分享:
分享到微信朋友圈
X
综述
人工智能压缩感知技术的MRI临床应用进展
李涛 殷硕 张玄霄 张惠茅 周宏伟

本文引用格式:李涛, 殷硕, 张玄霄, 等. 人工智能压缩感知技术的MRI临床应用进展[J]. 磁共振成像, 2025, 16(8): 228-234. DOI:10.12015/issn.1674-8034.2025.08.034.


[摘要] 磁共振成像(magnetic resonance imaging, MRI)扫描时间长是其临床应用的主要瓶颈。传统压缩感知技术虽可加速采集,但在高加速因子下易产生伪影,且对复杂解剖结构的重建效果有限。人工智能辅助压缩感知(artificial intelligence-assisted compressed sensing, ACS)技术通过将深度学习(deep learning, DL)[如卷积神经网络(convolutional neural network, CNN)、生成对抗网络(generative adversarial networks, GANs)]与压缩感知原理在端到端框架中融合,实现了显著加速(通常>2倍)并致力于保留诊断特征,为突破上述瓶颈提供了有前景的解决方案。然而,ACS技术当前面临关键挑战,包括缺乏标准化的加速因子、算法对不同解剖部位和病变异质性的泛化能力不足,以及对细微病变(如微小转移淋巴结)诊断效能的验证尚不充分。此外,既往综述多聚焦于单一系统或纯技术层面,缺乏对ACS技术在全身多器官临床应用效果的系统评价。本综述旨在系统梳理ACS技术的原理演进与MRI临床研究进展,重点评述其在头颈、骨关节、心胸、腹部及盆腔等多系统成像中的优势、局限性与现存挑战,以期为优化ACS的临床应用提供依据,并为未来研究方向提供指引,推动MRI向更精准、高效、智能化的方向发展。
[Abstract] Prolonged scan times remain a major bottleneck for the clinical utility of magnetic resonance imaging (MRI). While conventional compressed sensing techniques accelerate acquisition, they often introduce artifacts and exhibit limited efficacy in reconstructing complex anatomical structures at high acceleration factors.Artificial intelligence-assisted compressed sensing (ACS) addresses these limitations by integrating deep learning (DL) architectures—such as convolutional neural networks (CNNs) and generative adversarial networks (GANs)—with compressed sensing principles within end-to-end frameworks. This synergy enables substantial acceleration (>2×) while preserving diagnostic features. However, ACS faces critical challenges: lack of standardized acceleration factors, insufficient algorithm generalizability across diverse anatomies and pathological heterogeneity, and inadequate validation of diagnostic efficacy for subtle lesions (e.g., small metastatic lymph nodes). Furthermore, existing reviews predominantly focus on single-system applications or purely technical aspects, lacking a systematic evaluation of ACS's clinical utility across multiple body regions.This review systematically synthesizes technological advancements and MRI clinical progress in ACS, critically evaluating its strengths, limitations, and unresolved challenges in multi-system imaging (head-neck, musculoskeletal, cardiothoracic, abdominal, pelvic). We aim to provide evidence-based guidance for optimizing clinical implementation of ACS and direct future research toward advancing precision, efficiency, and intelligence in MRI.
[关键词] 人工智能;压缩感知;磁共振成像;脑血管疾病;骨关节疾病;冠状动脉疾病;腹部疾病;子宫相关病变
[Keywords] artificial intelligence;compressed sensing;magnetic resonance imaging;cerebrovascular diseases;bone and joint diseases;coronary artery diseases;abdominal diseases;uterine-related disorders

李涛    殷硕    张玄霄    张惠茅    周宏伟 *  

吉林大学第一医院放射科,长春 130021

通信作者:周宏伟,E-mail:hwzhou@jlu.edu.cn

作者贡献声明:周宏伟、张惠茅设计本综述的方向和框架,对稿件的重要内容进行了修改;李涛和殷硕起草和撰写稿件,获取、分析和解释本研究的文献;张玄霄获取、分析本研究的文献,对稿件的重要内容进行了修改;张惠茅获得吉林省科技发展计划项目的资助,周宏伟获得吉林省医疗卫生人才专项资助。全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 吉林省科技发展计划项目 YDZJ202402029CXJD 吉林省医疗卫生人才专项 JLSRCZX2025-010
收稿日期:2025-06-06
接受日期:2025-08-05
中图分类号:R445.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.08.034
本文引用格式:李涛, 殷硕, 张玄霄, 等. 人工智能压缩感知技术的MRI临床应用进展[J]. 磁共振成像, 2025, 16(8): 228-234. DOI:10.12015/issn.1674-8034.2025.08.034.

0 引言

       磁共振成像(magnetic resonance imaging, MRI)技术一直面临缩短扫描时间与提升空间分辨率的双重挑战[1]。近年来MRI技术迅速发展,尽可能地利用图像的时间或时空冗余实现更快的扫描速度。这些技术在多种临床应用中显著提高了动态成像的性能,扫描加速可以获得更高的空间分辨率、时间分辨率,以及更短的扫描时间[2]。虽然压缩感知技术通过信号稀疏性实现了数据采集量的显著降低[3, 4],但传统压缩感知方法在高加速因子下存在伪影增多、解剖结构细节丢失等关键瓶颈[5]。人工智能(artificial intelligence, AI)尤其是深度学习(deep learning, DL)的兴起为突破这些限制提供了新思路,催生了人工智能辅助压缩感知(artificial intelligence-assisted compressed sensing, ACS)技术[6, 7],目前此技术可以生成具有有序结构的任意压缩感知因子的采样矩阵,为重建速度的提升奠定了基础[8]。最新研究表明,通过将扩展卷积神经网络(convolutional neural network, CNN)与高频-脉冲频率域表征进行端到端整合,ACS技术实现了重建效率2倍以上的提升[9, 10]

       然而,当前ACS技术的临床应用仍面临诸多挑战:首先,最佳压缩因子的确定缺乏统一标准,导致不同研究采用的加速因子差异显著(从4~24倍不等)[11, 12];其次,算法的泛化性不足,现有研究多为单中心数据,对解剖变异和病变异质性的适应性有待验证[13, 14];此外,对微小病变(如<5 mm转移淋巴结)的检测效能尚未充分评估[15],关键技术参数与诊断可靠性的量化关系尚未建立。

       尽管已有部分研究探讨ACS技术的原理和应用,但现有综述多聚焦于单一系统或技术层面,缺乏对全身多器官临床应用效果的系统评价。本综述创新性地构建“技术原理-临床应用-挑战展望”的分析框架,全面评估ACS技术在头颈、骨关节、胸腹盆等系统的MRI应用效果,深入分析其在不同解剖部位的加速边界和诊断价值,为ACS技术的临床转化提供实践指导,更为未来技术优化指明了方向。

