分享:
分享到微信朋友圈
X
临床研究
心脏磁共振组织追踪及T1 mapping技术对糖尿病心肌损伤评估的应用研究
庞艳秋 万娜 郭瑞 邓得峰 周浩 张凯 兰芳 马静

Cite this article as: PANG Y Q, WAN N, GUO R, et al. Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury[J]. Chin J Magn Reson Imaging, 2025, 16(9): 82-89.本文引用格式:庞艳秋, 万娜, 郭瑞, 等. 心脏磁共振组织追踪及T1 mapping技术对糖尿病心肌损伤评估的应用研究[J]. 磁共振成像, 2025, 16(9): 82-89. DOI:10.12015/issn.1674-8034.2025.09.013.


[摘要] 目的 探讨心脏磁共振组织追踪(cardiac magnetic resonance tissue tracing, CMR-TT)技术及T1 mapping技术在2型糖尿病(type 2 diabetes mellitus, T2DM)患者心肌损伤评估中的应用价值。材料与方法 前瞻性收集2023年12月至2025年4月在我院进行心脏磁共振检查的T2DM患者64例,健康对照(healthy controls, HC)32例。所有心脏磁共振图像数据导入专用软件进行分析,获取全心心肌应变参数、双心室功能参数以及左心室T1 mapping参数,采用t检验,Mann-Whitney U检验及卡方检验对两组间上述参数进行比较,采用Pearson及Spearman相关性分析心肌结构、功能与心肌应变的关联。结果 T2DM组左心室心肌质量指数(left ventricular myocardial mass index, LVMI)、左心室重塑指数(left ventricular remodeling index, LVRI)增加(均P<0.001),左心室全局纵向应变(global longitudinal peak strain in the left ventricle, LV GLS)、右心室全局纵向应变降低(均P<0.05),T2DM组周向左心室收缩期峰值应变率(peak systolic strain rate of the left ventricle, LV PSSR)、纵向LV PSSR及左心室舒张期峰值应变率(diastolic peak strain rate of the left ventricle, LV PDSR)绝对值均降低(均P<0.019)。T2DM患者左心房/右心房(left atrium/right atrium, LA/RA)储存应变、LA/RA导管应变均降低(均P<0.001)。T2DM患者的细胞外容积(extracellular volume, ECV)较HC组升高(P<0.001)。双心室射血分数、收缩末期容积指数与双心室应变功能均相关(均P<0.003)。LVMI与左心室全局径向应变(global radial strain of the left ventricle, LV GRS)、左心室全局周向应变(global circumferential strain of the left ventricle, LV GCS)、LV GLS、周向LV PSSR、纵向LV PSSR、径向LV PDSR、周向LV PDSR、纵向LV PDSR相关(均P<0.021)。左心室舒张末期容积指数与LV GCS、LV GLS、周向LV PSSR、纵向LV PSSR、周向LV PDSR相关(均P<0.044)。右心室舒张末期容积指数与右心室全局周向应变相关(r=0.331,P=0.007)。LVRI与LV GLS及纵向LV PDSR相关(均P<0.01),且与径向LV PSSR弱相关(r=0.266,P=0.034)。结论 T2DM患者全心心肌应变较对照组降低,ECV值升高,双心室心肌结构、功能与心肌应变相互关联,CMR-TT及T1 mapping技术可以有效检测糖尿病心肌损伤。
[Abstract] Objective To explore the application value of cardiac magnetic resonance tissue tracing (CMR-TT) and T1 mapping technology in the assessment of myocardial injury in patients with type 2 diabetes mellitus (T2DM).Materials and Methods A total of 64 patients with T2DM and 32 healthy controls (HC) who underwent cardiac magnetic resonance examination in our hospital from December 2023 to April 2025 were prospectively collected. All cardiac magnetic resonance image data were imported into special software for analysis, and the myocardial strain parameters, biventricular function parameters and left ventricular T1 mapping parameters were obtained, and the above parameters were compared between the two groups by t-test, Mann-Whitney U test and chi-square test, and the association between myocardial structure, function and myocardial strain was analyzed by Pearson and Spearman correlation.Results In the T2DM group, the left ventricular myocardial mass index (LVMI) and left ventricular remodeling index (LVRI) were increased (both P < 0.001), the global longitudinal peak strain in the left ventricle (LV GLS) and the global longitudinal strain of the right ventricle decreased (both P<0.05) and the absolute values of peak systolic strain rate of the left ventricle (LV PSSR), longitudinal LV PSSR and left ventricular peak strain rate (LV PDSR) in the T2DM group were decreased (all P < 0.019).The storage strain and cathete strain of the left atrium/right attrium (LA/RA) were decreased in patients with T2DM (both P < 0.001). The extracellular volume (ECV) of T2DM patients was higher than that of HC group (P < 0.001).Biventricular ejection fraction, end-systolic volume index were correlated with biventricular strain function (all P < 0.003). LVMI is correlated with the Global radial strain of the left ventricle (LV GRS), global circumferential strain of the left ventricle (LV GCS), LV GLS, circumferential LV PSSR, longitudinal LV PSSR, radial LV PDSR, circumferential LV PDSR, Longitudinal LV PDSR(all P < 0.021).The left ventricular end-diastolic volume index was correlated with LV GCS, LV GLS, circumferential LV PSSR, longitudinal LV PSSR, and circumferential LV PDSR (all P < 0.044). The right ventricular end-diastolic volume index was correlated with the global circumferential strain of the right ventricle (r = 0.331, P = 0.007). LVRI was correlated with LV GLS and longitudinal LV PDSR (both P < 0.01), and weakly correlated with radial LV PSSR (r = 0.266, P = 0.034).Conclusions Compared with the control group, the whole heart myocardial strain of T2DM patients is reduced, and the ECV value is higher. Biventricular myocardial structure, function and myocardial strain are interrelated. CMR-TT and T1 mapping techniques can effectively detect diabetic myocardial injury.
[关键词] 糖尿病;糖尿病心肌病;磁共振成像;心脏磁共振;组织追踪;T1 mapping
[Keywords] diabetes;diabetic cardiomyopathy;magnetic resonance imaging;cardiac magnetic resonance;tissue tracing;T1 mapping

