分享:
分享到微信朋友圈
X
临床研究
双心室应变评估扩张型心肌病:射血分数轻度降低和保留型心衰的对比研究
张林鑫 齐海成 陈盈 段炼 闫军 邢艳

Cite this article as: ZHANG L X, QI H C, CHEN Y, et al. Biventricular strain in dilated cardiomyopathy: A comparative study between heart failure with mildly reduced ejection fraction and heart failure with preserved ejection fraction[J]. Chin J Magn Reson Imaging, 2025, 16(9): 66-73.本文引用格式:张林鑫, 齐海成, 陈盈, 等. 双心室应变评估扩张型心肌病:射血分数轻度降低和保留型心衰的对比研究[J]. 磁共振成像, 2025, 16(9): 66-73. DOI:10.12015/issn.1674-8034.2025.09.011.


[摘要] 目的 利用心脏磁共振特征追踪(magnetic resonance feature-tracking, CMR-FT)技术定量评估扩张型心肌病(cardiomyopathy, DCM)中射血分数轻度降低型心衰(heart failure with mildly reduced ejection fraction, HFmrEF)和射血分数保留型心衰(heart failure with preserved ejection fraction, HFpEF)患者双心室功能上的相关性与差异性,并评价双心室心肌应变对HFmrEF患者的预测价值。材料与方法 回顾性收集2021年1月至2024年6月于新疆医科大学第一附属医院诊断为心衰且既往确诊为DCM患者的临床和影像资料,使用CVI42软件获得心脏磁共振(cardiac magnetic resonance, CMR)常规参数和心肌应变参数。根据患者的心衰特征分为HFmrEF组及HFpEF组。分别比较两组的临床基线资料、CMR基本参数、整体和节段心肌应变参数,采用弹性网络正则化回归和多因素logistic回归分析筛选出DCM合并HFmrEF的独立相关因素并构建受试者工作特征曲线。结果 最终纳入患者67例,其中HFpEF组28例,HFmrEF组39例。两组中N末端B型利钠肽前体水平、高敏肌钙蛋白T和肌红蛋白差异有统计学意义(P<0.05)。与HFpEF组对比,HFmrEF组的双心室每搏输出量指数、左心室心输出量和心脏指数均降低(P<0.05),双心室舒张/收缩末期容积指数和心肌质量指数均升高(P<0.05),整体及节段心肌应变(除左心室心尖部纵向应变外)均降低(P<0.05)。多因素logistic回归模型分析显示,右心室每搏输出量指数(OR=0.863,P=0.008)、左心室中间部纵向应变(OR=1.406,P=0.004)和右心室中间部纵向应变(OR=1.110,P=0.025)是预测HFmrEF的独立危险因素,三变量联合模型受试者工作特征曲线下面积最大为0.896(95% CI:0.823~0.968)。结论 CMR-FT技术能够精确评估在DCM背景下HFmrEF和HFpEF患者的心肌应变特征,且右心室每搏输出量指数、左心室中间部纵向应变和右心室中间部纵向应变是DCM患者发生HFmrEF的独立预测因子,对HFmrEF具有重要评估价值。
[Abstract] Objective To quantitatively assess correlations and differences in biventricular function between patients with heart failure with mildly reduced ejection fraction (HFmrEF) and heart failure with preserved ejection fraction (HFpEF) in the context of dilated cardiomyopathy (DCM) using cardiovascular magnetic resonance feature-tracking (CMR-FT), and to evaluate the predictive value of biventricular myocardial strain parameters for HFmrEF.Materials and Methods Clinical and imaging data of patients diagnosed with heart failure and previously confirmed DCM were retrospectively collected from the First Affiliated Hospital of Xinjiang Medical University between January 2021 and June 2024. Conventional cardiac magnetic resonance (CMR) parameters and myocardial strain parameters were obtained using the CVI42 software. Based on heart failure characteristics, patients were divided into HFmrEF and HFpEF groups. Baseline clinical data, basic CMR parameters, and global/segmental myocardial strain parameters were compared between the two groups. Elastic-net regularized regression and multivariate logistic regression were used to identify independent factors associated with HFmrEF in DCM patients and to construct receiver operating characteristic (ROC) curves.Results A total of 67 patients were enrolled, including 28 in the HFpEF group and 39 in the HFmrEF group. Significant differences were observed between the two groups in N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hs-TnT), and myoglobin levels (all P < 0.05). Compared with the HFpEF group, the HFmrEF group showed significantly reduced biventricular stroke volume index, left ventricular cardiac output, and cardiac index (all P < 0.05); significantly increased biventricular end-diastolic/end-systolic volume indices and myocardial mass index (all P < 0.05); and impaired global and segmental myocardial strain (all P < 0.05 except for LV apical longitudinal strain). Multivariate logistic regression analysis identified right ventricular stroke volume index (OR = 0.863, P = 0.008), left ventricular mid longitudinal strain (OR = 1.406, P = 0.004), and right ventricular mid longitudinal strain (OR = 1.110, P = 0.025) as independent predictors of HFmrEF. The area under the ROC curve of the three-variable combined model was the largest, at 0.896 (95% CI: 0.823 to 0.968).Conclusions CMR-FT can accurately characterize myocardial strain in DCM patients with HFmrEF and HFpEF. Right ventricular stroke volume index, left ventricular mid longitudinal strain, and right ventricular mid longitudinal strain serve as independent predictors of HFmrEF in DCM patients, providing important assessment value for this patient subgroup.
[关键词] 心脏磁共振;扩张型心肌病;心衰;特征追踪;心肌应变;射血分数
[Keywords] cardiovascular magnetic resonance;dilated cardiomyopathy;heart failure;feature-tracking;myocardial strain;ejection fraction