1 技术原理演进

       AI旨在让机器模拟人类认知过程,通过机器学习、DL和自然语言处理等技术智能化处理复杂任务[16]。其概念源于图灵关于机器思维的设想,并于1956年由麦卡锡在达特茅斯会议上正式提出[17]。DL技术的兴起显著推动了AI在医学成像领域的发展:CNN通过层级化的卷积层(提取局部特征)与池化层(降低空间维度)高效处理图像数据[18],学习从欠采样测量值到全采样图像的映射;变分网络(variational network, VN)将迭代重建的数学模型(如数据一致性约束)与DL先验结合,通过可学习的正则化项优化重建过程[19, 20];生成对抗网络(generative adversarial networks, GANs)则通过生成器(合成图像)与鉴别器(判别真伪)的对抗训练机制,提升图像的视觉真实度与细节保留能力[21]。这些技术协同提升了医学成像的扫描速度、重建质量及细节表现,同时有效减少伪影[22, 23]。当前,AI在放射学领域的应用正引领诊断向精准化与高效化变革,显著提升了疾病检测与诊断能力,并广泛应用于临床实践[24, 25],尤其是DL的广泛使用,为未来研究提供了各类解决方案[26]

       压缩感知是一种利用信号稀疏性减少数据冗余的革命性技术,其概念由DONOHO等[27]和CANDÈS等于2006年提出,并由LUSTIG等[28]率先应用于MRI。其核心原理为基于MRI图像在变换域(如小波域)的稀疏性,通过满足不相干性的随机采样矩阵(如高斯矩阵[29]或混沌矩阵[30])选择性采集k空间少量关键数据,将高维稀疏信号投影至低维空间,再通过非线性迭代优化算法(如L1范数最小化)求解欠定方程组以重构原始图像。这一过程显著降低了数据采集量、存储需求及传输成本,大幅缩短扫描时间[31]。压缩感知技术已广泛应用于全身多系统成像,包括神经系统[32]、心脏[33]、乳腺[34]、肝脏[35, 36]及骨关节[37]等。然而,传统压缩感知技术依赖于理想稀疏性与采样不相干性,实际应用中易因信号非理想特性引入混叠伪影;低采样率违反奈奎斯特准则及过度压缩参数会降低信噪比(signal-to-noise ratio, SNR),导致重建偏差[38, 39]

       为突破传统压缩感知技术的局限,ACS技术深度融合AI与传统压缩感知技术框架。其核心价值在于利用AI的强大学习与自适应能力,通过稀疏表示和高效重构算法,显著减少采样点,缩短扫描时间,同时获取高质量图像[40]。其成像流程的核心是端到端的DL重建框架:该框架绕过了传统迭代算法,直接通过深度神经网络(如卷积递归神经网络[41])建立从高度欠采样的k空间数据到全采样图像的映射函数。其数学本质是学习一个参数化的非线性变换,通过训练数据最小化重建图像与目标图像的误差(如L2损失)。该框架联合学习了两类关键信息:(1)时间序列依赖性(通过递归结构捕获动态信息);(2)传统迭代优化的内在特性(如数据一致性约束通过专用网络层嵌入)[41]。这种数据驱动的“编码-解码”结构能自适应学习最优稀疏表示,克服人工设计稀疏基的经验依赖,显著提升低采样率下的重建鲁棒性与效率[42, 43]。这种数据驱动的重建方式显著提升了效率,有效抑制了伪影与噪声,生成高质量诊断图像[44, 45]。研究表明,ACS通过深度重建算法(CNN[18]、VN[19, 20]、GANs[21])在维持甚至提升图像质量的同时,可进一步减少MRI数据采集量,为头颈部、心血管等部位疾病的早期检测与精准诊断提供关键技术支撑[46]

2 ACS技术的MRI临床应用进展

2.1 头颈部成像

       头颈部MRI数据的高维海量特性导致传统采样时间长[47]。ACS技术在脑部及头颈部疾病(如恶性肿瘤、脑血管病)诊断中的应用取得显著进展。一项针对66例经病理证实鼻咽癌患者的研究(3.0 T MRI)显示,在相同分辨率下,ACS技术处理4个快速自旋回波序列(fast spin echo sequence, FSE)比常规并行成像(parallel imaging, PI)缩短180 s(约35%时间),且其病灶检出率、边缘清晰度、伪影控制及整体图像质量评分均优于PI序列[48],这直接提升了病灶检测效率和诊断信心,优化了扫描流程。另一项纳入102名健康人及疑似脑病患者的研究发现,ACS结合3D T2加权液体衰减反转恢复序列(T2-weighted fluid attenuated inversion recovery, T2 FLAIR)仅需105 s,显著提高SNR和图像清晰度,尽管总体图像质量评分、肿瘤体积测量及边界清晰度与常规方法无显著差异,但所有评分最高(均为2分或3分)的均来自对ACS的评估,而评分较低(均为1分或2分)的则来自对PI-3DT2FLAIR的评估[10, 49],表明其在快速扫描下仍能提供可靠的诊断基础。将ACS与热点3D结构成像(提供丰富结构/功能信息)[50]及多参数集成序列(multiple parametric, MTP)[51]结合,有望提供更清晰准确的图像并大幅提升检查效率,为头颈部疾病的临床诊疗提供更先进的成像方案。

       ACS技术在头颈部MRI扫描中已经取得了一定的效果,但当前DL算法结果稳定性仍存挑战,易受小噪声扰动(如吞咽、血流伪影)影响,且大脑微观结构的复杂变化也给算法带来不确定性,这可能影响微小病变的识别和诊断可靠性。此外,过于激进的ACS可能导致图像过度平滑,从而可能使病灶无法清晰显示甚至完全被遗漏。未来应该进一步检测其在不同的生理性伪影较传统成像技术的差别,并且优化算法,进行大量的数据训练以克服微小病变的显影瓶颈。

2.2 骨肌关节部

       MRI凭借其无电离辐射、卓越的软组织分辨率和较高的安全性,已成为肩、膝、踝等关节疾病常规诊断与评估的核心影像学手段[52]。然而,其相对较长的扫描时间不仅易引发患者不适,增加运动伪影风险,还可能影响图像细节显示,进而制约病变的精准检出与评估效能。因此,实现骨关节MRI的快速采集技术具有迫切的临床需求。