庞艳秋    万娜    郭瑞    邓得峰    周浩    张凯    兰芳    马静 *  

石河子大学医学院第二附属医院/新疆生产建设兵团医院放射科,乌鲁木齐 830000

通信作者:马静,E-mail: missingshz@163.com

作者贡献声明::庞艳秋、邓得峰、周浩、张凯设计本研究方案,实施研究计划,采集MRI图像,获取、分析并解释本研究的数据,起草和撰写稿件;万娜、郭瑞、马静设计本研究的方案,对稿件重要内容进行了修改;兰芳设计本研究方案,实施研究计划,分析并解释本研究的数据,对稿件重要内容进行了修改;其中,马静获得了新疆维吾尔自治区天山英才项目-青年拔尖人才项目资助;郭瑞获得了新疆生产建设兵团卫生科技计划项目资助;万娜获得了新疆生产建设兵团医院青年基金项目资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 新疆维吾尔自治区天山英才项目-青年拔尖人才项目 2023TSYCCX0119 新疆生产建设兵团卫生科技计划项目 BTKY250064 新疆生产建设兵团医院青年基金项目 2024010
收稿日期:2025-06-13
接受日期:2025-08-22
中图分类号:R445.2  R542.2  R587.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.013
本文引用格式:庞艳秋, 万娜, 郭瑞, 等. 心脏磁共振组织追踪及T1 mapping技术对糖尿病心肌损伤评估的应用研究[J]. 磁共振成像, 2025, 16(9): 82-89. DOI:10.12015/issn.1674-8034.2025.09.013.

0 引言

       糖尿病心肌损伤是糖尿病患者最主要和最严重的并发症之一[1],早期识别对降低国家心血管疾病负担具有重大意义。糖尿病心肌损伤涉及心肌细胞能量代谢异常、心肌结构改变及重塑、心肌运动和功能变化等复杂的病理生理过程,心肌间质纤维化被视为形态学上可检测的最早阶段[2]。心脏磁共振(cardiac magnetic resonance, CMR)T1 mapping衍生技术细胞外容积(extracellular volume, ECV)可以量化组织中未被细胞占据的空间,其大小可直接量化心肌纤维化的范围和严重程度[3, 4]。基于常规电影序列的心脏磁共振组织追踪(cardiac magnetic resonance tissue tracing, CMR-TT)技术通过量化心肌在纵向、周向和径向三个维度的形变特征,可实现对整体和区域性心肌功能障碍的评估[5]。通过应用CMR-TT技术及基于T1 mapping的ECV参数可实现对糖尿病患者四腔室多维度心肌应变及纤维化的同步、无创、定量评估,弥补射血分数(ejection fraction, EF)或单一指标评估的敏感性不足,识别亚临床期患者[6, 7]。然而,当前临床实践需解决的关键问题在于传统评估常依赖单一腔室(如左心室)功能,而心脏四个腔室相互作用影响共同维持血流动力学稳定[8, 9, 10]。单一腔室评估易遗漏早期或代偿性病变,导致诊断延误。并且近年来多数研究[11, 12, 13]聚焦单一技术,仅ECV或仅应变,未能系统整合ECV与多腔室心功能指标,无法揭示糖尿病早期心肌损伤的多维度特征及其关联性,此外,糖尿病的全心应变研究较少,阻碍了对疾病早期、整体代偿机制的深入理解。因此,本研究将系统探索CMR-TT技术及T1 mapping技术对早期、全面揭示糖尿病患者心肌损伤的能力和价值,以期提供更敏感、更全面的影像学评估手段,实现糖尿病心肌病的早期诊断与干预。

1 材料与方法

1.1 研究对象

       选取2023年12月至2025年4月在我院接受CMR检查的64例成年2型糖尿病患者(type 2 diabetes mellitus, T2DM)及32例健康志愿者,分别记为T2DM组和健康对照(healthy controls, HC)组,收集T2DM患者临床病史及实验室检查结果。

       T2DM组纳入标准:临床确诊的T2DM患者,均符合2023年美国糖尿病协会(American Diabetes Association, ADA)的T2DM诊断标准[14],空腹血糖≥126 mg/dL(7.0 mmol/L)或口服葡萄糖耐量试验2 h血糖≥200 mg/dL(11.1 mmol/L)或糖化血红蛋白≥6.5%(48 mmol/mol)或对于具有高血糖或高血糖危象典型症状的患者,随机血糖≥200 mg/dL(11.1 mmol/L)。