张林鑫 1   齐海成 1   陈盈 1   段炼 2   闫军 2   邢艳 1*  

1 新疆医科大学第一附属医院影像中心,乌鲁木齐 830011

2 新疆心脑血管病医院影像中心,乌鲁木齐 830011

通信作者:邢艳,E-mail: xingyanzwb@sina.com

作者贡献声明::邢艳设计本研究的方案,撰写稿件,并对稿件重要内容进行了修改,获得了国家自然科学基金项目、新疆维吾尔自治区科技支疆项目计划项目资助;张林鑫起草和撰写稿件,获取、分析、解释本研究的数据;齐海成、陈盈、段炼、闫军获取、分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82160334 新疆维吾尔自治区科技支疆项目计划项目 2021E02067
收稿日期:2025-06-11
接受日期:2025-09-10
中图分类号:R445.2  R541 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.011
本文引用格式:张林鑫, 齐海成, 陈盈, 等. 双心室应变评估扩张型心肌病:射血分数轻度降低和保留型心衰的对比研究[J]. 磁共振成像, 2025, 16(9): 66-73. DOI:10.12015/issn.1674-8034.2025.09.011.

0 引言

       心力衰竭(heart failure, HF)作为全球范围内的高发病率与高死亡率疾病,在我国35岁以上人群HF患病率达1.3%,患病人数超过1370万,且随着人口老龄化加剧,这一数字仍在持续攀升[1, 2]。依据2023年欧洲心脏病学会和中国HF指南[3],HF主要分为射血分数降低的心衰、射血分数轻度降低的心衰(heart failure with mildly reduced ejection fraction, HFmrEF)和射血分数保留的心衰(heart failure with preserved ejection fraction, HFpEF)。扩张型心肌病(dilated cardiomyopathy, DCM)作为HF的重要病因之一,以心室扩大、心肌收缩功能减退为特征,占所有心肌病的69.9%[4],其患者的分布涵盖上述三种HF亚型[2, 5]。尽管左心室射血分数(left ventricular ejection fraction, LVEF)仍是当前HF分型与风险评估的核心指标,但其敏感性不足,无法精准捕捉心肌局部运动异常及双心室协同作用的改变,这在评估HFmrEF患者的心肌功能障碍时尤为突出[6, 7]。HFmrEF的病理生理机制兼具收缩与舒张功能障碍特征,呈现独特的心肌重构模式[8, 9]。然而,在DCM这一病因背景下,HFmrEF与HFpEF患者在双心室整体和节段收缩/舒张功能的系统性差异,尚缺乏充分研究。

       心脏磁共振(cardiac magnetic resonance, CMR)凭借无辐射、高分辨率等优势,已成为评估心脏结构和功能的金标准[10]。基于CMR电影序列的CMR特征追踪(cardiac magnetic resonance-feature tracking, CMR-FT)技术能够追踪心肌组织运动,可精准地量化整体及节段心肌应变,实现双心室整体及节段应变的定量分析[11, 12]。在既往的研究中,CMR心肌应变参数在DCM患者表现出了极好的诊断和预后价值[13, 14, 15],较LVEF更能敏感地反映HFpEF患者中的心肌力学异常[16],具有揭示亚临床功能障碍的独特潜力[17]。但应用CMR-FT探究DCM背景下HFmrEF与HFpEF患者双心室整体及局部应变特征差异的研究尚显不足,且既往研究主要关注左心室心肌整体应变[18, 19, 20],缺乏对双心室心肌节段应变特征的深入探讨。

       本研究旨在利用CMR-FT技术,定量评估DCM背景下HFmrEF与HFpEF患者左、右心室整体及各节段心肌应变参数的相关性及差异性,探讨双心室应变参数对HFmrEF的诊断价值,并初步评价其对于HFmrEF风险的预测价值,为精准识别DCM患者的HF表型、评估疾病严重程度及制订个体化治疗策略提供影像学依据。

1 材料与方法

1.1 研究对象

       回顾性收集2021年1月至2024年6月间在新疆医科大学第一附属医院有HF症状与体征且既往确诊为DCM的患者。纳入标准:(1)既往确诊为DCM(首次确诊时LVEF低于45%),符合中国DCM诊断和治疗指南[21]的诊断标准;(2)存在HF体征或症状,符合中国EF诊断和治疗指南[3]和欧洲心脏病学会EF诊断和治疗指南[22]诊断HF的标准。排除标准:(1)心脏瓣膜病、先天性心脏病或缺血性心脏病患者;(2)临床资料及影像学检查不完整者。

       根据中国EF诊断和治疗指南[3]和欧洲心脏病学会EF诊断和治疗指南[22],将患者分为HFmrEF组和HFpEF组。HFpEF组表现:(1)有HF体征或症状;(2)LVEF≥50%;(3)N末端B型利钠肽前体(N-terminal pro-B-type natriuretic peptide, NT-proBNP)浓度>125 pg/mL;(4)左心室舒张功能障碍或充盈压升高。HFmrEF组表现:(1)有HF体征或症状;(2)LVEF在41%~49%之间。