       近年来,加速ACS技术在关节成像领域展现出显著的应用价值[53]。以膝关节为例,作为评估半月板、韧带、关节软骨、骨髓及滑膜病变的金标准,MRI对半月板撕裂、韧带损伤及骨软骨病变的精准诊断至关重要。前瞻性研究证实,将ACS技术与三维MRI序列结合,可有效缩短膝关节扫描时间达50%以上,并生成更薄层厚的多平面重组(multiplanar reconstruction, MPR)图像,相对较于传统3D压缩感知MRI展现出巨大的发展潜力[54]。ACS在健康人群中进行MRI扫描取得同样的效果,在膝关节的扫描时间分别减少了54%和57%[55, 56]。另一项纳入130例(涵盖急性创伤、慢性损伤及术后状态)患者的研究进一步表明,PI方案的敏感度(93.3%)高于ACS方案(3.5 min ACS:86.7%,2.0 min ACS:73.3%),但以关节镜报告作为诊断金标准,ACS制订的诊断方案特异度(3.5 min 100%,2.0 min 96.6%)显著高于PI制订的诊断方案(8 min 89.7%)[57]。这些成果凸显了ACS在提升膝关节MRI检查效率和可及性方面的突出临床优势。

       肩关节因其高度活动性和复杂解剖结构(涉及盂肱、肩锁、胸锁等多个关节,以及相互交织的骨性结构、肌腱、韧带和肌肉),成为运动损伤的常见部位。MRI在诊断肩袖撕裂、盂唇损伤等致痛因素方面具有不可替代的作用[58]。然而,该区域的解剖复杂性和丰富的软组织使其成像易受呼吸运动及患者自主运动干扰,导致图像质量下降。DL与压缩感知技术的融合为应对这一挑战提供了有效解决方案。ACS方法在肩关节MRI中显著提升了骨骼、肌肉和脂肪的SNR、对比噪声比(contrast-to-noise ratio, CNR)及主观图像质量(噪声、清晰度、伪影控制),但未改变肩关节半高宽和序列间对比度,整体优于传统小波去噪[13]。虽然ACS技术有助于获得更高质量的肩关节图像,但过高的加速因子会损害其诊断价值,因此优化加速因子参数至关重要[13, 59]

       踝关节同样结构复杂,包含众多骨性结构与韧带,是运动扭伤的高发部位,MRI检查不可或缺。然而,为覆盖关节并减少环绕伪影而获取的薄层、多序列图像常导致扫描时间延长。一项针对踝关节的验证研究表明,相较于压缩感知技术,ACS技术能将图像采集时间减少47%且不降低图像质量。采集时间减少63%仍能获得具有可接受诊断准确性的图像(包含诊断置信度、SNR、CNR等量化指标),但此方案仅适用于疼痛严重或无法长时间保持静止的患者[60]

       此外,脊柱疾病对生活质量的影响日益受到关注。在腰椎成像领域,研究表明,与传统2D序列相比,ACS加速序列将扫描时间缩短了18.9%,在健康者和患者中均保持了与常规序列相当的图像质量,且产生的伪影更少[61]。两组序列在影像学评估指标(SNR、CNR、定性评分)上无显著差异,且两位放射科医生的评分一致性良好(Kappa=0.622~0.986)。类似的,ACS重建技术已被证明能够显著提升加速高分辨率3D T2加权快速自旋回波(turbo spin echo, TSE)腰椎成像的质量[62]

       ACS技术在骨肌关节MRI加速领域展现出显著潜力,但临床应用需审慎平衡加速能力与诊断可靠性。基于DL的ACS加速因子一定范围内可提高图像质量,但当加速因子提升至一定倍数时,图像质量显著劣化,提示当前存在明确的加速阈值。此外,尽管目前ACS技术在一些常见的关节(如肩关节、膝关节、踝关节等)取得了一定进展,但其在一些细小关节的效果仍然有待考证。因此该技术还需要进行多中心验证以确定其合理加速因子,并且对更多关节进行验证性研究以提升其适用范围。算法性能存在序列依赖性,需在T1加权等更多序列验证普适性,DL增强的ACS虽具潜力,但模型泛化能力不足且超高加速下存在质量衰减风险。

2.3 心胸部成像

       心脏磁共振(cardiac magnetic resonance, CMR)成像是评估心脏结构与功能的有效手段。近年来,冠状动脉疾病(coronary artery disease, CAD)发病率呈上升趋势[63]。研究表明,MRI在多种临床情境下对CAD的诊断具有较高的敏感性、特异性和准确的阴性预测价值[64]。然而,心脏冠状动脉磁共振血管造影(magnetic resonance angiography, MRA)面临的主要挑战是扫描时间延长导致运动伪影,其临床效果常不理想。DL在提升冠状动脉MRA图像质量和加速成像方面展现出潜力。其核心在于训练神经网络学习从零填充k空间数据到高质量重建的映射。新型CNN创新性地以可学习多尺度稀疏化替代传统稀疏变换,改进了压缩感知方法。结合DL与压缩感知优势的基于DL的压缩感知(DL-CS)方案(如自适应CSNetwork)在MRI重建中表现出优异性能,可以有效抑制心脏运动伪影,是实现快速三维Dixon水脂分离序列(3D dixon water-fat separation sequence, 3D DIXON)冠状动脉MRA的有效策略。然而该方法也存在明显的挑战,目前其还无法对血管壁和斑块进行分析,并且不能对梗阻性CAD提供明确的诊断[65, 66]

       而CMR同样可准确评估心室功能并动态显示室壁运动。但心脏运动的快速性和复杂性要求成像必须在短时间内获得高时空分辨率、多种对比度且覆盖全心的图像。在心肌水肿检测领域,基于CMR的T2 mapping技术已成为重要的评估手段。但传统单次激发T2 mapping技术存在固有局限:空间分辨率不足导致在薄壁心腔(如右心室)成像时,部分容积效应显著影响图像质量,并易因表观T2值异常升高导致假阳性诊断[67]。为突破此技术瓶颈,将ACS技术应用于T2加权黑血(T2-weighted dark blood, T2W-DB)序列。与传统PI加速的T2W-DB相比,ACS-T2W-DB将空间分辨率提高了一倍,在图像质量主观评分中右心室壁和左心室游离壁可视性的图像质量得分明显高于常规T2W-DB序列,并在水肿心肌区域表现出更高的CNR,这显著提升了临床诊断中对心肌水肿的检出能力[68]。该技术尤其在左室游离壁的可视化方面表现突出,有望成为心肌水肿筛查的优选方案,有效克服了传统CMR因长时间采集及患者配合困难(如呼吸、心律不齐)所带来的挑战。