       HC组纳入标准:无代谢性疾病病史,无糖耐量受损、心电图异常、心血管疾病症状或CMR检测到的心血管异常(双心室EF降低、心室运动异常、瓣膜狭窄或反流)。

       共同排除标准:(1)有MRI检查禁忌证(体内有心脏起搏器、金属异物等);(2)有幽闭恐惧症或自觉狭小空间呼吸困难者;(3)一般状况差,不能配合屏气导致图像质量差者;(4)对磁共振对比剂过敏者;(5)有先心病、严重心律失常或临床常见的其他心肌病、心包疾病、严重肝肺功能障碍、严重肾功能不全者;(6)有各类原发性心脏及肺部疾病、肾上腺或其他系统病史者。

       本研究遵守《赫尔辛基宣言》,经新疆生产建设兵团医院伦理委员会批准(伦理号:202306201、202409301),所有受试者均签署知情同意书。

1.2 图像采集

       采用联影1.5 T uMR670MRI全身磁共振扫描仪进行扫描,患者呈仰卧体位,使用心脏专用24通道体相控阵线圈及回顾性矢量心电门控技术。嘱患者扫描全程保持体位不动,减少因患者呼吸、心跳或移动产生的运动伪影。

       电影图像及初始T1 mapping图像:在呼气末屏气,使用回顾性矢量心电门控技术获取平衡稳态自由进动(balance steady-state free precession, b-SSFP)电影图像并采集与电影序列相对应的左心室短轴位基底段、中间段及心尖段T1 mapping图像,采集重建9层25帧电影图像及3层初始T1 mapping图像。电影图像包括标准短轴、长轴两腔和四腔,覆盖整个左心室、右心室及双心房,T1 mapping图像为标准短轴的左心室图像。

       延迟增强成像:采用高压注射器(ANT065115,深圳安特医疗股份有限公司,中国)以3.0 mL/s流率静脉推注对比剂钆特酸葡胺注射液(佳迪显,江苏恒瑞医药股份有限公司)0.1 mmol/kg,并用20 mL生理盐水冲洗,行短轴位心肌首过灌注成像,完成灌注后以2.0 mL/s流率再注对比剂0.1 mmol/kg,15 min后获取与3层初始T1 mapping图像相对应的增强后T1 mapping图像。

       扫描序列及参数b-SSFP扫描参数:TR 3.23 ms,TE 1.53 ms,翻转角70°,层厚8 mm,层间距25 mm,FOV 320 mm×360 mm或300 mm×320 mm,矩阵208×192。

       初始T1 mapping序列扫描参数:采用MOLLI序列(modified Look-Locker inversion-recovery, MOLLI),TR 3.32 ms,TE 1.56 ms,翻转角35°,层厚8 mm,层间距125 mm,FOV 360 mm×320 mm,矩阵192×164。

       增强后T1 mapping序列扫描参数:TR 3.34 ms,TE 1.56 ms,TI 175 ms/255 ms,翻转角35°,层厚8 mm,层间距125 mm,FOV 360 mm×320 mm,矩阵192×164。

1.3 心脏功能和特征跟踪分析

       所有CMR研究均使用专用软件Segment Medviso version 3.3 RX及uMR670机器自带心脏后处理分析软件进行离线分析。通过心肌特征跟踪测量整个心动周期的心肌应变,在舒张末期短轴、包含心尖的3腔长轴层面、包含心尖的2腔长轴层面和包含心尖的4腔长轴层面图像中手动追踪心内膜和心外膜边界。对各应变参数(心室周向应变、径向应变和纵向应变、心房储存应变、导管应变、泵应变)的峰值测量值进行分析。为计算双心室功能参数,包括RV/LV收缩末期容积指数(end-systolic volume index, ESVI)、RV/LV舒张末期容积指数(end-diastolic volume index, EDVI)、左室心肌质量指数(left ventricular myocardial mass index, LVMI)、左心室重塑指数(left ventricular remodeling index, LVRI)和RV/LV EF,在收缩末期和舒张末期的连续短轴图像中追踪左心室外膜和内膜边界/右心室内膜边界。RV/LV EDVI、RV/LV ESVI和LVMI通过LV舒张末期容积(end-diastolic volume, EDV)、LV收缩末期容积(end-systolic volume, ESV)、左室心肌质量(left ventricular myocardial mass, LVM)除以体表面积(body surface area, BSA)得出。LVRI计算为LVM除以LV EDV。为分析双心室及双心房特征跟踪参数,以舒张末期设置为参考点,跟踪额外的左心室四腔、三腔和两腔纵视图和右心室、双心房四腔纵视图。3D LV应变参数[左心室全局纵向应变(global longitudinal peak strain in the left ventricle, LV GLS)、左心室全局径向应变(global radial strain of the left ventricle, LV GRS)、左心室全局周向应变(global circumferential strain of the left ventricle, LV GCS)和各方向左心室收缩/舒张期峰值应变率(peak systolic/diastolic strain rate of the left ventricle, LV PSSR/LV PDSR)],2D RV应变参数[右心室全局纵向应变(global longitudinal peak strain in the right ventricle, RV GLS)、右心室全局周向应变(global circumferential strain of the right ventricle, RV GCS],2D左心房/右心房(left atrium/right atrium, LA/RA)应变参数[LA/RA储存应变(store strain, ξs)、LA/RA导管应变(extrusion strain, ξe)、LA/RA泵应变(activity strain, ξa)]在执行这些轮廓跟踪后自动生成(图1)。

