分享:
分享到微信朋友圈
X
临床研究
水抑制酰胺质子转移加权成像抑制治疗后胶质瘤液性成分信号的可行性研究
侯静文 张墀 苏春秋 赵献策 曹远东 鲁珊珊

Cite this article as: HOU J W, ZHANG C, SU C Q, et al. The feasibility of fluid-suppressed amide proton transfer-weighted imaging in suppressing the fluid components of post-treatment gliomas[J]. Chin J Magn Reson Imaging, 2025, 16(9): 40-45.本文引用格式:侯静文, 张墀, 苏春秋, 等. 水抑制酰胺质子转移加权成像抑制治疗后胶质瘤液性成分信号的可行性研究[J]. 磁共振成像, 2025, 16(9): 40-45. DOI:10.12015/issn.1674-8034.2025.09.007.


[摘要] 目的 探讨水抑制酰胺质子转移加权(fluid-suppressed amide proton transfer-weighted, FS-APTw)成像抑制治疗后胶质瘤液性成分信号的可行性。材料与方法 前瞻性纳入经外科手术及病理证实、术后接受标准放化疗的胶质瘤患者59例,均接受酰胺质子转移加权(amide proton transfer-weighted, APTw)和FS-APTw检查。将APTw及FS-APTw图与解剖图配准融合,获得液性区、水肿区、可测量强化区的APTw与FS-APTw信号强度值(%),采用配对样本t检验或者Wilcoxon秩和检验进行对比分析。进一步根据液性区液体衰减反转恢复(fluid-attenuated inversion recovery, FLAIR)和扩散加权成像(diffusion weighted imaging, DWI)信号特点进行亚组分析(组1,FLAIR及DWI均为低信号;组2,FLAIR等/高信号,DWI低信号;组3,FLAIR等/高信号,DWI均匀高信号或高低混杂),采用Kruskal-Wallis秩和检验对三组液性区的水抑制效果进行对比分析,组间两两比较采用校正Bonferroni法。结果 采用水抑制后,治疗后胶质瘤液性区、水肿区的FS-APTw值较APTw值均明显下降(1.37% vs. 1.67%;1.03% vs. 1.14%;P均<0.05);但可测量强化区FS-APTw值较APTw值比较,差异无统计学意义(2.16% vs. 2.22%,P=0.404)。亚组分析显示:三组液性区的基线APTw值均存在差异,组2及组3的APTw值明显高于组1(3.80%,1.85% vs. 1.00%,P均<0.05)。压水后,三组液性区的FS-APTw值较APTw值均有显著下降(P均<0.05),其中组2的APTw下降最明显(-1.23%)。结论 FS-APTw能够在不影响实质区信号的前提下有效抑制治疗后胶质瘤液体成分的APTw值,尤其对富含蛋白的液性区(FLAIR等/高信号、DWI低信号)水抑制作用最为明显。
[Abstract] Objective To investigate the feasibility of fluid-suppressed amide proton transfer-weighted imaging (FS-APTw) in suppressing the fluid components of post-treatment gliomas.Materials and Methods Fifty-nine patients with surgically and pathologically confirmed gliomas who received standard postoperative chemoradiotherapy were prospectively collected and underwent APTw and FS-APTw imaging. The APTw and FS-APTw maps were coregistered and fused with anatomical maps to extract APTw and FS-APTw values from fluid components, peri-lesion edema, and measurable enhancing regions of gliomas. Comparisons were made using the paired-samples t-test or Wilcoxon signed ranks test. Subgroup analyses were performed according to the characteristics of the fluid compartments on FLAIR and DWI images (Group 1, low signal on both FLAIR and DWI; Group 2, equal or high signal on FLAIR but low signal on DWI; Group 3, equal or high signal on FLAIR and high or mixed signals on DWI). The efficacy of fluid suppression among the three groups was compared using the Kruskal-Wallis test, followed by the post-hoc tests.Results After the use of fluid suppression, the FS-APTw values of the fluid and edema compartments were significantly decreased, as compared to their corresponding APTw values (1.37% vs. 1.67%, 1.03% vs. 1.14%) (both P < 0.05). No significant difference was found in enhancing compartments (2.16% vs. 2.22%, P = 0.404). The subgroup analysis showed notable differences in the baseline APTw values of the fluid compartments across the three groups. Specifically, Group 2 and 3 exhibited significantly higher APTw values (3.80% and 1.85%, respectively) compared to Group 1 (1.00%, P < 0.05). After fluid suppression, a marked decrease in FS-APTw values was observed in the fluid compartments of all three groups, as compared to their respective APTw values (P < 0.05 for all). Notably, the most pronounced reduction in APTw value was discerned in Group 2 (-1.23%).Conclusions FS-APTw can effectively suppress the APTw signals of fluid components in post-treatment gliomas, while maintaining the signals of solid tissues. This fluid suppression effect was particularly pronounced in fluid compartments with protein-rich liquid, shown as equal or high signal intensities on FLAIR and low on DWI.
[关键词] 胶质瘤;水抑制;液性成分;酰胺质子转移加权成像;磁共振成像
[Keywords] glioma;fluid suppression;fluid components;amide proton transfer weighted imaging;magnetic resonance imaging