       本研究遵守《赫尔辛基宣言》,经新疆医科大学第一附属医院伦理委员会批准,免除受试者知情同意,批准文号:220525-04、220525-04-2305A-X1。

1.2 CMR图像采集与分析

1.2.1 CMR扫描方案

       采用1.5 T荷兰飞利浦Prodiva CX磁共振仪,原机自带的体部16通道相控体部线圈行CMR检查。患者仰卧位,呼气末屏气。常规扫描采用回顾性心电门控快速小角度激发或稳态自由进动快速成像序列行心脏功能电影成像,采集包括三个长轴位(两腔心、三腔心、四腔心)及一个短轴位。短轴电影扫描范围包括从基底部至心尖部,必须包全心室,一般采集8~11层,确保能够逐层、全方位显示左心室壁各节段心肌运动情况。主要序列的扫描参数如下。(1)电影序列:TR 3.2 ms,TE 1.59 ms,FOV 300 mm×300 mm,侦察体元大小1.7 mm×1.7 mm×8 mm,矩阵176×159,FA 60°,层厚8 mm;(2)钆对比延迟增强扫描序列:选用对比剂为钆喷酸葡胺注射液(拜耳医药保健有限公司,中国),静脉注射,注射量为0.2 mL/kg,流速4 mL/s。TR 5.5 ms,TE 2.6 ms,FOV 300 mm×300 mm,采集矩阵256×256,FA 25°,层厚10 mm。扫描范围同电影序列。

1.2.2 图像后处理

       由1位具备3年CMR诊断经验的放射科医师利用CVI42软件(版本 6.2.1;加拿大,卡尔加里;Circle Cardiovascular Imaging Inc.,Calgary,Canada)在应变模块中分析左心室(left ventricle, LV)和右心室(right ventricle, RV)长轴及短轴电影图像,软件自动识别左心室舒张末期及收缩末期的心内膜和心外膜轮廓,若出现偏差则手动修正,然后逐层勾画右心室最佳心内膜及心外膜边界,然后运行软件程序,获得心室整体和心尖部(Apical)、心室中部(Mid)、基底部(Basal)的径向应变(global radial strain, GRS)、周向应变(global circumferential strain, GCS)、纵向应变(global longitudinal strain, GLS)以及相应的应变曲线和牛眼图(图1)。

       在短轴模块和长轴模块中分析左右心室常规心功能参数,获得左心室心输出量(left ventricular cardiac output, LVCO)、左心室心脏指数(left ventricular cardiac index, LVCI)、左心室舒张末期容积指数(left ventricular end-diastolic volume index, LVEDVi)、左心室收缩末期容积指数(left ventricular end-systolic volume index, LVESVi)、左心室每搏输出量指数(left ventricular stroke index, LVSVI)、左心室质量指数(left ventricular mass index, MI)、右心室心输出量(right ventricular cardiac output, RVCO)、右心室心脏指数(right ventricular cardiac index, RVCI)、右心室舒张末期容积指数(right ventricular end-diastolic volume index, RVEDVi)、右心室收缩末期容积指数(right ventricular end-systolic volume index, RVESVi)、右心室每搏输出量指数(right ventricular stroke index, RVSVI)等参数。

图1  CMR双心室心肌应变勾画图、应变曲线和牛眼图。1A和1B分别为双心室舒张期短轴和长轴视图,红色线条为LV内膜轮廓,绿色线条为LV外膜轮廓,黄色线条为右心室内膜轮廓,蓝色线条为右心室外膜轮廓;1C为LV径向应变曲线;1D为LV径向应变牛眼图,比色卡范围为+20%至-20%,越靠近橙色(+20%)心肌收缩功能越好,越靠近蓝色(-20%)心肌功能受损越严重,AHA标准16分段模型测量出的左心室舒张末期长轴长度为112.3 mm。CMR:心脏磁共振;LV:左心室;AHA:美国心脏协会。
Fig. 1  CMR Biventricular myocardial strain analysis: delineation, curves, and bull´s-eye plot. 1A and 1B: Diastolic short-axis and long-axis views of both ventricles. The red line indicates the contour of the inner membrane of the LV, the green line indicates the contour of the outer membrane of the LV, the yellow line indicates the contour of the inner membrane of the right ventricle, and the blue line indicates the contour of the outer membrane of the right ventricle. 1C: Global LV radial strain curve. 1D: Global LV radial strain bullseye map, with the color scale ranging from +20% to -20%. The closer to orange (+20%), the better the myocardial contractility; the closer to blue (-20%), the more severe the myocardial function impairment. The LV end-diastolic long-axis length measured by the AHA standard 16-segment model is 112.3 mm. CMR: cardiac magnetic resonance; LV: left ventricle; AHA: American Heart Association.

1.3 统计学分析

       采用IBM SPSS 26.0软件及R语言软件(版本4.5.1)进行统计学分析。对统计变量先进行正态性及方差齐性检验,正态分布的连续定量资料用x¯±s表示,组间比较采用两独立样本t检验;非正态分布的定量资料用中位数及MQ1,Q3)表示,组间比较采用Mann-Whitney U非参数检验。计数资料以频数(百分比)表示,两组间比较采用卡方检验或Fisher精确检验。为筛选DCM患者发生HFmrEF的独立影响因素,研究采用多阶段策略:首先,将全部定量变量纳入弹性网络正则化logistic回归模型,通过10折交叉验证确定最优超参数(αλ),以同步完成变量筛选与处理共线性。其次,采用Bootstrap法重抽样5000次,保留被选频率>50%的变量,以确保筛选结果的稳定性。随后,对筛选出的变量进行单因素logistic回归分析,并计算方差膨胀因子(variance inflation factor, VIF)以诊断多重共线性,剔除VIF>3的变量。最终在调整混杂因素后,将通过共线性检验的变量全部纳入多因素logistic回归模型。为评估模型判别性能,绘制受试者工作特征(receiver operating characteristic, ROC)曲线,并计算曲线下面积(area under the curve, AUC)。

