,利用氢原子在不同化合物中的化学位移现象确定组织的分子组成,提供了有关组织生物化学和神经功能的宝贵信息,如N-乙酰天冬氨酸(N-acetyl aspartate, NAA)、胆碱(choline, Cho)、肌醇(increased myo-inositol, Ins)、肌酸(creatine, Cr)等,其中,NAA反映了神经元功能,降低表明神经元丢失或功能障碍;Cho反映了膜磷脂代谢状态,升高表明存在脱髓鞘或神经胶质细胞增生;Cr是新陈代谢的中心分子,在具有高能量需求的组织(如中枢神经系统)中的浓度较高[56]

       ALEKSANDEREK等[57]发现在减压术后6个月时CSM患者M1的NAA/Cr水平仍低于术前,这提示CSM患者术后大脑皮层的代谢功能障碍仍然存在。与之相反的是,ZHENG等[58]发现与减压术前相比,术后CSM患者丘脑的NAA/Cr、Ins/Cr增高,且与临床量表评分呈显著的正相关,这可能是因为前者病例数有限所致,这也表明了丘脑作为基底神经节中的重要节点,在皮层和皮层下区域之间的信息交流起着关键作用。此外,CRACIUNAS等[59]研究发现,CSM患者的M1的Cho水平较对照组高,且M1的Ins和Cho、左侧运动皮层的NAA和谷氨酸-谷氨酰胺以及小脑的Ins和谷氨酸-谷氨酰胺与减压术后临床症状评分显著相关。GOHMANN等[60]发现,CSM患者中央前回的NAA、Cr水平降低,而Ins及Ins/Cr水平则与CSM症状持续时间相关,长程患者(>6个月)的中央前回的Ins和Ins/Cr显著降低,表明在慢性状态下原有的反应性胶质增生和急性/亚急性神经炎症逐渐消退;另外,在统计回归模型的分析中发现Ins水平对CSM持续症状的预测比临床量表评分更为准确。随后,ZHANG等[61]也发现CSM患者丘脑的NAA/Cr、Cho/Cr、Ins/Cr较HC组显著减低,且与临床相关指标相关,这进一步表明了CSM患者在脊髓受损后出现了大脑皮质的破坏和代谢变化,为CSM中神经损伤的程度提供了有价值的见解。上述表明,通过MRS观察到的脑内代谢变化,如NAA/Cr、Cho、Ins和Ins/Cr等的变化,为CSM中神经元变性、神经胶质细胞增生和缺氧等的潜在机制提供了见解,同时也表明某些脑内代谢物可能有助于CSM患者术后神经功能改善的预测,强调了代谢调节在保护神经功能和防止脊髓进行性损伤中的作用,可以帮助医生制订切实可行的个体化的患者管理策略。最近也有研究表明,将MRS与其他MRI技术相结合有利于提高诊断准确性,如WANG等[62]证明,将MRS与DTI相结合可以提高对CSM患者手术结果的预测,但该方法目前只聚焦于CSM患者颈部脊髓的局部改变,因此,未来的研究可以将MRS与其他成像方式结合进一步探究其上位中枢——脑的内在变化。

       ASL成像是一种非侵入性的磁共振成像技术,它利用内源性示踪剂来快速评估全脑灌注并量化局部脑血流量(cerebral blood flow, CBF)[63],该技术近年来在多种疾病中得到了广泛的应用,如阿尔茨海默病[64]、糖尿病[65]、帕金森[66]、偏头痛[67]等。ZHOU等[68]利用ASL技术发现CSM患者在左前运动/前中心岛盖和双侧前扣带皮层的CBF显著降低,在双侧旁中央小叶、SMA和右侧后中央脑回的CBF增加,这表明低灌注及脑皮质的可塑性改变共同影响着CSM的发生和发展。WEI等[69]通过比较CSM患者与HC之间的FC强度(FC strength, FCS)、CBF及CBF-FCS耦合发现,CSM患者中央前/后回的FCS明显较低,而丘脑、海马和视觉皮质的相对血流量(relative blood flow, rCBF)明显较高,且CSM患者整个灰质的CBF-FCS耦合明显减少,提示大脑中神经血管耦合可能是CSM病理生理学的潜在机制。

4 小结与展望

       随着神经影像技术的发展,人们对CSM的病理生理学机制的认识不断加强。目前,临床实践指南对于不同严重程度的患者也有着不同的治疗建议,如中重度CSM患者应尽早进行手术干预[70]。因此,本文回顾并总结了近几年采用不同MRI技术对CSM患者脑影像学的相关研究,从微观结构、功能活动、中枢代谢和血流动力学等方面总结阐述了CSM患者高级中枢——脑的影像生物标志物在CSM患者的诊断、监测、治疗中的意义。