侯静文 1   张墀 1   苏春秋 1   赵献策 2   曹远东 3   鲁珊珊 1*  

1 南京医科大学第一附属医院放射科,南京 210029

2 飞利浦(中国)投资有限公司,上海 200042

3 南京医科大学第一附属医院放疗科,南京 210029

通信作者:鲁珊珊,E-mail: shanshanlu@njmu.edu.cn

作者贡献声明::鲁珊珊设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;侯静文起草和撰写稿件,获取、分析本研究的数据;张墀、苏春秋、赵献策、曹远东获取、分析和解释本研究的数据,对稿件重要内容进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82171907
收稿日期:2025-03-27
接受日期:2025-08-08
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.007
本文引用格式:侯静文, 张墀, 苏春秋, 等. 水抑制酰胺质子转移加权成像抑制治疗后胶质瘤液性成分信号的可行性研究[J]. 磁共振成像, 2025, 16(9): 40-45. DOI:10.12015/issn.1674-8034.2025.09.007.

0 引言

       胶质瘤是成人最常见的原发性颅内恶性肿瘤,在我国年发病率为5~8/10万[1, 2]。其中,高级别胶质瘤具有高度浸润性的特点,手术难以完全切除;即便术后辅以标准放化疗方案,其预后仍不佳[3]。胶质瘤治疗后的磁共振随访评估在监测治疗反应、识别肿瘤进展及指导临床治疗决策方面具有关键作用[4, 5]

       酰胺质子转移加权(amide proton transfer-weighted, APTw)成像是一种在分子水平上具有对比相关性的化学交换饱和转移(chemical exchange saturation transfer, CEST)成像技术,通过施加偏离共振的射频脉冲,实现对可移动蛋白和多肽的间接测量[6, 7]。近年来,多项研究证实APTw有助于区分胶质瘤治疗后反应和肿瘤进展[8, 9, 10, 11]。然而临床解释治疗后胶质瘤APTw信号强度时常面临很大挑战,主要原因是术区、放化疗区富含蛋白的液性成分(液化性坏死、出血、水肿等)会导致传统APTw信号混杂,从而影响对治疗效果的准确评估,甚至误判肿瘤进展[12, 13, 14]

       水抑制APTw(fluid suppressed APTw, FS-APTw)是在APTw的基础上通过液体抑制的后处理方式来抑制组织腔室内液性成分的APTw信号[15]。目前FS-APTw在肿瘤成像领域展现出良好的临床应用前景[16, 17, 18],但其在治疗后胶质瘤随访评估中的可行性仍需进一步验证。本研究旨在通过APTw与FS-APTw的对照研究,探讨FS-APTw成像在抑制治疗后胶质瘤液性成分信号中的可行性。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经南京医科大学第一附属医院伦理委员会批准,批准文号:2024-SR-373,所有患者签署知情同意书。前瞻性纳入南京医科大学第一附属医院2024年6月至2024年11月经外科手术及病理证实的胶质瘤患者,行术后脑肿瘤多参数MR检查随访。纳入标准:(1)经组织病理学证实为胶质瘤;(2)术后接受标准方案的放疗及化疗(放疗照射总剂量为54~60 Gy/30F;化疗采用替莫唑胺或联合抗血管生成药物);(3)存在直径大于1 cm的可测量液性区域。排除标准:(1)临床资料、影像学资料不完整;(2)APT序列存在运动伪影,影响减影及与解剖图像的配准;(3)图像质量差或扫描范围不完全,影响分析。

1.2 扫描方法和技术参数

       用3.0 T MR扫描仪(Ingenia CX, Philips Healthcare, Best, The Netherlands),16通道头颈相控阵联合线圈。术后脑肿瘤MR扫描组套如下。(1)常规MRI:T1WI、T2WI、T2液体衰减反转恢复(fluid-attenuated inversion recovery, FLAIR)序列(以下简称FLAIR)、扩散加权成像(diffusion weighted imaging, DWI)及增强矢状位3D-T1WI和轴位T1WI序列;(2)灌注MRI:动脉自旋标记成像及动态磁敏感对比灌注加权成像;(3)3D-APTw及FS-APTw成像(均在增强扫描前进行)。