       此外,乳腺癌作为全球最常见癌症之一,其早期发现与诊断至关重要,ACS技术在乳腺癌的检出中也取得了显著优势。YANG等[69]的研究表明,三维ACS乳腺MRI在测量肿瘤体积方面与传统方法无显著差异,但在病灶显示清晰度、形态与结构细节呈现、整体图像质量、提供乳腺病灶诊断信息、乳腺组织勾画以及CNR方面均优于常规T2加权成像(T2-weighted image, T2WI),与常规T2WI相比,3D CS和3D ACS的诊断信息评分显著升高(分别为3.79±0.41和4.38±0.66;P<0.001)。使用ACS的3D T2WI可进一步为改善乳腺病变的诊断提供益处。

       DL-CS技术显著提升冠状动脉MRA重建效率,有效抑制心脏运动伪影;而ACS-T2W-DB序列突破传统限制,使心肌水肿检出率倍增(尤其右室薄壁),空间分辨率提升100%。乳腺ACS-3D T2WI则在病灶细节呈现(诊断信息评分提升41%)及CNR方面优势突出。但核心局限在于:冠状动脉MRA尚无法分析血管壁斑块及明确梗阻性CAD诊断;心肌水肿评估仍存假阳性风险;乳腺技术普适性验证不足。这一系列问题亟需得到解决,从侧面也反映目前ACS技术在心胸部的成像并不成熟,未来还需要待技术成熟后再在心胸部进行验证。

2.4 腹部成像

       MRI是评估腹部病变的核心影像学手段。在胆胰管疾病(如结石、肿瘤、炎症)诊断中,磁共振胰胆管造影(magnetic resonance cholangiopancreatography, MRCP)作为无创技术价值显著。研究表明,3D DL-CS较传统方法显著提升了图像质量,尤其使肝内二级胆管(如右肝管前/后支、左肝管内/外侧支)和远端主胰管(main pancreatic duct, MPD)显示更清晰,SNR、CNR及对比度改善,这有助于更精确地定位病变和评估管道受累范围,为临床决策(如手术规划)提供更可靠依据[11]。该技术在SNR/CNR及左肝管分支显示方面也优于标准2D MRCP,但对MPD的描绘清晰度略逊于后者。当前应用的加速系数(24)尚有优化空间以进一步缩短扫描时间,且该方法的诊断性能(如病变检测准确性、表征可靠性)在具体疾病人群中的验证尚不充分,是其应用于关键临床决策前需解决的核心局限[11]

       ACS允许在保持图像质量前提下减薄层厚,提升病变检出能力。其显著缩短肝脏T2WI采集时间,使单次屏气即可获得诊断级图像,提高了患者耐受性和检查成功率,临床实用性突出[70, 71, 72]。结合弥散加权成像(diffusion weighted imaging, DWI)时,ACS能提升整体性能,特别是肝穹窿区病灶检出率。DL-CS DWI不仅改善图像质量,更将局灶性肝脏病变的检出率提升至95%,显著增强了其在肝癌高危人群早期诊断、分期及随访监测中的潜力,有望纳入简化筛查方案,但其在常规实践中广泛应用的普适性价值需更大规模、更多样化人群研究确证[12]

       前列腺癌是全球最常见的癌症之一,机器学习技术在前列腺病变的诊断中具有较好的规范性和一致性,有助于提高前列腺癌的管理水平[73]。研究表明,ACS可将前列腺T2WI采集时间缩短一半,提升图像质量,且不影响前列腺影像报告和数据系统(prostate imaging-reporting and data system, PI-RADS)评分,这对提高筛查效率和患者接受度具有积极意义[74, 75],也有研究指出其PI-RADS评分与常规压缩感知重建无显著差异[14]。由此可见,ACS对前列腺癌的早期发现和诊断具有重要价值,但其确切的临床影响(如对治疗决策的优化程度)仍需深入探究。对于肾脏疾病评估,ACS技术可实现超快速成像,所得图像质量等于或优于常规技术,大幅提升检查效率[76]。虽其图像边缘清晰度可能因屏气限制等因素略低,但总体质量提升显著,有助于更高效地进行肾脏病变的评估与监测。

       ACS技术在腹部MRI中展现多重优势:显著提升MRCP对二级胆管的显示精度,缩短肝脏T2WI扫描至单次屏气完成,并将肝癌检出率推至95%;加速前列腺/肾脏成像且不损PI-RADS评分,大幅提升临床效率。当前的研究还只局限于SNR的提升、扫描速度的提升,真正对疾病的诊断效能还没进一步验证。未来研究的核心应聚焦于在具体疾病场景下严格验证其诊断性能、优化技术参数以突破当前局限(如MPD显示、肾脏边缘清晰度)、深入探究其对最终临床决策和患者结局的实际影响,并致力于解决技术普适性、标准化和可重复性问题,最终实现从技术优势到明确临床获益的转化。

2.5 盆腔

       ACS技术的进展显著提升了其在盆腔医学成像中的价值。在女性盆腔成像中,ACS技术可有效抑制腹壁和内脏运动伪影,提高组织分辨率,从而为复杂生殖系统解剖结构的评估提供更清晰图像,并缩短检查时间、提升SNR。然而,其对子宫相关病变(如肌瘤、腺肌症或恶性肿瘤)的具体成像效能及对诊断准确性的影响尚不明确,这直接关系到其在妇科疾病关键诊疗决策中的应用可靠性[77, 78, 79]

       在肛瘘MRI中,ACS技术不仅大幅缩短采集时间、提升SNR/CNR,研究也证实其能准确预测瘘管走行和内口位置(准确率达88.89%),与手术探查结果高度一致,这为术前精准规划和改善手术预后提供了有力影像支持[80]。对于直肠癌,ACS-T2WI在定性评估(结构可见性、边缘清晰度、整体质量、N分期置信度)上优于CS-T2WI和PI-T2WI,其小体素成像有助于减少部分容积效应,提升T分期和直肠系膜筋膜评估的精确性,对制订手术和放化疗方案至关重要[15, 81]。但其对微小(如直径<5 mm)转移性淋巴结的检测能力尚未充分验证,这是影响精准N分期和后续治疗决策的关键环节,有待未来研究重点探讨[15, 81]