       在全部患者中随机选出25例患者,由两名工作10年以上的副主任医师对双心室应变参数进行组内及组间的一致性评价。采用单向随机模型评价组内一致性:同一名医师于1个月后重新测量该批患者。采用双向混合模型评价组间一致性:另外一名医师测量同批患者且对之前的测量结果不知情。通过组内相关系数(intra-class correlation coefficient,ICC)比较观察者内和观察者间的一致性,ICC>0.75为一致性良好。所有检验均为双侧,检验水准α设定为0.05。

2 结果

2.1 临床资料

       最终纳入患者67例,其中HFpEF组28例,HFmrEF组39例,男48例,女19例。HFpEF组患者的纽约心功能分级(New York Heart Association, NYHA)Ⅱ级占比(39.3%)高于HFmrEF组(12.8%),NT-proBNP、高敏肌钙蛋白T和肌红蛋白均低于HFmrEF组(均P<0.05),其余临床指标均差异无统计学意义(P>0.05),详细参数见表1

表1  HFpEF与HFmrEF组临床资料的差异分析
Tab. 1  Analysis of differences in clinical data between HFpEF and HFmrEF groups

2.2 心功能参数

       两组心功能参数对比如下:HFmrEF组的LVCO、LVCI、LVSVI、RVSVI较HFpEF组均降低(P<0.05);HFmrEF组的LVEDVi、LVESVi、MI、RVEDVi、RVESVi较HFpEF组均升高(P<0.05),详见表2

表2  HFpEF与HFmrEF组患者CMR常规心功能参数差异分析
Tab. 2  Analysis of differences in conventional cardiac function parameters between HFpEF and HFmrEF groups

2.3 双心室整体及节段心肌应变

       在心肌应变分析中,整体及节段GRS为正值,HFmrEF组对比HFpEF组GRS均明显减低(P<0.01)。整体及节段GCS和GLS为负值,HFmrEF组对比HFpEF组GCS和GLS(除LV-Apical-GLS)明显减低(P<0.01)。具体双心室整体及节段心肌应变如表3所示。

表3  HFpEF与HFmrEF组患者CMR心肌应变差异分析
Tab. 3  Analysis of differences in CMR myocardial strain between HFpEF and HFmrEF groups

2.4 DCM合并HFmrEF患者的危险因素

       通过弹性网络正则化logistic回归结合Bootstrap重抽样(图2, 图3),最终筛选出7个与DCM患者发生HFmrEF显著相关的变量:LVEDVi、LVESVi、LVSVI、RVSVI、LV-Mid-GLS、RV-Mid-GRS及RV-Mid-GLS。经共线性诊断(VIF>3为排除标准)并调整混杂因素后,最终保留3个变量进入多因素模型(表4)。多因素logistic回归分析显示,RVSVi [OR=0.863(95% CI:0.763~0.951),P=0.008]、LV-Mid-GLS [OR=1.406(95% CI:1.140~1.824),P=0.004]和RV-Mid-GLS [OR=1.110(95% CI:1.023~1.231),P=0.025]为DCM患者发生HFmrEF的独立预测因素。

       ROC分析显示,RVSVi、LV-Mid-GLS、RV-Mid-GLS以及三变量联合logistic模型和弹性网络回归模型对HFmrEF均具判别能力,AUC值分别为0.683、0.813、0.782、0.896和0.832(图4)。联合模型判别效能最优,表明心肌应变参数对HFmrEF具有良好的预测价值。德隆检验进一步表明,加入RVSV/BSA可显著提高预测效能(Z=3.543,P<0.001)。

图2  弹性网络正则化回归模型的超参数优化热力图。横轴为L1(Lasso回归)和L2(Ridge回归)超参数的混合比例,纵轴为正则化强度对数[log(λ)];ROC为不同超参数组合下的模型性能,更浓烈的色彩和更大的圆表示更优的模型性能;红色菱形标记为交叉验证过程确定的最优超参数组合:L1/L2混合比例α=0.1,正则化强度对数log(λ)=-8.05。
图3  弹性网络正则化路径图。横轴为正则化参数λ的对数值,纵轴为标准化后的系数估计值。每条彩色曲线代表一个预测变量,颜色与右侧标签对应;随着λ增大(向右移动),正则化强度逐渐增强;虚线为最优log(λ)=-8.05;右侧标签标注了在最优λ处仍具有非零系数的前20个最重要变量。
图4  各模型预测扩张型心肌病患者发生射血分数轻度降低心衰的受试者工作特征曲线。ROC为受试者工作特征曲线;ElasticNet为弹性网络正则化回归ROC;RVSVi、RV-Mid-GLS及LV-Mid-GLS分别为右心室每搏输出量指数、右心室中间部整体纵向应变及左心室中间部整体纵向应变的单因素逻辑回归ROC;Multivariable为RVSVi、RV-Mid-GLS及LV-Mid-GLS联合的多因素逻辑回归ROC。ROC:受试者工作特征;LV:左心房;RV:右心房;AUC:曲线下面积;CI:置信区间。
Fig. 2  Heatmap of hyperparameter optimization for the Elastic Net regression model. X-axis: mixing ratio of L1 (Lasso) and L2 (Ridge) penalties; Y-axis: log(λ) (regularization strength). Model performance (ROC) is indicated by color intensity and circle size—darker and larger circles represent better performance. The red diamond marks the optimal hyperparameter combination identified through cross-validation: L1/L2 ratio α = 0.1, log(λ) = -8.05.
Fig. 3  Regularization path of the Elastic Net.X-axis: log(λ); Y-axis: standardized coefficient estimates.Each colored line represents a predictor, corresponding to the labels on the right. As λ increases (to the right), regularization strengthens. The dashed line represents the optimal log(λ) = -8.05; the right-hand labels indicate the top 20 most important variables with non-zero coefficients at the optimal λ.
Fig. 4  ROC curves for each model predicting mildly reduced ejection fraction heart failure in patients with dilated cardiomyopathy. ElasticNet: ROC of the Elastic Net regression model. RVSVi, RV-Mid-GLS, and LV-Mid-GLS: univariable logistic regression ROC curves for right ventricular stroke volume index, right ventricular mid global longitudinal strain, and left ventricular mid global longitudinal strain, respectively. Multivariable: ROC of a multivariable model combining RVSVi, RV-Mid-GLS, and LV-Mid-GLS. ROC: receiver operating characteristic; LV: left atrium; RV: right atrium; AUC: area under the curve; CI: confidence interval.
表4  DCM患者发生HFmrEF的回归分析
Tab. 4  Regression analysis of HFmrEF occurrence in DCM patients