       APTw成像参数:采用带有脂肪抑制的三维快速自旋回波序列,回波链长度174。射频脉冲振幅(B1)2 μT;总射频饱和时间(Tsat)2 s;饱和占空比(DCsat)100 %;用于饱和射频脉冲的非共振频率在七个频率偏移处发射[-2.7、+2.7、-3.5、+3.5、-4.3、+4.3、-1560 ppm],共进行九次采集(其中+3.5 ppm处在不同回波时间下进行三次采集,用于APTw计算中的B0校正);重复时间5925 ms;回波时间8.3 ms;翻转角90°;视野230 mm×180 mm;平面分辨率1.8 mm×1.8 mm(重建分辨率0.9 mm×0.9 mm);矩阵128×100;层厚6 mm;层数 10层;扫描时间3分37秒。

       FS-APTw成像参数:在APTw成像参数的基础上,在后处理参数卡中,将“APT fluid suppression”设置成yes,其他参数与APTw扫描参数相同,扫描时间3分43秒。FS-APTw与APTw图均以相同的彩虹色标度(±5%)显示。

1.3 样本量估算

       本研究的样本量估算基于一项预试验。该预试验纳入20例患者,旨在获取液性区、水肿区及可测量强化区APTw与FS-APTw信号差异的效应量,并验证亚组划分的可行性。亚组依据“治疗后胶质瘤液性区FLAIR和DWI信号特点”分为三组(详见1.5节)。基于预试验所得全体患者(三个区域)及各亚组(液性区)的效应量(均值±标准差),我们使用PASS 2025软件进行计算。可测量强化区采用配对等效性检验,其余均采用配对样本t检验。所有检验水准(α)为0.05,检验功效(1-β)为0.80。

1.4 APTw、FS-APTw图像分析及后处理

       APTw成像定量参数可以通过距离水共振频率3.5 ppm处的不对称性磁化转移率(asymmetric magnetization transfer ratio, MTRasym)计算得出:MTRasym(3.5 ppm)=MTR(+3.5 ppm)-MTR(-3.5 ppm)=Z(-3.5 ppm)-Z(+3.5 ppm)=[Ssat(-3.5 ppm)-Ssat(+3.5 ppm)]/S0×100%。其中,Z指的是Z谱,Ssat为经B0校正之后饱和频率为-3.5、+3.5 ppm的水信号强度,S0是饱和频率为-1560 ppm时的水信号强度[6]

       FS-APTw成像定量参数计算公式为:MTRasym,FS=MTRasym [Δω]×ε×(MTR[Δω] + MTR[-Δω])。其中,Δω是以水共振频率为参考的频偏,为了保证实质区APTw值不受影响,当B1=2 μT,Tsat=2 s,Δω=3.5 ppm时,ε=1[15]

       将APTw及FS-APTw等图像数据传输到Philips图像后处理工作站(IntelliSpace Portal10.1, Philips Healthcare),具体后处理分析流程见图1。(1)减影:选用FS-APTw图作为源图像(Source),APTw图作为参考图像(Reference),根据公式Subtraction Results=Source-Reference,获得减影后的APTw图(ΔAPTw)。即ΔAPTw=FS-APTw-APTw。(2)解剖配准:将ΔAPTw、APTw及FS-APTw图分别与解剖图CE-T1WI、FLAIR进行配准融合。(3)感兴趣区(region of interest, ROI)勾画:由2名具有5年以上工作经验的放射科医师,基于解剖图像,分别独自在∆APTw融合图上对最大层面液性区、水肿区、可测量强化区勾画ROI,并勾画其上下两层,取3个层面ROI的平均值作为测量结果,注意避开出血和大血管区域。将上述ROI复制到APTw和FS-APTw融合图对应位置上,获得各区域的APTw值及FS-APTw值。根据2023年的脑胶质瘤治疗后反应评估新标准(response assessment in neuro-oncology, RANO 2.0),可测量强化区定义为:具有清晰边界的增强,单个层面上垂直直径至少为10 mm,在两个或多个层面上可见或者囊性病灶伴有大于10 mm×10 mm的结节[19]。将两名医师测量结果的平均值用于后续分析。