       ACS技术在盆腔成像中展现出重要价值。然而,既往研究对子宫病变(肌瘤/腺肌症/恶性肿瘤)的诊断效能验证不足,且缺乏对微小转移淋巴结(如<5 mm)的检测能力评估。因此未来可以尝试对盆部肿瘤分期进行验证,这样可以进一步对其在临床上的效果进行验证。而对微小的淋巴结的检测可结合ACS的DWI序列进行,并且还需进一步扩大其适用范围,诸如常见子宫病变。

3 小结与展望

       本文系统评述了ACS技术的原理演进以及在全身多系统MRI中的临床应用。ACS深度融合AI与传统压缩感知技术,通过端到端DL框架显著提升了重建效率与图像质量,在头颈、骨关节、心胸部、腹部及盆腔成像中展现出缩短扫描时间、优化图像细节及提升病灶检出率的潜力。然而,其临床应用仍面临加速因子标准化、算法泛化性验证、微小病变检测效能评估及关键参数与诊断可靠性量化关系建立等核心挑战。首要瓶颈在于算法的稳定性与泛化能力,DL模型易受微小噪声干扰(如头颈部吞咽伪影、血流伪影),导致重建结果波动;且现有研究多为单中心小样本,模型对复杂解剖变异(如肩关节韧带交织结构)及病变异质性的适应性不足,影响跨机构推广。其次,加速效能存在解剖特异性边界:过高加速因子会损害肩关节等复杂区域的诊断价值,而腹部MPD显示清晰度甚至可能弱于传统2D MRCP,提示当前技术对细微结构的解析力仍有局限。再者,临床验证体系尚不完善。如前列腺成像中ACS与压缩感知技术的PI-RADS评分一致性存争议,肾脏成像边缘伪影问题以及超高加速下的质量衰减风险,均需更严谨的多中心大样本研究验证其诊断等效性。

       展望未来,通过技术的迭代升级有望实现“多器官一体化成像”目标,但亟需突破的关键瓶颈在于不同器官(如心脏、肺、腹部)复杂且非周期性的生理运动所导致的同步困难和伪影问题。实现这一愿景的关键在于发展更智能、自适应的运动校正技术和联合重建算法,能够实时感知并补偿这些运动差异,确保在高速扫描下同步获取多个器官的高质量图像,并且结合MTP等技术,做到一次扫描获取多个定性定量图。而突破这一瓶颈的路径在于构建基于多中心、大规模、高质量异构数据训练的DL框架,并融合可解释AI技术,以增强模型对未知数据和罕见病例的适应能力与决策可靠性。通过这些关键技术突破,ACS技术将实现对亚毫米级早期病灶更精准高效地检出,为多种疾病的早筛早诊提供强大支撑;其快速舒适的特性也将通过深度优化的个性化扫描协议,惠及儿童与老年群体——进一步降低镇静需求,提升特殊检查成功率和舒适度;并在保障T2WI等关键序列诊断价值的前提下,显著提升脑部MRI扫描效率,有效应对老龄化带来的脑部疾病筛查压力,缓解医疗资源紧张。