       选取左室基底段、中间段及心尖段3层初始T1 mapping及增强后T1 mapping图像勾画心内膜(远离血池)及心外膜(避开心包)。勾画完成后由专用软件校准及识别后自动计算出心肌初始T1 mapping值及增强后T1 mapping值,输入患者血细胞比容(hematocrit, Hct)值,利用软件计算出ECV值,计算公式见式(1)[15]

       ECV=(1-Hct)(1/增强后T1心肌-1/初始T1心肌)/(1/增强后T1血池-1/初始T1血池)(1)

图1  2型糖尿病组心内膜和心外膜边界追踪视图。1A:左心室两腔纵视图;1B:左心室三腔纵视图;1C:双心室、双心房四腔纵视图;1D:双心室舒张末期短轴视图。
Fig. 1  Tracking view of endocardial and epicardial boundaries in the type 2 diabetes mellitus. 1A: Left ventricular two-chamber longitudinal view; 1B: Left ventricular three-chamber longitudinal view; 1C: Biventricular and biatrial four-chamber longitudinal view; 1D: Biventricular end-diastolic short-axis view.

1.4 统计学分析

       使用SPSS 27.0进行统计分析,使用Kolmogorov-Smirnov检验及Shapiro-Wilk检验检查所有连续变量的正态性,正态分布数据以均值±标准差表示,偏态分布数据以中位数(上下四分位数)表示,正态分布数据采用独立样本t检验,偏态分布数据采用Mann-Whitney U检验进行两组间差异比较。分类变量表示为频率(百分比),用卡方检验进行比较。使用正态分布变量的Pearson相关性和非正态分布变量的Spearman相关性进行数据的相关性分析。以P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       64例T2DM组患者中,男41例,女23例,年龄29~88(58.3±10.9)岁;32例HC组中,男18例,女14例,年龄24~79(54.6±11.9)岁。人口统计学和临床特征见表1

表1  研究人群的基本人口统计学和临床特征
Tab. 1  Basic demographics and clinical characteristics of the subjects

2.2 T2DM组和HC组的双心室结构及EF对比分析

       T2DM组LVM、LVMI、LVRI和RVEF均增加(均P<0.014)。心率、LVEF、LVEDVI、LVESVI、RVEDVI、RVESVI两组间差异无统计学意义(均P>0.05),见表2

表2  T2DM组与HC组双心室结构参数分析
Tab. 2  Analysis of biventricular structural parameters in T2DM group and HC group

2.3 T2DM 组与HC组心肌应变对比分析

       T2DM组的LV GLS(-15.97±3.58 vs. -19.05±2.80,P<0.001)、RV GLS(-17.85±3.16 vs. -19.74±2.54,P=0.004)降低。T2DM组周向LV PSSR、纵向LV PSSR及LV PDSR绝对值均降低(均P<0.019)。T2DM组的LAξs、LAξe、RAξs、RAξe均降低(均P<0.01),而两组间LAξa及RAξa差异无统计学意义(均P>0.05),见表3图2, 图3

图2  健康对照组心肌应变曲线示意图及T1 mapping 伪彩图。2A:左心室全局周向应变曲线;2B:左心室全局纵向应变曲线;2C:左心室全局径向应变曲线;2D:左心房应变曲线;2E:右心房应变曲线;2F:右心室全局周向应变曲线;2G:右心室全局纵向应变曲线;2H:打药前T1 map 图,紫色左室心肌部分代表打药前左室心肌T1 值,初始T1 mapping 为1 013.68 ms;2I:增强后T1 map 图,橙色左室心肌部分代表打药后左室心肌T1 值,增强后T1 mapping 为522.94 ms;2J:ECV图,深紫色左室心肌部分代表左室心肌ECV值,ECV为25.18%。ECV:细胞外容积。
Fig. 2  Schematic diagram of myocardial strain curve and T1 mapping pseudocolor map of healthy control group. 2A: Global circumferential strain curve of the left ventricle. 2B: Global longitudinal strain curve of left ventricle. 2C: Global radial strain curve of the left ventricle. 2D: Left atrial strain curve. 2E: Right atrial strain curve. 2F: Global circumferential strain curve of the right ventricle. 2G: Global longitudinal strain curve of the right ventricle. 2H: Pseudocolor map of T1 before injection; the purple left ventricular myocardial part represents the left ventricular myocardial T1 value before administration, and the initial T1 mapping is 1 013.68 ms. 2I: Pseudocolor map of T1 after enhancement; the orange left ventricular myocardial part represents the T1 value of left ventricular myocardium after administration, and the T1 mapping after enhancement is 522.94 ms. 2J: ECV diagram; the dark purple left ventricular myocardial part represents the ECV value of left ventricular myocardium, ECV is 25.18%. ECV: extracellular volume.
图3  2型糖尿病组心肌应变曲线示意图及T1 mapping伪彩图。3A:左心室全局周向应变曲线;3B:左心室全局纵向应变曲线;3C:左心室全局径向应变曲线;3D:左心房应变曲线;3E:右心房应变曲线;3F:右心室全局周向应变曲线;3G:右心室全局纵向应变曲线;3H:打药前T1 map图,紫色左室心肌部分代表打药前左室心肌T1值,初始T1 mapping为1 042.22 ms;3I:增强后T1 map图,橙色左室心肌部分代表打药后左室心肌T1值,增强后T1 mapping为470.79 ms;3J:ECV图,深紫色左室心肌部分代表左室心肌ECV值,ECV为35.48%。ECV:细胞外容积。
Fig. 3  Schematic diagram of myocardial strain curve and T1 mapping pseudocolor map of type 2 diabetes mellitus group. 3A: Global circumferential strain curve of the left ventricle. 3B: Global longitudinal strain curve of left ventricle. 3C: Global radial strain curve of the left ventricle. 3D: Left atrial strain curve. 3E: Right atrial strain curve. 3F: Global circumferential strain curve of the right ventricle. 3G: Global longitudinal strain curve of the right ventricle. 3H: Pseudocolor map of T1 before injection; the purple left ventricular myocardial part represents the left ventricular myocardial T1 value before administration, and the initial T1 mapping is 1 042.22 ms. 3I: Pseudocolor map of T1 after enhancement; the orange left ventricular myocardial part represents the T1 value of left ventricular myocardium after administration, and the T1 mapping after enhancement is 470.79 ms. 3J: ECV diagram; the dark purple left ventricular myocardial part represents the ECV value of left ventricular myocardium, ECV is 35.48%. ECV: extracellular volume.
表3  T2DM组与HC组心肌应变分析
Tab. 3  Myocardial strain analysis in T2DM group and HC group