图1  APTw及FS-APTw的后处理分析流程示意图。对APTw(1A)用FS-APTw(1B)进行减影,获得减影图ΔAPTw(1C)。将1A~1C分别与解剖图CE-T1WI(1D)进行配准融合。以FLAIR为参考(1E),在ΔAPTw解剖融合图(1F)上画感兴趣区,并将其复制到APTw融合图(1G)和FS-APTw融合图(1H)上,记录数值。其中,绿色区域代表液性区,红色区域代表强化区,黄色区域代表水肿区。APTw:酰胺质子转移加权;FS-APTw:水抑制酰胺质子转移加权;ΔAPTw:减影后的APTw图;CE-T1WI:增强T1WI;FLAIR:液体衰减反转恢复。
Fig. 1  Schematic diagram of the post-processing analysis flow for APTw and FS-APTw. Subtract APTw (1A) with FS-APTw (1B) to obtain the subtraction image ΔAPTw (1C). Register and fuse 1A to 1C with the anatomical CE-T1WI image (1D). Using the FLAIR image as a reference (1E), draw regions of interest on the ΔAPTw anatomical fusion map (1F) and replicate them onto the APTw fusion map (1G) and the FS-APTw fusion map (1H) to record the values. The green area represents the fluid region, the red area represents the enhanced region, and the yellow area represents the edema region. APTw: amide proton transfer weighted; FS-APTw: fluid suppressed amide proton transfer weighted; ΔAPTw: subtracted APTw image; CE-T1WI: contrast enhanced T1WI; FLAIR: fluid attenuated inversion recovery.

1.5 液性区APTw及FS-APTw信号亚组分析

       根据治疗后胶质瘤液性区FLAIR和DWI的信号特点,分为如下三组:组1,FLAIR低信号,DWI低信号;组2,FLAIR等或高信号,DWI低信号;组3,FLAIR等或高信号,DWI均匀高信号或高低混杂信号。

1.6 统计学方法

       采用SPSS 27.0软件,符合正态分布的计量资料用x¯±s表示,不符合者用M (Q1, Q3)表示;计数资料用例表示。通过计算组内相关系数(intra-class correlation coefficient, ICC)来评估定量参数观察者间的一致性,ICC>0.75表示一致性良好。采用配对样本t检验或者Wilcoxon秩和检验对APTw值及FS-APTw值进行对比分析。进一步采用Kruskal-Wallis秩和检验,对三组间液性区的水抑制效果进行对比分析,组间两两比较采用校正Bonferroni法。P<0.05为差异有统计学意义。

2 结果

2.1 临床资料

       本研究经样本量估算,计划纳入不少于33例治疗后胶质瘤患者。在实际研究中,共85例患者接受筛选,最终59例符合标准并纳入本研究,其中男34例,女25例,年龄20~76(48.3±12.7)岁。放疗结束至多参数MRI检查的时间间隔为6.0(3.6,14.1)个月;在化疗方案上,48例患者接受了替莫唑胺单药治疗,11例患者接受了替莫唑胺联合抗血管生成药物治疗。

2.2 APTw与FS-APTw的定量对比

       两位医师测量液性区、水肿区、强化区APTw及FS-APTw值的ICC(95% CI)分别为0.959(0.930~0.976)和0.949(0.914~0.971)、0.843(0.740~0.908)和0.835(0.727~0.903)、0.789(0.627~0.890)和0.765(0.609~0.857),一致性均较好。

       59例患者的液性区和水肿区均可测量,44例患者存在可测量强化区。表1总结了液性区、水肿区、强化区的APTw及FS-APTw值对比。水抑制后,液性区的FS-APTw值较APTw值明显下降(1.37% vs. 1.67%,P<0.001);水肿区的FS-APTw值较APTw值也有下降,差异有统计学意义[(1.03±0.65)% vs.(1.14±0.60)%,P=0.025],强化区的FS-APTw值较APTw值未见明显下降[(2.16±0.67)% vs.(2.22±0.62)%,P=0.404]。

表1  胶质瘤液性区、水肿区、强化区的APTw与FS-APTw值对比
Tab. 1  Comparison of APTw and FS-APTw values across the fluid, edema, and enhancement compartments of gliomas

2.3 水抑制效果的亚组分析

       本研究最终将59例患者分为三组:组1(n=24)、组2(n=17)和组3(n=18)。三组液性区的基线APTw值均存在差异,组2及组3的APTw值明显高于组1(P均<0.05)。压水后,三组液性区的FS-APTw值较APTw值均有显著下降(P均<0.05),其中组2的APTw下降最明显(-1.23%)。不同亚组液性区压水前后APTw值及其变化程度见表2,代表性病例见图2