2.5 一致性检验

       在67例DCM患者中随机选取25例患者,通过单向随机模型和双向混合模型分析显示组内及组间的数据ICC值均大于0.7,符合临床诊断要求,认为本研究双心室应力分析一致性较好,具体数值见表5

表5  整体及节段的心肌应变参数组内和组间一致性
Tab. 5  Intra- and intergroup consistency of global and segmental myocardial strain parameters

3 讨论

       本研究回顾性分析了67例DCM患者的临床资料、CMR常规功能及应变参数特征,重点探索了LV-Mid-GLS、RV-Mid-GLS和RVSVi对DCM合并HFmrEF的诊断价值。研究结果显示,与HFpEF组比较,HFmrEF组患者的NYHA心功能分级、NT-proBNP、高敏肌钙蛋白T和肌红蛋白水平更高,整体和节段GRS、GCS和GLS(除LV-Apical-GLS)均显著降低,且整体与节段应变参数间表现出高度一致性。调整混杂因素后,多因素logistic回归分析显示,LV-Mid-GLS、RV-Mid-GLS和RVSVi是预测DCM患者发生HFmrEF的独立影响因素,三者联合诊断效能更高(AUC=0.896,95% CI:0.823~0.968),可以无创简便地预测DCM患者发生HFmrEF,说明CMR-FT在DCM伴HF患者的精细化评估中具有重要的临床应用价值。

3.1 HFmrEF在DCM中的病理生理与临床特征

       本研究结果显示,尽管HFpEF组患者的NYHA Ⅱ级比例更高,但其NT-proBNP、高敏肌钙蛋白T和肌红蛋白水平均显著低于HFmrEF组,提示两类心衰在病理生理机制上存在本质差异。HFpEF以左心室舒张功能障碍和左心房压力增高为核心[18, 19, 20]。患者静息时即存在心房压力升高,轻微活动后可急剧上升,导致较早出现临床症状,故NYHA分级较高,但其心肌收缩功能相对保留。NT-proBNP释放与心室壁张力密切相关,HFmrEF患者常伴左心室内径增大和室壁变薄,室壁应力显著升高,促进NT-proBNP合成与释放;而HFpEF患者心脏结构重构较轻,室壁应力相对较低,故NT-proBNP水平较低。高敏肌钙蛋白T和肌红蛋白作为心肌损伤标志物,在HFmrEF中升高更显著,反映其更接近HFrEF的病理过程,即活跃的心肌细胞坏死和纤维化替换;HFpEF的心肌损伤则更多与微血管炎症和氧化应激相关,坏死程度较轻[20]。NYHA分级作为主观功能评价,与客观生物标志物之间存在偏差,尤其在HFpEF患者中症状不能完全代表心肌病理改变程度,因此需寻找更敏感、客观的指标评估心功能。

       在心功能参数方面,与HFpEF组相比,HFmrEF组的LVCO、LVCI、LVSVI显著降低,而LVEDVi、LVESVi、MI显著增加。这与HASHEMI等[23]的研究结果一致,进一步印证了左心整体泵血功能减退及其伴随的代偿性心室重构。值得注意的是,本研究还发现HFmrEF患者同时存在特征性的右心功能改变:RVSVI显著降低,RVEDVi和RVESVi显著增大,这一发现提示,DCM合并HFmrEF可能代表了一种累及双心室的、更严重的整体心室泵血功能障碍和心室重构,其机制可能涉及长期左心充盈压升高继发的肺静脉高压与右心室后负荷增加,以及心室间相互作用的改变[24],最终导致右心室-肺动脉耦联障碍。HFmrEF的病理生理特征介于射血分数降低的HF与HFpEF之间,表现为轻度的收缩与舒张功能障碍并存,其机制涉及炎症、心肌纤维化及钙稳态障碍等多种因素[9, 25]。本研究中,除LV-Apical-GLS外,HFmrEF组的整体及节段心肌应变均显著低于HFpEF组,表明其心肌收缩能力下降更为广泛且显著,与ZHANG等[20]的研究结果相符,本研究进一步补充了对双心室各节段应变的系统性分析。此外,LV-Apical-GLS降低不显著可能与心尖段深层螺旋状心肌纤维的扭转运动有关[26, 27]。对于DCM合并HFmrEF的患者,其心肌损伤、心室重构和功能受损的程度更为严重,预后可能更差,因此需要更积极的监测和治疗策略。