2.4 T2DM组和HC组的心肌组织定量分析

       T2DM组ECV显著高于HC组(29.21%±4.02% vs. 26.12%±2.54%,P< 0.001),见表4图2, 图3

表4  T2DM组与HC组T1 mapping参数分析
Tab. 4  T1 mapping parameters analysis in T2DM group and HC group

2.5 T2DM组双心室结构、EF值和心肌应变之间的相关性

       双心室EF值、LVESVI与双心室应变功能均相关(均P<0.003),LVMI与LV GRS、LV GCS、LVGLS、周向LV PSSR、纵向LV PSSR、径向LV PDSR、周向LV PDSR、纵向LV PDSR相关(均P<0.021),LV EDVI与LV GCS、LV GLS、周向LV PSSR、纵向LV PSSR、周向LV PDSR相关(均P<0.044),RVEDVI与RV GCS相关(r=0.331,P=0.007),LVRI与LV GLS及相应纵向LV PDSR相关(均P<0.01),且与径向LV PSSR弱相关(r=0.266,P=0.034),见表5, 表6

表5  T2DM组患者左心室结构、EF值与左心应变参数的相关性
Tab. 5  Correlation between left ventricular structure, EF value and left heart strain parameters in T2DM group
表6  T2DM组患者右心室结构、EF值与右心应变参数的相关性
Tab. 6  Correlation between right ventricular structure, EF value and right heart strain parameters in T2DM group

3 讨论

       本研究使用CMR-TT技术及T1 mapping技术对T2DM患者心肌结构、功能及心肌应变进行观测和研究,结果显示,糖尿病患者的心肌损伤在全心的心肌结构和重塑、心肌应变及心肌组织定量方面均有体现并相互关联。本研究首次系统性应用CMR-TT技术及T1 mapping技术揭示T2DM患者全心心肌多参数异常及其互关联性,并证实CMR-TT与T1 mapping技术能够无创、定量地检测这些早期改变。为糖尿病心肌病的早期诊断提供了有效的影像学手段。

3.1 CMR-TT技术和T1 mapping技术对糖尿病心脏结构影响的检出价值

       结构方面,本研究显示糖尿病患者左室心肌质量指数与重构指数增加,这是糖尿病心肌病的重要特征,与代谢紊乱及心肌纤维化等多因素相互作用有关,胰岛素抵抗使心肌优先利用脂肪酸,导致过氧化物酶体增殖物激活受体α表达增加、脂质堆积及纤维化[16]。相关研究表明,新型的胰岛素抵抗可靠替代标志物甘油三酯-葡萄糖指数与LVRI相关[17, 18],提示代谢紊乱会直接损伤心脏功能。此外,糖尿病患者最常见的LV心肌重塑类型是向心性肥大[19],这可能是导致LVM增加的原因。先前的研究表明,糖尿病会导致左心室重塑从而导致收缩或舒张功能障碍[20]。本研究显示,LVRI、LVM与左心室CMR应变参数相关,且与左室纵向PDSR呈负相关,说明应变参数可以较好地解释心室重构变化并且T2DM患者的心脏舒张功能早期会受心室重构影响。此外,大多数T2DM患者早期无明显的心脏损伤临床症状,前文提及的心肌纤维化是糖尿病心肌损伤进展过程中的重要病理改变,ECV值与病理活检结果高度一致,可以可视化定量评估糖尿病患者心肌弥漫性纤维化程度[6, 21],糖尿病小鼠CMR检查显示,ECV值在模型建立后逐步升高并于12周时与对照组出现差异,提示心肌纤维化发生在糖尿病早期[22]。与之前的研究结果一致,本研究中,T2DM患者的ECV高于HC组,这是由心肌细胞外基质中胶原蛋白不成比例的过度积累引起的,随着糖尿病病程进展,高血糖会促进胶原沉积,通过氧化应激、代谢紊乱、炎症反应等机制造成心肌纤维化发生,进一步导致心肌舒张或收缩功能障碍[9, 16]。以上研究结果表明心肌纤维化相关变化发生在早于临床可见的糖尿病早期。