图2  三例治疗后胶质瘤液性区的APTw和FS-APTw图像。2A:液性区在FLAIR和DWI上均呈低信号,在APTw和FS-APTw上,液性区的信号强度与同层面脑脊液相似;2B:液性区在FLAIR上呈高信号,DWI上呈低信号,APTw上液性区呈高信号强度,FS-APTw上液性区信号被显著抑制,仅留下周围薄壁呈稍高信号;2C:液性区在FLAIR上呈高信号,DWI上呈现高低混杂信号,APTw上液性区呈高信号强度,FS-APTw上液性区部分信号被抑制。APTw:酰胺质子转移加权;FS-APTw:水抑制酰胺质子转移加权;FLAIR:液体衰减反转恢复;DWI:扩散加权成像;CE-T1WI:对比增强T1加权成像。
Fig. 2  Standard APTw and fluid-suppressed APTw MR images for three post-treatment gliomas. 2A: The lesion exhibits low signal intensity on both FLAIR and DWI. The signal intensity of the fluid component in APTw and FS-APTw is similar to that of cerebrospinal fluid at the same level; 2B: The lesion displays equal or high signal on FLAIR but low signal on DWI. It shows high signal intensity on APTw, while only a high signal at the thin edge is visible after fluid suppression; 2C: The lesion shows high signal intensity on FLAIR and high or mixed signals on DWI. It presents as high signal intensity on APTw, with some signal suppression in the fluid region on FS-APTw. APTw: amide proton transfer weighted; FS-APTw: fluid suppressed amide proton transfer weighted; FLAIR: fluid attenuated inversion recovery; DWI: diffusion weighted imaging; CE-T1WI: contrast enhancement T1 Weighted imaging.
表2  不同成分液性区的APTw与FS-APTw定量参数对比
Tab. 2  Comparison of quantitative parameters of APTw and FS-APTw in the different fluid components

3 讨论

       在本研究中,我们探讨了FS-APTw成像抑制治疗后胶质瘤液性成分信号的可行性。当液性区呈FLAIR等或高信号时,其基线APTw值最高。FS-APTw对不同液性成分的APTw值均具有较好的抑制作用,特别对于FLAIR等或高信号、DWI低信号的液性成分抑制作用最显著。

3.1 FS-APTw成像的技术优势

       APTw基于CEST机制,利用组织内的内源性移动蛋白和多肽产生图像对比度,反映肿瘤代谢[6]。临床上,APTw被广泛用于恶性胶质瘤术前诊断、组织学分型、鉴别诊断、治疗反应评估和无进展生存期预测[20, 21, 22, 23]。然而,囊性区、坏死区等液体腔室在APTw上存在高信号,对影像诊断常常造成干扰[13, 24, 25, 26]

       为了抑制液性成分在APTw上造成的高信号,KEUPP和TOGAO开发了一种基于背景磁化转移率(magnetization transfer ratio, MTR)的频谱形状来抑制液体APTw 信号的新指标,即FS-APTw。该指标基本上保留了固体组织中的APTw值,适用于一般的CEST MRI,且无需额外的采集时间[15]。SCHÜRE等[27]根据CEST信号的溢出稀释效应,从Bloch-McConnell方程中推导出一个新的后处理公式,即:MTRasym,FS=MTRasym(0.52/Z2ref),其中,Zref是饱和频率为-3.5 ppm处的Z谱值。该公式可以有效去除液体伪影,并从理论的角度证明了FS-APTw成像的可行性。MANCINI等[17]发现FS-APTw不仅可以减少囊肿等液体成分对CEST信号的干扰,提高诊断准确性;还可用于区分不同分子分型,为非强化或低强化胶质瘤的分子病理学分级提供影像学证据,指导治疗策略。此外,FS-APTw在区分脑转移瘤放射性坏死和肿瘤进展有一定的诊断价值[18]。然而目前尚缺乏FS-APTw在治疗后胶质瘤中的应用研究。

       在本研究中,我们将不同区域的APTw值与FS-APTw值进行对比,发现液性区和强化区的基线APTw值往往较高,且二者边界难以区分。压水后液性区的FS-APTw值出现明显下降,强化区的FS-APTw值未见明显下降,这与SCHÜRE等[27]的研究结果一致,进一步证实了FS-APTw可以在有效地抑制液体的同时保留了实体组织中APTw的数值。同时我们发现水肿区的FS-APTw值较APTw值轻度下降且有统计学差异。水肿区的APTw和FS-APTw 值,可能反映了多种病理生理过程的混合效应,例如放化疗诱发的血管源性水肿、微坏死、炎症、胶质增生或肿瘤细胞浸润等[28, 29, 30]。本研究仅采用FS-APTw对水肿区信号抑制效果进行初步探讨,后续进一步对比胶质瘤复发与治疗后改变水肿区的水抑制效果,将有利于明确不同病理学机制下FS-APTw的价值。