[1]
SAUER S T, CHRISTNER S A, LOIS A M, et al. Deep learning k-space-to-image reconstruction facilitates high spatial resolution and scan time reduction in diffusion-weighted imaging breast MRI[J]. J Magn Reson Imag, 2024, 60(3): 1190-1200. DOI: 10.1002/jmri.29139.
[2]
TSAO J, KOZERKE S. MRI temporal acceleration techniques[J]. J Magn Reson Imaging, 2012, 36(3): 543-560. DOI: 10.1002/jmri.23640.
[3]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[4]
STARCK J L, ELAD M, DONOHO D L. Image decomposition via the combination of sparse representations and a variational approach[J]. IEEE Trans Image Process, 2005, 14(10): 1570-1582. DOI: 10.1109/tip.2005.852206.
[5]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[6]
YAN J P, CHEN S, ZHANG Y B, et al. Neural Architecture Search for compressed sensing Magnetic Resonance image reconstruction[J/OL]. Comput Med Imaging Graph, 2020, 85: 101784 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/32860972/. DOI: 10.1016/j.compmedimag.2020.101784.
[7]
KRAVETS V, STERN A. Progressive compressive sensing of large images with multiscale deep learning reconstruction[J/OL]. Sci Rep, 2022, 12(1): 7228 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35508516/. DOI: 10.1038/s41598-022-11401-7.
[8]
CHEN B, ZHANG J. Content-aware scalable deep compressed sensing[J/OL]. IEEE Trans Image Process, 2022, 31: 5412-5426 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35947572/. DOI: 10.1109/TIP.2022.3195319.
[9]
GAO W, GUO Y, MA S W, et al. Efficient neural network compression inspired by compressive sensing[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(2): 1965-1979. DOI: 10.1109/TNNLS.2022.3186008.
[10]
DING J L, CHAI L, DUAN Y Y, et al. Accelerating brain three-dimensional T2 fluid-attenuated inversion recovery using artificial intelligence-assisted compressed sensing: a comparison study with parallel imaging[J]. Quant Imaging Med Surg, 2024, 14(10): 7237-7248. DOI: 10.21037/qims-24-722.
[11]
ZHANG Y, PENG W L, XIAO Y, et al. Rapid 3D breath-hold MR cholangiopancreatography using deep learning-constrained compressed sensing reconstruction[J]. Eur Radiol, 2023, 33(4): 2500-2509. DOI: 10.1007/s00330-022-09227-y.
[12]
DUAN T, ZHANG Z, CHEN Y D, et al. Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: a prospective study[J/OL]. Magn Reson Imaging, 2024, 111: 74-83 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38604347/. DOI: 10.1016/j.mri.2024.04.010.
[13]
SHIRAISHI K, NAKAURA T, UETANI H, et al. Combination use of compressed sensing and deep learning for shoulder magnetic resonance imaging with various sequences[J]. J Comput Assist Tomogr, 2023, 47(2): 277-283. DOI: 10.1097/RCT.0000000000001418.
[14]
BISCHOFF L M, KATEMANN C, ISAAK A, et al. T2 turbo spin echo with compressed sensing and propeller acquisition (sampling k-space by utilizing rotating blades) for fast and motion robust prostate MRI: comparison with conventional acquisition[J]. Invest Radiol, 2023, 58(3): 209-215. DOI: 10.1097/RLI.0000000000000923.
[15]
许桂晓, 刘海彬, 吴尚远, 等. 直肠癌MRI: 人工智能辅助压缩感知技术与并行成像技术的对照研究[J]. 放射学实践, 2023, 38(4): 446-451. DOI: 10.13609/j.cnki.1000-0313.2023.04.013.
XU G X, LIU H B, WU S Y, et al. MRI for rectal cancer: a controlled study of AI-assisted compression sensing technique and parallel imaging technique[J]. Radiol Pract, 2023, 38(4): 446-451. DOI: 10.13609/j.cnki.1000-0313.2023.04.013.
[16]
DU-HARPUR X, WATT F M, LUSCOMBE N M, et al. What is AI? Applications of artificial intelligence to dermatology[J]. Br J Dermatol, 2020, 183(3): 423-430. DOI: 10.1111/bjd.18880.
[17]
MUSIB M, WANG F, TARSELLI M A, et al. Artificial intelligence in research[J]. Science, 2017, 357(6346): 28-30. DOI: 10.1126/science.357.6346.28.
[18]
DERRY A, KRZYWINSKI M, ALTMAN N. Convolutional neural networks[J]. Nat Methods, 2023, 20(9): 1269-1270. DOI: 10.1038/s41592-023-01973-1.
[19]
ZHANG Z, LI H, KE C, et al. Deep variational network for blind pansharpening[J]. IEEE Trans Neural Netw Learn Syst, 2025, 36(5): 9283-9297. DOI: 10.1109/tnnls.2024.3436850.
[20]
YUE Z S, YONG H W, ZHAO Q, et al. Deep variational network toward blind image restoration[J]. IEEE Trans Pattern Anal Mach Intell, 2024, 46(11): 7011-7026. DOI: 10.1109/TPAMI.2024.3365745.
[21]
LI C X, XU K, ZHU J, et al. Triple generative adversarial networks[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(12): 9629-9640. DOI: 10.1109/TPAMI.2021.3127558.
[22]
LIU J, LI W, LI Z Y, et al. Magnetic resonance shoulder imaging using deep learning-based algorithm[J]. Eur Radiol, 2023, 33(7): 4864-4874. DOI: 10.1007/s00330-023-09470-x.
[23]
CALIVÀ F, NAMIRI N K, DUBREUIL M, et al. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging[J]. Nat Rev Rheumatol, 2022, 18(2): 112-121. DOI: 10.1038/s41584-021-00719-7.
[24]
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[25]
INFANTE T, CAVALIERE C, PUNZO B, et al. Radiogenomics and artificial intelligence approaches applied to cardiac computed tomography angiography and cardiac magnetic resonance for precision medicine in coronary heart disease: a systematic review[J]. Circ Cardiovasc Imaging, 2021, 14(12): 1133-1146. DOI: 10.1161/CIRCIMAGING.121.013025.
[26]
CHEN X X, WANG X M, ZHANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J/OL]. Med Image Anal, 2022, 79: 102444 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35472844/. DOI: 10.1016/j.media.2022.102444.
[27]
DONOHO D L. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582.
[28]
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
[29]
MONAJEMI H, JAFARPOUR S, GAVISH M, et al. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices[J]. Proc Natl Acad Sci USA, 2013, 110(4): 1181-1186. DOI: 10.1073/pnas.1219540110.
[30]
RONTANI D, CHOI D, CHANG C Y, et al. Compressive sensing with optical chaos[J/OL]. Sci Rep, 2016, 6: 35206 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/27910863/. DOI: 10.1038/srep35206.
[31]
SONG CHO D M, YANG H Q, JIA Z Z, et al. Predictive coding compressive sensing optical coherence tomography hardware implementation[J]. Biomed Opt Express, 2024, 15(11): 6606-6618. DOI: 10.1364/BOE.541685.
[32]
EICHINGER P, HOCK A, SCHÖN S, et al. Acceleration of double inversion recovery sequences in multiple sclerosis with compressed sensing[J]. Invest Radiol, 2019, 54(6): 319-324. DOI: 10.1097/RLI.0000000000000550.
[33]
ZHANG Y, ZHANG X N, JIANG Y Q, et al. 3D whole-heart noncontrast coronary MR angiography based on compressed SENSE technology: a comparative study of conventional SENSE sequence and coronary computed tomography angiography[J/OL]. Insights Imaging, 2023, 14(1): 35 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36790611/. DOI: 10.1186/s13244-023-01378-w.