3.2 CMR-TT技术和T1 mapping技术对糖尿病心脏功能影响的检出价值

       功能方面,本研究表明,双心室EF值、容积指数与双心室CMR应变参数相关,且CMR应变参数与双心室ESVI的相关性强于EDVI。这与之前的研究结果相似[11],表明双心室EF值可能随着双心室应变的减少而降低并且应变可以更好地反映心肌收缩能力。而本研究中糖尿病患者RVEF增高,可能是由于本研究中纳入的部分糖尿病患者左心功能不全,引发继发性肺动脉高压,右心室通过代偿机制增加收缩力以维持输出量[23]。但RV GLS降低,证实了RV损伤是糖尿病心肌病的组成部分[24, 25],这是由于糖尿病的发生使得血管阻力及血管硬度增加导致肺动脉顺应性下降[26, 27],并且高血糖会降低一氧化氮生物利用度,增加活性氧及蛋白激酶C通路的激活,从而导致血管收缩及RV后负荷增加[28],促使RV肥大及缺血,影响其应变功能,表明RV GLS更能早期反应糖尿病右心室损伤。LV应变异常亦是糖尿病心肌病的典型特征,主要表现为GLS降低[29],本研究中,T2DM患者LV GLS显著降低,且整体纵向、径向和周向PDSR均下降,这与既往研究一致。可能是由于糖尿病微血管病变导致心肌灌注减少,尤其影响心内膜下纵向纤维,导致GLS最早受损[30]。此外,较低的GLS绝对值会导致糖尿病患者预后不良[31],即使在LVEF正常时,GLS仍可预测未来心衰风险[32, 33, 34],表明GLS对左室功能改变的早期评估优于LVEF。既往研究表明不合并EF保留的T2DM患者径向PSSR高于健康对照组,纵向和周向PSSR与健康对照者之间差异无统计学意义,而本研究中纵向和周向PSSR显著降低,径向PSSR差异无统计学意义,与既往研究结果不同。究其原因,在心衰发生前,径向功能可能通过代偿机制暂时维持[35],此次研究并未明确区分心衰患者与不合并EF保留的患者,而LV径向PSSR不足以代偿T2DM患者LV纵向和周向PSSR的损伤。此外,心房应变亦可作为早期心功能损伤的敏感指标。相关研究表明,左心房功能障碍可能不总是左心室功能障碍的继发后果[36]。本研究发现,T2DM患者的双心房ξs(反映舒张功能)和ξe(反映主动收缩功能)均降低,这可能是由于糖尿病上调C型利钠肽受体表达,促进胶原Ⅰ/Ⅲ沉积增加,导致心房纤维化[37, 38, 39],此外,还有研究表明,T2DM患者右心房组织在兴奋-收缩耦合过程中钙处理受损,IP3R1-GRP75-VDAC1复合物激活内质网应激-线粒体相关膜-线粒体氧化应激级联反应,亦会导致Ca²⁺转运异常,最终会导致心房重构[40, 41],提示心房功能可能成为判断糖尿病相关心脏受损更早期的指标。

3.3 本研究局限性

       (1)这是一项样本量相对较小的单中心研究,本研究结果需要在人群较多的多中心研究中得到进一步验证;(2)本研究结果只可表明糖尿病患者心肌受损,并未阐明心肌纤维化与心肌应变的关系,这需要在后期研究中完善;(3)本研究未考虑和评估心力衰竭等临床结局;(4)本研究由于未勾画心房外膜,导致无法评估心房纤维化程度,在后期的研究中将进行完善。

4 结论

       综上所述,糖尿病会影响心脏结构及功能,T2DM患者全心心肌应变较对照组降低,ECV值升高,双心室心肌结构、功能与心肌应变相互关联,组织追踪及T1 mapping技术对心肌功能受损及心肌纤维化检测较敏感,有助于糖尿病心肌病的早期诊断。