       目前研究仍存在不足:第一,既往关于微观结构的研究多聚焦于脊髓,而关注脑部纤维束和灰质受损情况的研究较少,特定的环路及脑区微观结构的改变是否有助于对不同严重程度的CSM患者进行识别及预测预后,尚未得到充分研究;第二,有文献指出,一些轻度CSM患者可以通过非手术方法成功治疗,目前尚不存在用于检测接受非手术治疗的无症状或轻度的患者即将发生神经功能恶化的客观定量的早期预警系统;第三,现有研究中多为单一模态的成像技术和分析方法,而多模态整合研究能更全面地研究CSM的神经病理机制,为探索新的治疗靶点等提供更详尽的信息;第四,现有研究中,关于CSM与其他脊髓或脑疾病的比较较为缺乏,难以明确CSM的病理机制是否具有特异性,可能与其他疾病存在重叠,影响利用影像生物标志物对CSM进行诊断、监测、预测的准确性。

       因此,未来的研究应扩大样本量并行纵向研究,聚焦于特定神经网络、环路及脑区,探索临床症状、脊髓局部损害、远端大脑改变之间的因果关系;其次,应关注临床上的无症状脊髓压迫者及轻度患者的转归情况,寻求可以客观定量地监测疾病进展、及时指导治疗方案调整的神经影像生物标志物;最后,如能将多模态MRI技术相整合,或是对比研究CSM与其他脊髓或脑疾病,将有助于更深一步了解脑内异常改变参与CSM的病理生理机制,为精准医疗提供新的、可靠的理论依据。

       全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。

[1]
HEJRATI N, PEDRO K, ALVI M ALI, et al. Degenerative cervical myelopathy: Where have we been Where are we now Where are we going [J]. Acta Neurochir (Wien), 2023, 165(5): 1105-1119. DOI: 10.1007/s00701-023-05558-x.
[2]
SHARMA S, SIAL A, SIMA S, et al. Clinical signs and symptoms for degenerative cervical myelopathy: a scoping review of case-control studies to facilitate early diagnosis among healthcare professionals with stakeholder engagement[J]. Spinal Cord, 2025, 63(3): 171-180. DOI: 10.1038/s41393-025-01065-1.
[3]
莫文, 袁文. 脊髓型颈椎病中西医结合诊疗指南(2023)[J]. 中国骨伤, 2024, 37(1): 103-110. DOI: 10.12200/j.issn.1003-0034.20230767.
MO W, YUAN W. Clinical guidelines for diagnosis and treatment of cervical spondylotic myelopathy with the integrated traditional Chinese and Western medicine(2023)[J]. China J Orthop Traumatol, 2024, 37(1): 103-110. DOI: 10.12200/j.issn.1003-0034.20230767.
[4]
BALMACENO-CRISS M, SINGH M, DAHER M, et al. Degenerative cervical myelopathy: history, physical examination, and diagnosis[J/OL]. J Clin Med, 2024, 13(23): 7139 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39685599/. DOI: 10.3390/jcm13237139.
[5]
HIRAYAMA Y, MOWFORTH O D, DAVIES B M, et al. Determinants of quality of life in degenerative cervical myelopathy: a systematic review[J]. Br J Neurosurg, 2023, 37(1): 71-81. DOI: 10.1080/02688697.2021.1999390.