[34]
ONISHI N, KATAOKA M, KANAO S, et al. Ultrafast dynamic contrast-enhanced MRI of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins[J]. J Magn Reson Imaging, 2018, 47(1): 97-104. DOI: 10.1002/jmri.25747.
[35]
LEE H K, SONG J S, JANG W, et al. Improved single breath-hold SSFSE sequence for liver MRI based on compressed sensing: evaluation of image quality compared with conventional T2-weighted sequences[J/OL]. Diagnostics (Basel), 2022, 12(9): 2164 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36140565/. DOI: 10.3390/diagnostics12092164.
[36]
SUN W, WANG W T, ZHU K, et al. Feasibility of compressed sensing technique for isotropic dynamic contrast-enhanced liver magnetic resonance imaging[J/OL]. Eur J Radiol, 2021, 139: 109729 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/33905976/. DOI: 10.1016/j.ejrad.2021.109729.
[37]
TERADA Y, TAMADA D, KOSE K, et al. Acceleration of skeletal age MR examination using compressed sensing[J]. J Magn Reson Imaging, 2016, 44(1): 204-211. DOI: 10.1002/jmri.25140.
[38]
GAO Z F, GUO Y F, ZHANG J J, et al. Hierarchical perception adversarial learning framework for compressed sensing MRI[J]. IEEE Trans Med Imaging, 2023, 42(6): 1859-1874. DOI: 10.1109/TMI.2023.3240862.
[39]
WANG H K, LI Z A, HOU X S. Versatile denoising-based approximate message passing for compressive sensing[J/OL]. IEEE Trans Image Process, 2023, 32: 2761-2775 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/37186530/. DOI: 10.1109/TIP.2023.3274967.
[40]
FUJIMA N, NAKAGAWA J, IKEBE Y, et al. Improved image quality in contrast-enhanced 3D-T1 weighted sequence by compressed sensing-based deep-learning reconstruction for the evaluation of head and neck[J/OL]. Magn Reson Imaging, 2024, 108: 111-115 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38340971/. DOI: 10.1016/j.mri.2024.02.006.
[41]
DAI Y X, WANG C Y, WANG H. Deep compressed sensing MRI via a gradient-enhanced fusion model[J]. Med Phys, 2023, 50(3): 1390-1405. DOI: 10.1002/mp.16164.
[42]
ZHENG B W, SUN G L, DONG L, et al. LD-CSNet: a latent diffusion-based architecture for perceptual Compressed Sensing[J/OL]. Neural Netw, 2024, 179: 106541 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39089153/. DOI: 10.1016/j.neunet.2024.106541.
[43]
SHEN M H, GAN H P, MA C Y, et al. MTC-CSNet: marrying transformer and convolution for image compressed sensing[J]. IEEE Trans Cybern, 2024, 54(9): 4949-4961. DOI: 10.1109/TCYB.2024.3363748.
[44]
LIN D J, JOHNSON P M, KNOLL F, et al. Artificial intelligence for MR image reconstruction: an overview for clinicians[J]. J Magn Reson Imaging, 2021, 53(4): 1015-1028. DOI: 10.1002/jmri.27078.
[45]
YAMAC M, AKPINAR U, SAHIN E, et al. Generalized tensor summation compressive sensing network (GTSNET): an easy to learn compressive sensing operation[J/OL]. IEEE Trans Image Process, 2023, 32: 5637-5651 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/37773907/. DOI: 10.1109/TIP.2023.3318946.
[46]
KARTHIK A, AGGARWAL K, KAPOOR A, et al. Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings[J/OL]. BMC Med Imaging, 2024, 24(1): 284 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39434010/. DOI: 10.1186/s12880-024-01463-6.
[47]
ITO Y, UEDA H, OIDA T, et al. Simplified shielded MEG-MRI multimodal system with scalar-mode optically pumped magnetometers as MEG sensors[J/OL]. Sci Rep, 2024, 14(1): 25867 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39468155/. DOI: 10.1038/s41598-024-77089-z.
[48]
LIU H B, DENG D L, ZENG W L, et al. AI-assisted compressed sensing and parallel imaging sequences for MRI of patients with nasopharyngeal carcinoma: comparison of their capabilities in terms of examination time and image quality[J]. Eur Radiol, 2023, 33(11): 7686-7696. DOI: 10.1007/s00330-023-09742-6.
[49]
曹家骏, 刘娜, 钟美梦, 等. 人工智能-压缩感知技术在颅脑3D T2-FLAIR序列采集及脑白质高信号评价中的应用[J]. 磁共振成像, 2024, 15(2): 135-139, 146. DOI: 10.12015/issn.1674-8034.2024.02.020.
CAO J J, LIU N, ZHONG M M, et al. Application of artificial intelligence-assisted compressed sensing technology in brain 3D T2-FLAIR sequence acquisition and evaluation of white matter hyperintensity[J]. Chin J Magn Reson Imag, 2024, 15(2): 135-139, 146. DOI: 10.12015/issn.1674-8034.2024.02.020.
[50]
FRINDEL C, ROBINI M C, ROUSSEAU D. A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain[J]. Med Image Anal, 2014, 18(1): 144-160. DOI: 10.1016/j.media.2013.10.004.
[51]
罗贺丹, 刘杨颖秋, 张浩南, 等. 基于人工智能压缩感知技术的鞍区多参数集成序列优化[J]. 磁共振成像, 2024, 15(12): 150-156. DOI: 10.12015/issn.1674-8034.2024.12.022.
LUO H D, LIU Y Y Q, ZHANG H N, et al. Optimization of multi-parameter MRI with flexible design sequences in the saddle area based on artificial intelligence-assisted compressed sensing technology[J]. Chin J Magn Reson Imag, 2024, 15(12): 150-156. DOI: 10.12015/issn.1674-8034.2024.12.022.
[52]
KIJOWSKI R, FRITZ J. Emerging technology in musculoskeletal MRI and CT[J]. Radiology, 2023, 306(1): 6-19. DOI: 10.1148/radiol.220634.
[53]
PRIYANKA, KADAVIGERE R, S S N, et al. Impact of artificial intelligence assisted compressed sensing technique on scan time and image quality in musculoskeletal MRI - A systematic review[J]. Radiography (Lond), 2024, 30(6): 1704-1712. DOI: 10.1016/j.radi.2024.08.012.
[54]
NI M, HE M, YANG Y X, et al. Application research of AI-assisted compressed sensing technology in MRI scanning of the knee joint: 3D-MRI perspective[J]. Eur Radiol, 2024, 34(5): 3046-3058. DOI: 10.1007/s00330-023-10368-x.
[55]
DRATSCH T, ZÄSKE C, SIEDEK F, et al. Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers[J/OL]. Eur Radiol Exp, 2024, 8(1): 47 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38616220/. DOI: 10.1186/s41747-024-00446-0.
[56]
TERZIS R, DRATSCH T, HAHNFELDT R, et al. Five-minute knee MRI: an AI-based super resolution reconstruction approach for compressed sensing. A validation study on healthy volunteers[J/OL]. Eur J Radiol, 2024, 175: 111418 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38490130/. DOI: 10.1016/j.ejrad.2024.111418.
[57]
WANG Q Z, ZHAO W L, XING X Y, et al. Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study[J]. Eur Radiol, 2023, 33(12): 8585-8596. DOI: 10.1007/s00330-023-09823-6.
[58]
DE ANGELIS GUERRA DOTTA T, ASSUNÇÃO J H, BAPTISTA E, et al. Diagnostic accuracy of non-contrast MRI in frozen shoulder[J]. Arch Orthop Trauma Surg, 2024, 144(3): 1149-1159. DOI: 10.1007/s00402-023-05184-3.
[59]