[1]
NAKAMURA K, MIYOSHI T, YOSHIDA M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus[J/OL]. Int J Mol Sci, 2022, 23(7): 3587 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/35408946/. DOI: 10.3390/ijms23073587.
[2]
TADIC M, CUSPIDI C, CALICCHIO F, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
[3]
MAVROGENI S I, KALLIFATIDIS A, KOURTIDOU S, et al. Cardiovascular magnetic resonance for the evaluation of patients with cardiovascular disease: an overview of current indications, limitations, and procedures[J/OL]. Hellenic J Cardiol, 2023, 70: 53-64 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/36706867/. DOI: 10.1016/j.hjc.2023.01.003.
[4]
PEZEL T, VIALLON M, CROISILLE P, et al. Imaging interstitial fibrosis, left ventricular remodeling, and function in stage a and B heart failure[J]. JACC Cardiovasc Imaging, 2021, 14(5): 1038-1052. DOI: 10.1016/j.jcmg.2020.05.036.
[5]
MUSER D, CASTRO S A, SANTANGELI P, et al. Clinical applications of feature-tracking cardiac magnetic resonance imaging[J]. World J Cardiol, 2018, 10(11): 210-221. DOI: 10.4330/wjc.v10.i11.210.
[6]
SCULLY P R, BASTARRIKA G, MOON J C, et al. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography[J/OL]. Curr Cardiol Rep, 2018, 20(3): 15 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/29511861/. DOI: 10.1007/s11886-018-0961-3.
[7]
SHEN L T, SHI R, YANG Z G, et al. Progress in cardiac magnetic resonance feature tracking for evaluating myocardial strain in type-2 diabetes mellitus[J]. Curr Diabetes Rev, 2024, 20(8): 98-109. DOI: 10.2174/0115733998277127231211063107.
[8]
OLIVEIRA A L A, DE OLIVEIRA M E P, GUIMARÃES L V, et al. Evaluation of right ventricle systolic function after tetralogy of Fallot repair: a systematic review comparing cardiac magnetic resonance and global longitudinal strain[J]. Echocardiography, 2023, 40(1): 4-14. DOI: 10.1111/echo.15486.
[9]
MAREY A, ALABDULLAH A, GHORAB H, et al. Extracellular volume fraction and native T1 mapping in diabetic cardiomyopathy: a comprehensive meta-analysis[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 70 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39893360/. DOI: 10.1186/s12872-025-04496-z.
[10]
柯亮亮. 彩色多普勒血流向量成像技术定量评估心肌梗死并发室壁瘤患者心腔内血流动力学的临床价值[J]. 医疗装备, 2024, 37(5): 99-101, 108. DOI: 10.3969/j.issn.1002-2376.2024.05.028.
KE L L. Clinical value of color Doppler flow vector imaging in quantitative evaluation of intracardiac hemodynamics in patients with myocardial infarction complicated with ventricular aneurysm[J]. Med Equip, 2024, 37(5): 99-101, 108. DOI: 10.3969/j.issn.1002-2376.2024.05.028.
[11]
XIE L J, DONG Z H, YANG Z G, et al. Assessment of left ventricular deformation in patients with type 2 diabetes mellitus by cardiac magnetic resonance tissue tracking[J/OL]. Sci Rep, 2020, 10: 13126 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/32753616/. DOI: 10.1038/s41598-020-69977-x.
[12]
SHANG Y N, ZHANG Y L, LENG W L, et al. Assessment of right ventricular function using cardiovascular magnetic resonance in patients with type 2 diabetes mellitus[J]. Quant Imaging Med Surg, 2022, 12(2): 1539-1548. DOI: 10.21037/qims-21-376.
[13]
CHOWDHARY A, JEX N, THIRUNAVUKARASU S, et al. Prospective longitudinal characterization of the relationship between diabetes and cardiac structural and functional changes[J/OL]. Cardiol Res Pract, 2022, 2022: 6401180 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/35178251/. DOI: 10.1155/2022/6401180.
[14]
ELSAYED N A, ALEPPO G, ARODA V R, et al. 2. classification and diagnosis of diabetes: standards of care in diabetes-2023[J/OL]. Diabetes Care, 2023, 46(Suppl 1): S19-S40 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/36507649/. DOI: 10.2337/dc23-S002.
[15]
ROBINSON A A, CHOW K, SALERNO M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[16]
JIA G H, WHALEY-CONNELL A, SOWERS J R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia, 2018, 61(1): 21-28. DOI: 10.1007/s00125-017-4390-4.
[17]
ZHANG W, LIU L, CHEN H Y, et al. Association between the triglyceride-glucose index and the presence and prognosis of coronary microvascular dysfunction in patients with chronic coronary syndrome[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 113 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37179333/. DOI: 10.1186/s12933-023-01846-z.
[18]
JIANG L, XU H Y, LI Y, et al. The differential effects of dyslipidemia status and triglyceride-glucose index on left ventricular global function and myocardial microcirculation in diabetic individuals: a cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 345 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39300497/. DOI: 10.1186/s12933-024-02435-4.
[19]
AKASHEVA D U, UTINA T G, DZHIOEVA O N, et al. Subclinical left ventricular dysfunction over seven-year follow-up in type 2 diabetes patients without cardiovascular diseases[J/OL]. Biomedicines, 2024, 12(9): 2031 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39335545/. DOI: 10.3390/biomedicines12092031.
[20]
STORZ C, HETTERICH H, LORBEER R, et al. Myocardial tissue characterization by contrast-enhanced cardiac magnetic resonance imaging in subjects with prediabetes, diabetes, and normal controls with preserved ejection fraction from the general population[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(6): 701-708. DOI: 10.1093/ehjci/jex190.
[21]
DILLMANN W H. Diabetic cardiomyopathy[J]. Circ Res, 2019, 124(8): 1160-1162. DOI: 10.1161/circresaha.118.314665.
[22]