3.2 CMR-FT对HFmrEF的评估价值

       心肌应变异常本质上是心肌纤维化、微循环障碍及能量代谢失调等病理改变的宏观功能体现[19, 28, 29]。CMR-FT技术可无创、客观、定量地评估心肌应变,相较于LVEF能更敏感地检测亚临床心肌功能障碍[11, 12]。本研究发现,LV-Mid-GLS、RV-Mid-GLS和RVSVi是预测DCM患者发展为HFmrEF的独立影响因素,其联合模型展现出良好的预测效能(AUC=0.896)。既往研究已经证明心肌应变分析可预测心肌梗死、HF住院等复合终点事件[13, 15, 19],并提示GLS可改善HFpEF的风险分层[16, 30],GRS和GCS可以区分缺血性心肌病和DCM[18]。本研究发现LV-Mid-GLS对DCM合并HFmrEF的预测效能优于基底段或心尖段,这可能源于左心室中间段独特的解剖结构和生物力学环境:(1)解剖层面:该区域以螺旋状走行、收缩方向平行于长轴的肌束为主[31, 32],主要负责纵向缩短;(2)生物力学层面:在心室扩张时,此结构更易受剪切力影响而发生早期功能损伤,且对容积负荷增高具有高度敏感性[26, 32];(3)在DCM背景下,心室球形化导致的室壁张力异常分布可能优先损害中间段心肌的纵向缩短效率[33]。同时,本研究还发现RVSVI每增加1 mL/m²,HFmrEF发生风险降低13.7%(OR=0.863),提示RVSVI下降是右心室功能失代偿的重要标志。RVSVI作为一项综合指标,反映右心室在后负荷条件下泵血能力,其降低可由心肌收缩力下降和/或后负荷增加引起,与HFmrEF患者更高的NT-proBNP水平及更差的临床表现相符。

       LV-Mid-GLS和RV-Mid-GLS每恶化1个单位,发生HFmrEF的风险增加40.6%和11.0%(OR=1.406、1.110)。LV-Mid-GLS与RV-Mid-GLS的同步降低表明,DCM合并HFmrEF患者存在双心室机械耦联失衡,符合近期提出的右心室应变“哨兵效应”理论[34, 35, 36]。从机制上看,微观层面的心肌纤维化及细胞坏死直接破坏收缩单元间的电-机械耦联;宏观层面的心室几何变形及异常室壁张力则导致心肌运动失同步,二者共同导致心肌应变效能下降。本研究还发现左心室质量增加与应变参数降低同步出现,提示心肌重构与收缩功能失代偿可能形成双向驱动的恶性循环[37, 38],为今后干预心肌重构提供了潜在靶点。同时,本研究没有先入为主地选择变量,而是采用弹性网络回归这一机器学习方法从大量候选参数中进行筛选,有效避免了过拟合,保证了结果的稳健性和可靠性,Bootstrap重抽样也验证了模型的稳健性。

       综上所述,HFmrEF并非一个简单的EF值区间,而是一个具有独特双心室机械功能障碍模式的病理生理实体。左心室纵向收缩功能减低、右心室功能不全及其导致的输出量下降共同构成了其核心特征。CMR-FT为无创、精准地揭示这一特征提供了关键工具。未来前瞻性研究可探索基于应变分型的治疗策略是否能改善患者预后。

3.3 本研究的局限性

       本研究存在以下局限性:(1)作为单中心研究,样本量相对较小,可能存在选择偏倚,未来需通过多中心、大样本的前瞻性队列研究验证结果的普适性及预测模型的效能;(2)本研究未分析心房应变,主要考虑样本量有限可能导致各节段应变结果的代表性不足;(3)尽管CMR-FT有效规避了超声检查的操作者依赖性,但其后处理分析相对耗时,未来可探索人工智能辅助技术以优化流程。

4 结论

       CMR-FT能够精确评估在DCM背景下HFmrEF和HFpEF患者的心肌应变特征,且LV-Mid-GLS、RV-Mid-GLS和RVSVi是DCM患者发生HFmrEF的独立预测因子,对HFmrEF具有重要的评估价值。