3.2 FS-APTw对不同液性区水抑制效果的分析

       本研究根据液性区FLAIR和DWI信号特点进行分组分析,讨论FS-APTw成像相较于传统的APTw成像对不同液性成分的抑制作用。ZHOU等[16]发现当3D-APTw成像参数B1=2 μT,Tsat=2 s时,理论上大多数正常脑区、脑室和部分患者切除腔的APTw值应接近于零。这与本研究结果基本一致,即液性区FLAIR低信号、DWI低信号时,大分子蛋白和多肽含量少,大多数基线APTw值较低。然而,笔者发现部分液性区的APTw值稍高并不接近于零。原因可能是APTw容易受到运动和B0位移的影响,这可能导致APTw图像中的伪影。此外,本研究发现FS-APTw对FLAIR低信号、DWI低信号的液性区APTw信号仍有抑制作用。这与先前研究结论一致,即FS-APTw可能会过度抑制CEST效应[27]。当液性区呈FLAIR等或高信号时,基线APTw值明显升高,从而对影像评估造成干扰。WINTERSTEIN等[31]认为靠近切除腔的轻微肿瘤生长可能导致切除腔被肿瘤细胞包裹,干扰脑脊液交换,因此腔内的蛋白质浓度较高,FLAIR信号强度增加。而SARBU等[32]和PERRY等[33]均认为液性区FLAIR高信号可能与周围脑组织的蛋白质渗漏到切除腔中有关。目前液性区成分的病理生理机制仍不清楚,有待进一步探讨。有文献报道,单纯性无细胞或囊性坏死,DWI呈低信号;而对于胶质增生、血管壁纤维蛋白样坏死、巨噬细胞侵袭、实质坏死和钙化等会限制水分子自由运动,从而出现DWI高信号[34]。我们发现,当液性区呈FLAIR等/高信号、DWI低信号时,FS-APTw值较APTw值明显下降;而当DWI上呈现均匀高或高低混杂信号时,FS-APTw值下降不明显。这可能是因为运动不受限的蛋白性液体成分容易被抑制,而大量坏死物质等导致水分子运动受限时水抑制效果则减弱。因此,本研究认为FS-APTw在FLAIR等/高信号、DWI低信号的液性区抑制中能发挥最大的优势。

3.3 局限性

       本研究具有以下局限性。(1)ROI采用手工勾画,选择了代表性的最大层面及其上下两层,并未包括全部区域,可能会导致偏差。此外ROI测量时,仅比较FS-APTw和APTw在同层面的信号强度,未采用对侧正常白质区信号强度进行校正,可能存在个体差异。未来我们需要采用肿瘤全容积分析方式进一步验证。(2)本研究中APTw及FS-APTw扫描范围未覆盖全脑,少数病例病变范围较广,仍有少部分水肿区未包全,但考虑到扫描时间,这一扫描范围也基本可满足临床评估需求。全脑CEST技术的最新进展有望克服这个问题,但该技术本身存在的信噪比下降及对主磁场(B0)不均匀性敏感等挑战,意味着需要持续的研究和优化,才能真正适用于临床[35]。(3)本研究强化区和周围水肿区的信号是多种病理机制的混合,未来我们将结合蛋白定量和细胞学分析,进一步探讨FS-APTw在鉴别治疗后胶质瘤复发和治疗后改变中的应用价值。

4 结论

       综上所述,我们初步证实了FS-APTw能够在不影响实质区信号的前提下有效抑制治疗后胶质瘤液体成分的APTw值,尤其对呈FLAIR等/高信号、DWI低信号的液性区水抑制作用最为明显。水抑制技术对提高APTw图像的可读性,提高诊断能力可能具有重要价值。