[6]
SARRAJ M, HACHE P, FOROUTAN F, et al. Natural history of degenerative cervical myelopathy: a meta-analysis and neurologic deterioration survival curve synthesis[J]. Spine J, 2024, 24(1): 46-56. DOI: 10.1016/j.spinee.2023.07.020.
[7]
DAVIES B M, STUBBS D, GILLESPIE C S, et al. Life expectancy in patients with degenerative cervical myelopathy is currently reduced but can be restored with timely treatment[J]. Acta Neurochir (Wien), 2023, 165(5): 1133-1140. DOI: 10.1007/s00701-023-05515-8.
[8]
CERVELLINI M, FELLER D, MASELLI F, et al. Understanding degenerative cervical myelopathy in musculoskeletal practice[J]. J Man Manip Ther, 2025, 33(3): 207-223. DOI: 10.1080/10669817.2025.2465728.
[9]
GHOGAWALA Z, TERRIN N, DUNBAR M R, et al. Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy: a randomized clinical trial[J]. JAMA, 2021, 325(10): 942-951. DOI: 10.1001/jama.2021.1233.
[10]
DONNALLY C J, PATEL P D, CANSECO J A, et al. Current management of cervical spondylotic myelopathy[J]. Clin Spine Surg, 2022, 35(1): E68-E76. DOI: 10.1097/BSD.0000000000001113.
[11]
SAUNDERS L M, SANDHU H S, MCBRIDE L, et al. A retrospective study of degenerative cervical myelopathy and the surgical management within northern Ireland[J/OL]. Cureus, 2023, 15(11): e49513 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38024056/. DOI: 10.7759/cureus.49513.
[12]
AL-SHAWWA A, OST K, ANDERSON D, et al. Advanced MRI metrics improve the prediction of baseline disease severity for individuals with degenerative cervical myelopathy[J]. Spine J, 2024, 24(9): 1605-1614. DOI: 10.1016/j.spinee.2024.04.028.
[13]
GRODZINSKI B, BESTWICK H, BHATTI F, et al. Research activity amongst DCM research priorities[J]. Acta Neurochir (Wien), 2021, 163(6): 1561-1568. DOI: 10.1007/s00701-021-04767-6.
[14]
LEVETT J J, GEORGIOPOULOS M, MARTEL S, et al. Pharmacological treatment of degenerative cervical myelopathy: a critical review of current evidence[J]. Neurospine, 2024, 21(2): 375-400. DOI: 10.14245/ns.2448140.070.
[15]
MOWFORTH O D, DAVIES B M, GOH S, et al. Research inefficiency in degenerative cervical myelopathy: findings of a systematic review on research activity over the past 20 years[J]. Global Spine J, 2020, 10(4): 476-485. DOI: 10.1177/2192568219847439.
[16]
TU J, CASTILLO J V, DAS A, et al. Degenerative cervical myelopathy: insights into its pathobiology and molecular mechanisms[J/OL]. J Clin Med, 2021, 10(6): 1214 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/33804008/. DOI: 10.3390/jcm10061214.
[17]
HE Y N, LI L, LIU J H. The whole-brain voxel-based morphometry study in early stage of T2DM patients[J/OL]. Brain Behav, 2022, 12(3): e2497 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/35138040/. DOI: 10.1002/brb3.2497.
[18]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: a review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[19]
WANG C C, SANVITO F, OUGHOURLIAN T C, et al. Structural relationship between cerebral gray and white matter alterations in degenerative cervical myelopathy[J]. Tomography, 2023, 9(1): 315-327. DOI: 10.3390/tomography9010025.
[20]
KUANG C L, ZHA Y F. Neurodegeneration within the rostral spinal cord is associated with brain gray matter volume atrophy in the early stage of cervical spondylotic myelopathy[J]. Spinal Cord, 2024, 62(5): 214-220. DOI: 10.1038/s41393-024-00971-0.