DRATSCH T, SIEDEK F, ZÄSKE C, et al. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers[J/OL]. Eur Radiol Exp, 2023, 7(1): 66 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/37880546/. DOI: 10.1186/s41747-023-00377-2.
[60]
FOREMAN S C, NEUMANN J, HAN J, et al. Deep learning-based acceleration of compressed sense MR imaging of the ankle[J]. Eur Radiol, 2022, 32(12): 8376-8385. DOI: 10.1007/s00330-022-08919-9.
[61]
SUI H, GONG Y, LIU L, et al. Comparison of artificial intelligence-assisted compressed sensing (ACS) and routine two-dimensional sequences on lumbar spine imaging[J/OL]. J Pain Res, 2023, 16: 257-267 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36744117/. DOI: 10.2147/JPR.S388219.
[62]
SARTORETTI E, SARTORETTI T, BERTULLI L, et al. Deep learning constrained compressed sensing reconstruction improves high-resolution three-dimensional (3D) T2-weighted turbo spin echo magnetic resonance imaging (MRI) of the lumbar spine[J/OL]. Clin Radiol, 2024, 79(12): e1514-e1521 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39379271/. DOI: 10.1016/j.crad.2024.09.004.
[63]
LIU B Q, LI Y, HAN M H, et al. Polygenic risk score, dietary inflammatory potential, and incident coronary heart disease[J/OL]. Eur J Prev Cardiol, 2025 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39881513/. DOI: 10.1093/eurjpc/zwaf009.
[64]
ZAHERGIVAR A, KOCHER M, WALTZ J, et al. The diagnostic value of non-contrast magnetic resonance coronary angiography in the assessment of coronary artery disease: a systematic review and meta-analysis[J/OL]. Heliyon, 2021, 7(3): e06386 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/33817362/. DOI: 10.1016/j.heliyon.2021.e06386.
[65]
WU X, YUE X, PENG P F, et al. Accelerated 3D whole-heart non-contrast-enhanced mDIXON coronary MR angiography using deep learning-constrained compressed sensing reconstruction[J/OL]. Insights Imaging, 2024, 15(1): 224 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39298070/. DOI: 10.1186/s13244-024-01797-3.
[66]
WU X, TANG L, LI W J, et al. Feasibility of accelerated non-contrast-enhanced whole-heart bSSFP coronary MR angiography by deep learning-constrained compressed sensing[J]. Eur Radiol, 2023, 33(11): 8180-8190. DOI: 10.1007/s00330-023-09740-8.
[67]
XU Z Q, WANG J, CHENG W, et al. Incremental significance of myocardial oedema for prognosis in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(7): 876-884. DOI: 10.1093/ehjci/jead065.
[68]
严祥虎, 罗毅, 冉玲平, 等. 基于人工智能辅助压缩感知技术的高分辨率T2加权黑血序列在心肌水肿中的临床应用研究[J]. 磁共振成像, 2022, 13(6): 76-80, 97. DOI: 10.12015/issn.1674-8034.2022.06.015.
YAN X H, LUO Y, RAN L P, et al. Clinical application of high resolution myocardial T2-weighted dark blood sequence based on artificial intelligence assisted compressed sensing technique in myocardial edema[J]. Chin J Magn Reson Imag, 2022, 13(6): 76-80, 97. DOI: 10.12015/issn.1674-8034.2022.06.015.
[69]
YANG F, PAN X L, ZHU K, et al. Accelerated 3D high-resolution T2-weighted breast MRI with deep learning constrained compressed sensing, comparison with conventional T2-weighted sequence on 3.0 T[J/OL]. Eur J Radiol, 2022, 156: 110562 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/36270194/. DOI: 10.1016/j.ejrad.2022.110562.
[70]
NAGATA H, OHNO Y, YOSHIKAWA T, et al. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI[J/OL]. Magn Reson Imaging, 2024, 108: 67-76 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38309378/. DOI: 10.1016/j.mri.2024.01.015.
[71]
LI H L, HU C L, YANG Y, et al. Single-breath-hold T2WI MRI with artificial intelligence-assisted technique in liver imaging: as compared with conventional respiratory-triggered T2WI[J/OL]. Magn Reson Imaging, 2022, 93: 175-180 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35987419/. DOI: 10.1016/j.mri.2022.08.012.
[72]
胡成林, 柳秋风, 李华玲, 等. 人工智能辅助下的压缩感知技术在肝脏T2WI中的应用价值[J]. 放射学实践, 2023, 38(4): 508-513. DOI: 10.13609/j.cnki.1000-0313.2023.04.023.
HU C L, LIU Q F, LI H L, et al. Application value of artificial intelligence-assisted compressed sensing technique in liver T2WI scan[J]. Radiol Pract, 2023, 38(4): 508-513. DOI: 10.13609/j.cnki.1000-0313.2023.04.023.
[73]
BARDIS M D, HOUSHYAR R, CHANG P D, et al. Applications of artificial intelligence to prostate multiparametric MRI (mpMRI): current and emerging trends[J/OL]. Cancers (Basel), 2020, 12(5): 1204 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/32403240/. DOI: 10.3390/cancers12051204.
[74]
SHEN L T, XU H, LIAO Q, et al. A feasibility study of AI-assisted compressed sensing in prostate T2-weighted imaging[J]. Acad Radiol, 2024, 31(12): 5022-5033. DOI: 10.1016/j.acra.2024.06.048.
[75]
JURKA M, MACOVA I, WAGNEROVA M, et al. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time[J]. Quant Imaging Med Surg, 2024, 14(5): 3534-3543. DOI: 10.21037/qims-23-1488.
[76]
ZHAO Y J, PENG C D, WANG S F, et al. The feasibility investigation of AI-assisted compressed sensing in kidney MR imaging: an ultra-fast T2WI imaging technology[J/OL]. BMC Med Imaging, 2022, 22(1): 119 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/35787673/. DOI: 10.1186/s12880-022-00842-1.
[77]
刘锴, 孙海涛, 陈财忠, 等. 基于深度学习压缩感知技术在子宫T2WI中的对比研究[J]. 中国医学计算机成像杂志, 2023, 29(1): 58-61. DOI: 10.19627/j.cnki.cn31-1700/th.2023.01.020.
LIU K, SUN H T, CHEN C Z, et al. Application of compressed sensing deep learning-based reconstruction in uterine T2WI MR imaging[J]. Chin Comput Med Imag, 2023, 29(1): 58-61. DOI: 10.19627/j.cnki.cn31-1700/th.2023.01.020.
[78]
UEDA T, OHNO Y, YAMAMOTO K, et al. Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice[J/OL]. Eur J Radiol, 2021, 134: 109430 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/33276249/. DOI: 10.1016/j.ejrad.2020.109430.
[79]
UEDA T, YAMAMOTO K, YAZAWA N, et al. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T[J/OL]. Eur Radiol Exp, 2024, 8(1): 103 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/39254920/. DOI: 10.1186/s41747-024-00506-5.
[80]
TANG H, PENG C D, ZHAO Y J, et al. An applicability study of rapid artificial intelligence-assisted compressed sensing (ACS) in anal fistula magnetic resonance imaging[J/OL]. Heliyon, 2023, 10(1): e22817 [2025-06-05]. https://pubmed.ncbi.nlm.nih.gov/38169794/. DOI: 10.1016/j.heliyon.2023.e22817.
[81]
ZHENG G Y, FU J Y, WANG Z, et al. AI-assisted compressed sensing MRI improves imaging quality in rectal cancer: a comparative study with conventional acceleration techniques[J]. Quant Imaging Med Surg, 2025, 15(3): 2547-2560. DOI: 10.21037/qims-24-1317.

上一篇 多模态磁共振成像及影像组学评估直肠癌肿瘤出芽的研究进展
下一篇 人工智能压缩感知技术的MRI临床应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2