[1]
OSTROM Q T, CIOFFI G, WAITE K, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018[J/OL]. Neuro Oncol, 2021, 23(12Suppl 2): iii1-iii105 [2025-03-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8491279/. DOI: 10.1093/neuonc/noab200.
[2]
国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版)[J]. 中华神经外科杂志, 2022, 38(8): 757-777. DOI: 10.3760/cma.j.cn112050-20220510-00239.
National Health Commission of the People's Republic of China, Medical Administration and Management Bureau, Chinese Anti-Cancer Association Glioma Professional Committee, Chinese Medical Doctor Association Glioma Professional Committee. Glioma Diagnosis and Treatment Guidelines (2022 Edition)[J]. Chinese Journal of Neurosurgery, 2022, 38(8): 757-777. DOI: 10.3760/cma.j.cn112050-20220510-00239.
[3]
初曙光, 郭琤琤, 赫振炎, 等. 胶质瘤化疗中国专家共识[J]. 中国神经精神疾病杂志, 2024, 50(8): 449-462. DOI: 10.3969/j.issn.1002-0152.2024.08.001.
CHU S G, GUO Z Z, HAO Z Y, et al. Chinese experts consensus on chemotherapy for glioma[J]. Chinese Journal of Nervous and Mental Diseases, 2024, 50(8): 449-462. DOI: 10.3969/j.issn.1002-0152.2024.08.001.
[4]
LI A Y, IV M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging[J/OL]. Front Radiol, 2022, 2: 883293 [2025-03-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10365131/. DOI: 10.3389/fradi.2022.883293.
[5]
HU L S, SMITS M, KAUFMANN T J, et al. Advanced Imaging in the Diagnosis and Response Assessment of High-Grade Glioma: AJR Expert Panel Narrative Review[J/OL]. AJR Am J Roentgenol, 2025, 224(1): e2330612 [2025-03-27]. https://www.ajronline.org/doi/10.2214/AJR.23.30612. DOI: 10.2214/AJR.23.30612.
[6]
ZHOU J, LAL B, WILSON D A, et al. Amide proton transfer (APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-1126. DOI: 10.1002/mrm.10651.
[7]
ZHOU J, TRYGGESTAD E, WEN Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nat Med, 2011, 17(1): 130-134. DOI: 10.1038/nm.2268.
[8]
ESSED R A, PRYSIAZHNIUK Y, WAMELINK I J, et al. Performance of amide proton transfer imaging to differentiate true progression from therapy-related changes in gliomas and metastases[J]. Eur Radiol, 2025, 35(2): 580-591. DOI: 10.1007/s00330-024-11004-y.
[9]
PARK J E, LEE J Y, KIM H S, et al. Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography[J]. Eur Radiol, 2018, 28(8): 3285-3295. DOI: 10.1007/s00330-018-5341-2.
[10]
QIN D, YANG G, JING H, et al. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma[J/OL]. Cancers (Basel), 2022, 14(15): 3771 [2025-03-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9367286/. DOI: 10.3390/cancers14153771.
[11]
HUANG Q, WU J, LE N, et al. CEST2022: Amide proton transfer-weighted MRI improves the diagnostic performance of multiparametric non-contrast-enhanced MRI techniques in patients with post-treatment high-grade gliomas[J]. Magn Reson Imaging, 2023, 102: 222-228. DOI: 10.1016/j.mri.2023.06.003.
[12]
HOU H, DIAO Y, YU J, et al. Differentiation of true progression from treatment response in high-grade glioma treated with chemoradiation: a comparison study of 3D-APTW and 3D-PcASL imaging and DWI[J/OL]. NMR Biomed, 2023, 36(1): e4821 [2025-03-27]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4821. DOI: 10.1002/nbm.4821.
[13]
ZHOU J, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[14]
张思雨, 孙洪赞. 酰胺质子转移加权成像在肿瘤中的应用进展[J]. 磁共振成像, 2019, 10(8): 629-632. DOI: 10.12015/issn.1674-8034.2019.08.015.
ZHANG S Y, SUN H Z. Applications of amide proton transfer weighted imaging in tumor[J]. Chinese Journal of Magnetic Resonance Imaging, 2019, 10(8): 629-632. DOI: 10.12015/issn.1674-8034.2019.08.015.
[15]
KEUPP J, TOGAO O. Magnetization Transfer Ratio based Metric for APTw or CESTw MRI Suppressing Signal from Fluid Compartments-Initial Application to Glioblastoma Assessment[C]. https://archive.ismrm.org/2018/3156.html.
[16]
ZHOU J, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[17]
MANCINI L, CASAGRANDA S, GAUTIER G, et al. CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2377-2391. DOI: 10.1007/s00259-022-05676-1.
[18]
NICHELLI L, CASAGRANDA S, DIPASQUALE O, et al. Fluid-Suppressed Amide Proton Transfer-Weighted Imaging Outperforms Leakage-Corrected Dynamic Susceptibility Contrast Perfusion in Distinguishing Progression from Radionecrosis in Brain Metastases[J/OL]. Cancers (Basel), 2025, 17(7): 1175 [2025-03-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11987914/. DOI: 10.3390/cancers17071175.