[21]
FILIMONOVA E, VASILENKO I, KUBETSKY Y, et al. Brainstem and subcortical regions volume loss in patients with degenerative cervical myelopathy and its association with spinal cord compression severity[J/OL]. Clin Neurol Neurosurg, 2023, 233: 107943 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37634395/. DOI: 10.1016/j.clineuro.2023.107943.
[22]
周纯. 脊髓型颈椎病患者初级运动皮层亚区灰质体积与功能连接改变的初步研究[D]. 南昌: 南昌大学, 2024. DOI: 10.27232/d.cnki.gnchu.2024.003496.
ZHOU C. A preliminary study of gray matter volume and functional connectivity changes in primary motor cortex subregions in patients with spinal cervical spondylosis[D]. Nanchang: Nanchang University, 2024. DOI: 10.27232/d.cnki.gnchu.2024.003496.
[23]
JÜTTEN K, MAINZ V, SCHUBERT G A, et al. Cortical volume reductions as a sign of secondary cerebral and cerebellar impairment in patients with degenerative cervical myelopathy[J/OL]. Neuroimage Clin, 2021, 30: 102624 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/33773163/. DOI: 10.1016/j.nicl.2021.102624.
[24]
LIU M, TAN Y M, ZHANG C L, et al. Cortical anatomy plasticity in cases of cervical spondylotic myelopathy associated with decompression surgery: A strobe-compliant study of structural magnetic resonance imaging[J/OL]. Medicine (Baltimore), 2021, 100(4): e24190 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/33530210/. DOI: 10.1097/MD.0000000000024190.
[25]
TIAN A X, GAO H Z, WANG Z, et al. Brain structural correlates of postoperative axial pain in degenerative cervical myelopathy patients following posterior cervical decompression surgery: a voxel-based morphometry study[J/OL]. BMC Med Imaging, 2023, 23(1): 13 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37726693/. DOI: 10.1186/s12880-023-01057-8.
[26]
FREUND P, BOLLER V, EMMENEGGER T M, et al. Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: a multicentre study using quantitative magnetic resonance imaging[J/OL]. Eur J Neurol, 2024, 31(7): e16297 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38713645/. DOI: 10.1111/ene.16297.
[27]
WOODWORTH D C, HOLLY L T, MAYER E A, et al. Alterations in cortical thickness and subcortical volume are associated with neurological symptoms and neck pain in patients with cervical spondylosis[J]. Neurosurgery, 2019, 84(3): 588-598. DOI: 10.1093/neuros/nyy066.
[28]
MUHAMMAD F, WEBER K A, ROHAN M, et al. Patterns of cortical thickness alterations in degenerative cervical myelopathy: associations with dexterity and gait dysfunctions[J/OL]. Brain Commun, 2024, 6(5): fcae279 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39364309/. DOI: 10.1093/braincomms/fcae279.
[29]
VALLOTTON K, DAVID G, HUPP M, et al. Tracking white and gray matter degeneration along the spinal cord axis in degenerative cervical myelopathy[J]. J Neurotrauma, 2021, 38(21): 2978-2987. DOI: 10.1089/neu.2021.0148.
[30]
占雅如. 基于TBSS方法分析脊髓型颈椎病患者的脑白质微结构改变[D]. 南昌: 南昌大学, 2020. DOI: 10.27232/d.cnki.gnchu.2020.000740.
ZHAN Y R. Study on White Matter Microstructure in Patients with Cervical Spondylotic Myelopathy Based on TBSS[D]. Nanchang: Nanchang University, 2020. DOI: 10.27232/d.cnki.gnchu.2020.000740.
[31]
SALISBURY D F, SEEBOLD D, LONGENECKER J M, et al. White matter tracts differentially associated with auditory hallucinations in first-episode psychosis: a correlational tractography diffusion spectrum imaging study[J]. Schizophr Res, 2024, 265: 4-13. DOI: 10.1016/j.schres.2023.06.001.