[1]
中国老年医学学会心电与心功能分会, 中国心衰中心联盟专家委员会, 中华医学会《中华全科医师杂志》编辑委员会, 等. 心力衰竭早期筛查与一级预防中国专家共识(2024年)[J]. 中华全科医师杂志, 2024, 23(1): 7-18. DOI: 10.3760/cma.j.cn114798-20230806-00043.
Electrophysiology and Cardiac Function Branch of Chinese Society of Geriatrics, Alliance of China Heart Failure Centers Expert Committee, Editorial Board of Chinese Journal of General Practitioners of Chinese Medical Association. Chinese expert consensus on early screening and primary prevention of heart failure (2024)[J]. Chinese Journal of General Practitioners, 2024, 23 (1): 7-18. DOI: 10.3760/cma.j.cn114798-20230806-00043.
[2]
WANG H, LI Y Y, CHAI K, et al. Mortality in patients admitted to hospital with heart failure in China: a nationwide Cardiovascular Association Database-Heart Failure Centre Registry cohort study[J/OL]. Lancet Glob Health, 2024, 12(4): e611-e622 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38485428/. DOI: 10.1016/S2214-109X(23)00605-8.
[3]
中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024[J]. 中华心血管病杂志, 2024, 52(3): 235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405.
Chinese Society of Cardiology, Chinese Medical Association, Chinese College of Cardiovascular Physician, Chinese Heart Failure Association of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Cardiology. Chinese guidelines for the diagnosis and treatment of heart failure 2024[J]. Chinese Journal of Cardiology, 2024, 52(3): 235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405.
[4]
刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国全科医学, 2025, 28(1): 20-38. DOI: 10.12114/j.issn.1007-9572.2024.0293.
LIU M B, HE X Y, YANG X H, et al. Interpretation of report on cardiovascular health and diseases in China 2023[J]. Chin Gen Pract, 2025, 28(1): 20-38. DOI: 10.12114/j.issn.1007-9572.2024.0293.
[5]
MANCA P, STOLFO D, MERLO M, et al. Transient versus persistent improved ejection fraction in non-ischaemic dilated cardiomyopathy[J]. Eur J Heart Fail, 2022, 24(7): 1171-1179. DOI: 10.1002/ejhf.2512.
[6]
KØBER L, THUNE J J, NIELSEN J C, et al. Defibrillator implantation in patients with nonischemic systolic heart failure[J]. N Engl J Med, 2016, 375(13): 1221-1230. DOI: 10.1056/NEJMoa1608029.
[7]
VANCHERI F, LONGO G, HENEIN M Y. Left ventricular ejection fraction: clinical, pathophysiological, and technical limitations[J/OL]. Front Cardiovasc Med, 2024, 11: 1340708 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38385136/. DOI: 10.3389/fcvm.2024.1340708.
[8]
PAULUS W J. Border disputes between heart failure phenotypes[J]. Circulation, 2022, 145(18): 1374-1376. DOI: 10.1161/CIRCULATIONAHA.121.058516.
[9]
ZHOU Q, LI P X, ZHAO H L, et al. Heart failure with mid-range ejection fraction: a distinctive subtype or a transitional stage?[J/OL]. Front Cardiovasc Med, 2021, 8: 678121 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/34113665/. DOI: 10.3389/fcvm.2021.678121.
[10]
SERAPHIM A, KNOTT K D, AUGUSTO J, et al. Quantitative cardiac MRI[J]. J Magn Reson Imaging, 2020, 51(3): 693-711. DOI: 10.1002/jmri.26789.
[11]
张林鑫, 陈盈, 齐海成, 等. 心脏磁共振在扩张型心肌病中的应用进展[J]. 磁共振成像, 2025, 16(3): 150-155. DOI: 10.12015/issn.1674-8034.2025.03.025.
ZHANG L X, CHEN Y, QI H C, et al. Research progress in the application of cardiac magnetic resonance imaging in dilated cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(3): 150-155. DOI: 10.12015/issn.1674-8034.2025.03.025.
[12]
吴永顺, 包梦圆, 张林鑫, 等. 心脏磁共振在糖尿病心肌病亚临床阶段中的研究进展[J]. 磁共振成像, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
[13]
TANG H S, KWAN C T, HE J L, et al. Prognostic utility of cardiac MRI myocardial strain parameters in patients with ischemic and nonischemic dilated cardiomyopathy: a multicenter study[J]. AJR Am J Roentgenol, 2023, 220(4): 524-538. DOI: 10.2214/AJR.22.28415.
[14]
LIU S L, LI Y L, LIAN J X, et al. Prognostic significance of biventricular and biatrial strain in dilated cardiomyopathy: strain analysis derived from cardiovascular magnetic resonance[J/OL]. Rev Cardiovasc Med, 2023, 24(12): 347 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39077074/. DOI: 10.31083/j.rcm2412347.
[15]
KOROSOGLOU G, SAGRIS M, ANDRÉ F, et al. Systematic review and meta-analysis for the value of cardiac magnetic resonance strain to predict cardiac outcomes[J/OL]. Sci Rep, 2024, 14(1): 1094 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38212323/. DOI: 10.1038/s41598-023-50835-5.
[16]
KAMMERLANDER A A, KRAIGER J A, NITSCHE C, et al. Global longitudinal strain by CMR feature tracking is associated with outcome in HFPEF[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 1): 1585-1587. DOI: 10.1016/j.jcmg.2019.02.016.
[17]
吴燚, 赵发利, 张靖琦, 等. 射血分数中间值心力衰竭的研究进展[J]. 心血管康复医学杂志, 2023, 32(3): 250-253. DOI: 10.3969/j.issn.1008-0074.2023.03.08.
WU Y, ZHAO F L, ZHANG J Q, et al. Research progress of heart failure with mid-range ejection fraction[J]. Chin J Cardiovasc Rehabil Med, 2023, 32(3): 250-253. DOI: 10.3969/j.issn.1008-0074.2023.03.08.
[18]
VIETHEER J, LEHMANN L, UNBEHAUN C, et al. CMR-derived myocardial strain analysis differentiates ischemic and dilated cardiomyopathy-a propensity score-matched study[J]. Int J Cardiovasc Imaging, 2022, 38(4): 863-872. DOI: 10.1007/s10554-021-02469-9.