[19]
WEN P Y, VAN DEN BENT M, YOUSSEF G, et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults[J]. J Clin Oncol, 2023, 41(33): 5187-5199. DOI: 10.1200/JCO.23.01059.
[20]
WU Y, WOOD T C, ARZANFOROOSH F, et al. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T[J]. MAGMA, 2022, 35(1): 63-73. DOI: 10.1007/s10334-021-00996-z.
[21]
XU Z, KE C, LIU J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134: 109466 [2025-03-27]. https://www.sciencedirect.com/science/article/pii/S0720048X20306562?via%3Dihub. DOI: 10.1016/j.ejrad.2020.109466.
[22]
CHEN K, JIANG X W, DENG L J, et al. Differentiation between glioma recurrence and treatment effects using amide proton transfer imaging: A mini-Bayesian bivariate meta-analysis[J/OL]. Front Oncol, 2022, 12: 852076 [2025-03-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9376615/. DOI: 10.3389/fonc.2022.852076.
[23]
KROH F, VON KNEBEL DOEBERITZ N, BREITLING J, et al. Semi-solid MT and APTw CEST-MRI predict clinical outcome of patients with glioma early after radiotherapy[J]. Magn Reson Med, 2023, 90(4): 1569-1581. DOI: 10.1002/mrm.29746.
[24]
WEN Z, HU S, HUANG F, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast[J]. Neuroimage, 2010, 51(2): 616-622. DOI: 10.1016/j.neuroimage.2010.02.050.
[25]
ZAISS M, KUNZ P, GOERKE S, et al. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer[J]. NMR Biomed, 2013, 26(12): 1815-1822. DOI: 10.1002/nbm.3021.
[26]
田瑶天, 李春媚, 陈敏. 3.0 T脑肿瘤酰胺质子转移加权成像临床应用及检查技术规范专家共识解读[J]. 中华放射学杂志, 2024, 58(6): 571-575. DOI: 10.3760/cma.j.cn112149-20230908-00171.
TIAN Y T, LI C M, CHEN M. Interpretation of consensus recommendations on amide proton transfer-weighted imaging: clinical application and technical standards for brain tumors on 3.0 T[J]. Chinese Journal of Radiology, 2024, 58(6): 571-575. DOI: 10.3760/cma.j.cn112149-20230908-00171.
[27]
SCHÜRE J R, CASAGRANDA S, SEDYKH M, et al. Fluid suppression in amide proton transfer-weighted (APTw) CEST imaging: New theoretical insights and clinical benefits[J]. Magn Reson Med, 2024, 91(4): 1354-1367. DOI: 10.1002/mrm.29915.
[28]
SCOLA E, DEL VECCHIO G, BUSTO G, et al. Conventional and Advanced Magnetic Resonance Imaging Assessment of Non-Enhancing Peritumoral Area in Brain Tumor[J/OL]. Cancers (Basel), 2023, 15(11): 2992 [2025-03-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10252005/. DOI: 10.3390/cancers15112992.
[29]
MA B, BLAKELEY J O, HONG X, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas[J]. J Magn Reson Imaging, 2016, 44(2): 456-462. DOI: 10.1002/jmri.25159.
[30]
HE L, ZHANG H, LI T, et al. Distinguishing Tumor Cell Infiltration and Vasogenic Edema in the Peritumoral Region of Glioblastoma at the Voxel Level via Conventional MRI Sequences[J]. Acad Radiol, 2024, 31(3): 1082-1090. DOI: 10.1016/j.acra.2023.08.008.
[31]
WINTERSTEIN M, MÜNTER M W, BURKHOLDER I, et al. Partially resected gliomas: diagnostic performance of fluid-attenuated inversion recovery MR imaging for detection of progression[J]. Radiology, 2010, 254(3): 907-916. DOI: 10.1148/radiol09090893.
[32]
SARBU N, OLEAGA L, VALDUVIECO I, et al. Increased signal intensity in FLAIR sequences in the resection cavity can predict progression and progression-free survival in gliomas[J]. Neurocirugia (Astur), 2016, 27(6): 269-276. DOI: 10.1016/j.neucir.2016.04.002.
[33]
PERRY L A, KORFIATIS P, AGRAWAL J P, et al. Increased signal intensity within glioblastoma resection cavities on fluid-attenuated inversion recovery imaging to detect early progressive disease in patients receiving radiotherapy with concomitant temozolomide therapy[J]. Neuroradiology, 2018, 60(1): 35-42. DOI: 10.1007/s00234-017-1941-9.
[34]
SUNDGREN P C, FAN X, WEYBRIGHT P, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions[J]. Magn Reson Imaging, 2006, 24(9): 1131-1142. DOI: 10.1016/j.mri.2006.07.008.
[35]
SEDYKH M, LIEBIG P, HERZ K, et al. Snapshot CEST++: Advancing rapid whole-brain APTw-CEST MRI at 3 T[J/OL]. NMR Biomed, 2023, 36(10): e4955 [2025-03-27]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4955. DOI: 10.1002/nbm.4955.

上一篇 磁敏感加权成像在新生儿颅脑损伤诊断中的应用价值
下一篇 基于瘤内及瘤周水肿的多参数MRI影像组学-transformer深度学习特征联合模型预测较低级别胶质瘤IDH-1突变状态
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2