[32]
SUN F F, HUANG Y W, WANG J R, et al. Research progress in diffusion spectrum imaging[J/OL]. Brain Sci, 2023, 13(10): 1497 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37891866/. DOI: 10.3390/brainsci13101497.
[33]
WANG C C, HOLLY L T, OUGHOURLIAN T, et al. Detection of cerebral reorganization associated with degenerative cervical myelopathy using diffusion spectral imaging (DSI)[J]. J Clin Neurosci, 2021, 86: 164-173. DOI: 10.1016/j.jocn.2021.01.011.
[34]
BEHESHTIAN E, JALILIANHASANPOUR R, SHANECHI A M, et al. Identification of the somatomotor network from language task-based fMRI compared with resting-state fMRI in patients with brain lesions[J]. Radiology, 2021, 301(1): 178-184. DOI: 10.1148/radiol.2021204594.
[35]
CRONIN A E, DETOMBE S A, DUGGAL C A, et al. Spinal cord compression is associated with brain plasticity in degenerative cervical myelopathy[J/OL]. Brain Commun, 2021, 3(3): fcab131 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34396102/. DOI: 10.1093/braincomms/fcab131.
[36]
DONG Y, HOLLY L T, ALBISTEGUI-DUBOIS R, et al. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2008, 9(6): 538-551. DOI: 10.3171/SPI.2008.10.0831.
[37]
BHAGAVATULA I D, SHUKLA D, SADASHIVA N, et al. Functional cortical reorganization in cases of cervical spondylotic myelopathy and changes associated with surgery[J/OL]. Neurosurg Focus, 2016, 40(6): E2 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/27246485/. DOI: 10.3171/2016.3.FOCUS1635.
[38]
HRABÁLEK L, HOK P, HLUŠTÍK P, et al. Longitudinal brain activation changes related to electrophysiological findings in patients with cervical spondylotic myelopathy before and after spinal cord decompression: an fMRI study[J]. Acta Neurochir (Wien), 2018, 160(5): 923-932. DOI: 10.1007/s00701-018-3520-1.
[39]
POLIMENI J R, LEWIS L D. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response[J/OL]. Prog Neurobiol, 2021, 207: 102174 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34525404/. DOI: 10.1016/j.pneurobio.2021.102174.
[40]
ZHAO R, GUO X, WANG Y, et al. Functional MRI evidence for primary motor cortex plasticity contributes to the disease's severity and prognosis of cervical spondylotic myelopathy patients[J]. Eur Radiol, 2022, 32(6): 3693-3704. DOI: 10.1007/s00330-021-08488-3.
[41]
CHANG J C, ZHU K, ZHANG S Y, et al. Dysregulated neural activity between the thalamus and cerebral cortex mediates cortical reorganization in cervical spondylotic myelopathy[J/OL]. Brain Res Bull, 2023, 205: 110837 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38043647/. DOI: 10.1016/j.brainresbull.2023.110837.
[42]
GUO X, LI J, SU Q, et al. Transcriptional correlates of frequency-dependent brain functional activity associated with symptom severity in degenerative cervical myelopathy[J/OL]. Neuroimage, 2023, 284: 120451 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37949259/. DOI: 10.1016/j.neuroimage.2023.120451.
[43]
SHAO Z W, TAN Y M, ZHAN Y R, et al. Modular organization of functional brain networks in patients with degenerative cervical myelopathy[J/OL]. Sci Rep, 2024, 14(1): 8593 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38615051/. DOI: 10.1038/s41598-024-58764-7.
[44]
GE Y Q, ZHAO R, GUO X, et al. Systematic investigation of cerebellar functional alterations and their association with surgical outcomes in patients with degenerative cervical myelopathy: a resting-state fMRI study[J]. Radiol Med, 2024, 129(2): 280-290. DOI: 10.1007/s11547-024-01776-0.
[45]
谭永明, 周福庆, 何来昌, 等. 脊髓型颈椎病患者局部一致性的静息态fMRI研究[J]. 临床放射学杂志, 2015, 34(10): 1544-1548. DOI: 10.13437/j.cnki.jcr.2015.10.003.