[19]
LI S, WANG Y N, YANG W J, et al. Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher[J/OL]. Radiology, 2023, 306(3): e213059 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/36318031/. DOI: 10.1148/radiol.213059.
[20]
ZHANG S W, ZHOU Y F, HAN S G, et al. The diagnostic and prognostic value of cardiac magnetic resonance strain analysis in heart failure with preserved ejection fraction[J/OL]. Contrast Media Mol Imaging, 2023, 2023: 5996741 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/36793498/. DOI: 10.1155/2023/5996741.
[21]
廖玉华. 中国扩张型心肌病诊断和治疗指南: 创新与转化[J]. 临床心血管病杂志, 2018, 34(5): 435-436. DOI: 10.13201/j.issn.1001-1439.2018.05.002.
LIAO Y H. Chinese guidelines for diagnosis and treatment of dilated cardiomayopathy: innovation and transformation[J]. J Clin Cardiol, 2018, 34(5): 435-436. DOI: 10.13201/j.issn.1001-1439.2018.05.002.
[22]
MCDONAGH T A, METRA M, ADAMO M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2023, 44(37): 3627-3639. DOI: 10.1093/eurheartj/ehad195.
[23]
HASHEMI D, MOTZKUS L, BLUM M, et al. Myocardial deformation assessed among heart failure entities by cardiovascular magnetic resonance imaging[J]. ESC Heart Fail, 2021, 8(2): 890-897. DOI: 10.1002/ehf2.13193.
[24]
ALVES-JR J L, COSTA E L V, HOETTE S, et al. Right ventricular-pulmonary arterial coupling in schistosomiasis associated pulmonary arterial hypertension[J]. J Heart Lung Transplant, 2025, 44(7): 1024-1032. DOI: 10.1016/j.healun.2025.01.018.
[25]
LI P X, ZHAO H L, ZHANG J Y, et al. Similarities and differences between HFmrEF and HFpEF[J/OL]. Front Cardiovasc Med, 2021, 8: 678614 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/34616777/. DOI: 10.3389/fcvm.2021.678614.
[26]
LI P J, SUN A Q, GUO C X, et al. Effects of orientation of myocardial fibers on the contractility of left ventricle[J/OL]. J Mech Behav Biomed Mater, 2025, 168: 107025 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40319616/. DOI: 10.1016/j.jmbbm.2025.107025.
[27]
FERNANDEZ-TERAN M A, HURLE J M. Myocardial fiber architecture of the human heart ventricles[J]. Anat Rec, 1982, 204(2): 137-147. DOI: 10.1002/ar.1092040207.
[28]
OZKAN M, TATAR S, TOKGÖZ O S. Diastolic global longitudinal strain and acute ischemic stroke: a hidden relationship?[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 383 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40389876/. DOI: 10.1186/s12872-025-04841-2.
[29]
MINAMISAWA M, INCIARDI R M, CLAGGETT B, et al. Clinical implications of subclinical left ventricular dysfunction in heart failure with preserved ejection fraction: The PARAGON-HF study[J]. Eur J Heart Fail, 2024, 26(4): 871-881. DOI: 10.1002/ejhf.3167.
[30]
KAMMERLANDER A A, DONÀ C, NITSCHE C, et al. Feature tracking of global longitudinal strain by using cardiovascular MRI improves risk stratification in heart failure with preserved ejection fraction[J]. Radiology, 2020, 296(2): 290-298. DOI: 10.1148/radiol.2020200195.
[31]
SMERUP M, NIELSEN E, AGGER P, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium[J]. Anat Rec, 2009, 292(1): 1-11. DOI: 10.1002/ar.20798.
[32]
CHANG H B, LIU Q H, ZIMMERMAN J F, et al. Recreating the heart's helical structure-function relationship with focused rotary jet spinning[J]. Science, 2022, 377(6602): 180-185. DOI: 10.1126/science.abl6395.
[33]
YU Y H, YU S S, TANG X P, et al. Evaluation of left ventricular strain in patients with dilated cardiomyopathy[J]. J Int Med Res, 2017, 45(6): 2092-2100. DOI: 10.1177/0300060517712164.
[34]
FANG H, WANG J, SHI R, et al. Biventricular dysfunction and ventricular interdependence in patients with pulmonary hypertension: a 3.0-T cardiac MRI feature tracking study[J]. J Magn Reson Imaging, 2024, 60(1): 350-362. DOI: 10.1002/jmri.29044.
[35]
BO K R, ZHOU Z, SUN Z H, et al. Prognostic value of cardiac magnetic resonance in assessing right ventricular strain in cardiovascular disease: a systematic review and meta-analysis[J/OL]. Rev Cardiovasc Med, 2022, 23(12): 406 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39076664/. DOI: 10.31083/j.rcm2312406.
[36]
TADIC M, KERSTEN J, NITA N, et al. The prognostic importance of right ventricular longitudinal strain in patients with cardiomyopathies, connective tissue diseases, coronary artery disease, and congenital heart diseases[J/OL]. Diagnostics (Basel), 2021, 11(6): 954 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/34073460/. DOI: 10.3390/diagnostics11060954.
[37]
PARK A C, MANN D L. The pathobiology of myocardial recovery and remission: from animal models to clinical observations in heart failure patients[J]. Methodist Debakey Cardiovasc J, 2024, 20(4): 16-30. DOI: 10.14797/mdcvj.1389.
[38]
ZHOU Y Q, XU Y W, LI Y J, et al. Late gadolinium-enhanced cardiovascular magnetic resonance for predicting left ventricular reverse remodeling in dilated cardiomyopathy: a comprehensive review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101860 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39955068/. DOI: 10.1016/j.jocmr.2025.101860.

上一篇 基于深度学习的加速T1WI和T2WI序列在头颈部肿瘤中的应用价值
下一篇 心脏磁共振平扫T1ρ mapping评估肥厚型和扩张型心肌病心肌纤维化的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2