张宏凯, 石春彦, 张楠, 等. 心脏磁共振成像T1 mapping技术检测2型糖尿病小鼠早期心肌纤维化的实验研究[J]. 心肺血管病杂志, 2020, 39(7): 860-867. DOI: 10.3969/j.issn.1007-5062.2020.07.026.
ZHANG H K, SHI C Y, ZHANG N, et al. The research of detecting early myocardial fibrosis by cardiac magnetic resonance T1mapping in type 2 diabetic cardiomyopathy mouse model[J]. J Cardiovasc Pulm Dis, 2020, 39(7): 860-867. DOI: 10.3969/j.issn.1007-5062.2020.07.026.
[23]
VONK-NOORDEGRAAF A, HADDAD F, CHIN K M, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology[J/OL]. J Am Coll Cardiol, 2013, 62(25Suppl): D22-D33 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/24355638/. DOI: 10.1016/j.jacc.2013.10.027.
[24]
HU B Y, WANG J, YANG Z G, et al. Cardiac magnetic resonance feature tracking for quantifying right ventricular deformation in type 2 diabetes mellitus patients[J/OL]. Sci Rep, 2019, 9: 11148 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/31366951/. DOI: 10.1038/s41598-019-46755-y.
[25]
SHAO G Z, CAO Y K, CUI Y, et al. Early detection of left atrial and bi-ventricular myocardial strain abnormalities by MRI feature tracking in normotensive or hypertensive T2DM patients with preserved LV function[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 196 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/32326882/. DOI: 10.1186/s12872-020-01469-2.
[26]
REDDY Y N V, CARTER R E, SORIMACHI H, et al. Dapagliflozin and right ventricular-pulmonary vascular interaction in heart failure with preserved ejection fraction: a secondary analysis of a randomized clinical trial[J]. JAMA Cardiol, 2024, 9(9): 843-851. DOI: 10.1001/jamacardio.2024.1914.
[27]
WHITAKER M E, NAIR V, SINARI S, et al. Diabetes mellitus associates with increased right ventricular afterload and remodeling in pulmonary arterial hypertension[J/OL]. Am J Med, 2018, 131(6): 702.e7-702702.e13 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/29421689/. DOI: 10.1016/j.amjmed.2017.12.046.
[28]
GRINNAN D, FARR G, FOX A, et al. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension[J/OL]. J Diabetes Res, 2016, 2016: 2481659 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/27376089/. DOI: 10.1155/2016/2481659.
[29]
BOGDANOVIĆ J, AŠANIN M, KRLJANAC G, et al. Impact of acute hyperglycemia on layer-specific left ventricular strain in asymptomatic diabetic patients: an analysis based on two-dimensional speckle tracking echocardiography[J/OL]. Cardiovasc Diabetol, 2019, 18(1): 68 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/31159858/. DOI: 10.1186/s12933-019-0876-3.
[30]
JIANG L, WANG J, LIU X, et al. The combined effects of cardiac geometry, microcirculation, and tissue characteristics on cardiac systolic and diastolic function in subclinical diabetes mellitus-related cardiomyopathy[J/OL]. Int J Cardiol, 2020, 320: 112-118 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/32679137/. DOI: 10.1016/j.ijcard.2020.07.013.
[31]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[32]
TRÖBS S O, PROCHASKA J H, SCHWUCHOW-THONKE S, et al. Association of global longitudinal strain with clinical status and mortality in patients with chronic heart failure[J]. JAMA Cardiol, 2021, 6(4): 448-456. DOI: 10.1001/jamacardio.2020.7184.
[33]
ALASHI A, MENTIAS A, ABDALLAH A, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction[J]. JACC Cardiovasc Imaging, 2018, 11(5): 673-682. DOI: 10.1016/j.jcmg.2017.02.016.
[34]
CASEBEER A, HORTER L, HAYDEN J, et al. Phenotypic clustering of heart failure with preserved ejection fraction reveals different rates of hospitalization[J]. J Cardiovasc Med (Hagerstown), 2021, 22(1): 45-52. DOI: 10.2459/JCM.0000000000001116.
[35]
LI X N, LIU Y T, KANG S, et al. Interdependence between myocardial deformation and perfusion in patients with T2DM and HFpEF: a feature-tracking and stress perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 303 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/39152461/. DOI: 10.1186/s12933-024-02380-2.
[36]
SHI R, JIANG Y N, QIAN W L, et al. Assessment of left atrioventricular coupling and left atrial function impairment in diabetes with and without hypertension using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 295 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37904206/. DOI: 10.1186/s12933-023-01997-z.
[37]
KOVACOVA Z, THARP W G, LIU D X, et al. Adipose tissue natriuretic peptide receptor expression is related to insulin sensitivity in obesity and diabetes[J]. Obesity (Silver Spring), 2016, 24(4): 820-828. DOI: 10.1002/oby.21418.
[38]
COUÉ M, BADIN P M, VILA I K, et al. Defective natriuretic peptide receptor signaling in skeletal muscle links obesity to type 2 diabetes[J]. Diabetes, 2015, 64(12): 4033-4045. DOI: 10.2337/db15-0305.
[39]
MENG L L, LU Y, WANG X L, et al. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways[J/OL]. Sci Adv, 2023, 9(31): eadd4222 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37531438/. DOI: 10.1126/sciadv.add4222.
[40]
YUAN M, GONG M Q, HE J L, et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J/OL]. Redox Biol, 2022, 52: 102289 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/35344886/. DOI: 10.1016/j.redox.2022.102289.
[41]
JONES T L M, KAUR S, KANG N, et al. Impaired calcium handling mechanisms in atrial trabeculae of diabetic patients[J/OL]. Physiol Rep, 2023, 11(3): e15599 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/36750180/. DOI: 10.14814/phy2.15599.

上一篇 心脏磁共振平扫T1ρ mapping评估肥厚型和扩张型心肌病心肌纤维化的价值
下一篇 乳腺DCE-MRI、TIC联合ADC模型对肿块型乳腺癌激素受体表达状态的预测价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2