TAN Y M, ZHOU F Q, HE L C, et al. Alteration of cerebral regional homogeneity in cervical spondylotic myelopathy: a resting state functional magnetic resonance imaging study[J]. J Clin Radiol, 2015, 34(10): 1544-1548. DOI: 10.13437/j.cnki.jcr.2015.10.003.
[46]
KUANG C L, ZHA Y F. Abnormal intrinsic functional activity in patients with cervical spondylotic myelopathy: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2019, 15: 2371-2383. DOI: 10.2147/NDT.S209952.
[47]
FAN N J, ZHAO B, LIU L Y, et al. Dynamic and static amplitude of low-frequency fluctuation is a potential biomarker for predicting prognosis of degenerative cervical myelopathy patients: A preliminary resting-state fMRI study[J/OL]. Front Neurol, 2022, 13: 829714 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/35444605/. DOI: 10.3389/fneur.2022.829714.
[48]
SU Q, LI J, CHU X, et al. Preoperative pain hypersensitivity is associated with axial pain after posterior cervical spinal surgeries in degenerative cervical myelopathy patients: a preliminary resting-state fMRI study[J/OL]. Insights Imaging, 2023, 14(1): 16 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36690763/. DOI: 10.1186/s13244-022-01332-2.
[49]
CAÑETE-MASSÉ C, CARBÓ-CARRETÉ M, PERÓ-CEBOLLERO M, et al. Abnormal degree centrality and functional connectivity in Down syndrome: A resting-state fMRI study[J/OL]. Int J Clin Health Psychol, 2023, 23(1): 100341 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36262644/. DOI: 10.1016/j.ijchp.2022.100341.
[50]
TAN Y M, SHAO Z W, WU K F, et al. Resting-state brain plasticity is associated with the severity in cervical spondylotic myelopathy[J/OL]. BMC Musculoskelet Disord, 2024, 25(1): 450 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/38844898/. DOI: 10.1186/s12891-024-07539-2.
[51]
KHADEM-REZA Z K, SHAHRAM M A, ZARE H. Altered resting-state functional connectivity of the brain in children with autism spectrum disorder[J]. Radiol Phys Technol, 2023, 16(2): 284-291. DOI: 10.1007/s12194-023-00717-2.
[52]
WANG C C, ELLINGSON B M, OUGHOURLIAN T C, et al. Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy[J/OL]. EBioMedicine, 2022, 84: 104255 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36116214/. DOI: 10.1016/j.ebiom.2022.104255.
[53]
赵国舒. 基于图论的脊髓型颈椎病患者动态脑网络特性研究[D]. 南昌: 南昌大学, 2022. DOI: 10.27232/d.cnki.gnchu.2022.000286.
ZHAO G S. Abnormal Intrinsic Brain Functional Network Dynamics in Patientswith Cervical Spondylotic Myelopathy Based on Graph Theory[D]. Nanchang: Nanchang University, 2022. DOI: 10.27232/d.cnki.gnchu.2022.000286.
[54]
CAO Y, ZHAN Y R, DU M, et al. Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy[J]. Quant Imaging Med Surg, 2021, 11(8): 3418-3430. DOI: 10.21037/qims-20-874.
[55]
YAO J Y, XIE B Y, NI H Y, et al. Characterizing brain network alterations in cervical spondylotic myelopathy using static and dynamic functional network connectivity and machine learning[J/OL]. J Clin Neurosci, 2025, 133: 111053 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39823911/. DOI: 10.1016/j.jocn.2025.111053.
[56]
STEIN A, ZHU C, DU F, et al. Magnetic resonance spectroscopy studies of brain energy metabolism in schizophrenia: progression from prodrome to chronic psychosis[J]. Curr Psychiatry Rep, 2023, 25(11): 659-669. DOI: 10.1007/s11920-023-01457-1.
[57]
ALEKSANDEREK I, MCGREGOR S M K, STEVENS T K, et al. Cervical spondylotic myelopathy: metabolite changes in the primary motor cortex after surgery[J]. Radiology, 2017, 282(3): 817-825. DOI: 10.1148/radiol.2016152083.
[58]
ZHENG J Q, ZHANG Y J, ZHAO B G, et al. Metabolic changes of thalamus assessed by 1H-MRS spectroscopy in patients of cervical spondylotic myelopathy following decompression surgery[J/OL]. Front Neurol, 2025, 15: 1513896 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39845933/. DOI: 10.3389/fneur.2024.1513896.
[59]
CRACIUNAS S C, GORGAN M R, IANOSI B, et al. Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2017, 26(6): 668-678. DOI: 10.3171/2016.10.SPINE16479.
[60]
GOHMANN R F, BLUME C, ZVYAGINTSEV M, et al. Cervical spondylotic myelopathy: Changes of fractional anisotropy in the spinal cord and magnetic resonance spectroscopy of the primary motor cortex in relation to clinical symptoms and their duration[J]. Eur J Radiol, 2019, 116: 55-60. DOI: 10.1016/j.ejrad.2019.04.009.
[61]
ZHANG L, ZHANG Y J, WANG N, et al. Changes to dorsal thalamic metabolites and thalamocortical tract fiber injury in patients with cervical spondylotic myelopathy[J/OL]. Magn Reson Med Sci, 2024: mp.2024-mp.2079 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39631868/. DOI: 10.2463/mrms.mp.2024-0079.
[62]
WANG X Y, TIAN X N, ZHANG Y J, et al. Predictive value of dynamic diffusion tensor imaging for surgical outcomes in patients with cervical spondylotic myelopathy[J/OL]. BMC Med Imaging, 2024, 24(1): 260 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39354411/. DOI: 10.1186/s12880-024-01428-9.
[63]
IUTAKA T, DE FREITAS M B, OMAR S S, et al. Arterial spin labeling: techniques, clinical applications, and interpretation[J/OL]. Radiographics, 2023, 43(1): e220088 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36367822/. DOI: 10.1148/rg.220088.
[64]
THROPP P, PHILLIPS E, JUNG Y, et al. Arterial spin labeling perfusion MRI in the Alzheimer's disease neuroimaging initiative: past, present, and future[J]. Alzheimers Dement, 2024, 20(12): 8937-8952. DOI: 10.1002/alz.14310.
[65]
ZHONG Y L, HU R Y, HUANG X. Aberrant neurovascular coupling in diabetic retinopathy using arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) methods[J]. Diabetes Metab Syndr Obes, 2024, 17: 2809-2822. DOI: 10.2147/DMSO.S465103.
[66]
JOSHI D, PRASAD S, SAINI J, et al. Role of arterial spin labeling (ASL) images in Parkinson's disease (PD): a systematic review[J]. Acad Radiol, 2023, 30(8): 1695-1708. DOI: 10.1016/j.acra.2022.11.001.
[67]
SCHRAMM S, BÖRNER C, REICHERT M, et al. Perfusion imaging by arterial spin labeling in migraine: a literature review[J]. J Cereb Blood Flow Metab, 2024, 44(8): 1253-1270. DOI: 10.1177/0271678x241237733.
[68]
ZHOU F Q, HUANG M H, WU L, et al. Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: an arterial spin labeling study[J]. J Pain Res, 2018, 11: 181-190. DOI: 10.2147/JPR.S148076.
[69]
WEI W Z, WANG T, ABULIZI T, et al. Altered coupling between resting-state cerebral blood flow and functional connectivity strength in cervical spondylotic myelopathy patients[J/OL]. Front Neurol, 2021, 12: 713520 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34566857/. DOI: 10.3389/fneur.2021.713520.
[70]
FEHLINGS M G, TETREAULT L A, RIEW K D, et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression[J]. Global Spine J, 2017, 7(3Suppl): 70S-83S. DOI: 10.1177/2192568217701914.

上一篇 Transformer在脑肿瘤MRI图像分割中的研究进展
下一篇 代谢异常相关心肌病的心脏磁共振研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2