分享:
分享到微信朋友圈
X
临床研究
体素内不相干运动扩散加权成像在评估膀胱癌分级及肌层浸润中的价值研究
刘华琼 张晶晶 张志卿 许万博 许昌

Cite this article as: LIU H Q, ZHANG J J, ZHANG Z Q, et al. The value of intravoxel incoherent motion diffusion weighted imaging in the evaluation of bladder cancer grade and myometrial invasion[J]. Chin J Magn Reson Imaging, 2025, 16(9): 118-123.本文引用格式:刘华琼, 张晶晶, 张志卿, 等. 体素内不相干运动扩散加权成像在评估膀胱癌分级及肌层浸润中的价值研究[J]. 磁共振成像, 2025, 16(9): 118-123. DOI:10.12015/issn.1674-8034.2025.09.018.


[摘要] 目的 探讨体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion-weighted imaging, IVIM-DWI)各参数值在预测高、低级别膀胱癌及肌层浸润性膀胱癌(muscle-invasive bladder cancer, MIBC)、非肌层浸润性膀胱癌(non-muscle- invasive bladder cancer, NMIBC)的临床价值。材料与方法 纳入57例膀胱癌患者,术前均接受膀胱多参数磁共振成像(multi-parametric magnetic resonance imaging, mp-MRI)检查(包括T2WI、IVIM-DWI及DWI),根据膀胱癌分化程度不同分为高级别膀胱癌组与低级别膀胱癌组;根据膀胱癌是否浸润膀胱壁肌层分为MIBC组与NMIBC组。分别由两名医师在IVIM-DWI(b=800 s/mm2)图像上对膀胱癌病灶进行感兴趣区(region of interest, ROI)勾画,计算组内相关系数(intra-class correlation coefficient, ICC),评价测量结果的可重复性与一致性。对表观扩散系数(apparent diffusion coefficient, ADC)、真实扩散系数(D)、灌注分数(f)以及灌注相关扩散系数(D*)进行分析。建立二元logistic回归模型,将各参数值进行组合,计算各参数值独立以及联合后对膀胱癌不同级别及肌层浸润与否的预测值,利用受试者工作特征(receiver operate characteristic, ROC)曲线下面积(area under the curve, AUC)评价IVIM-DWI在预测膀胱癌高、低级别及肌层浸润性中的诊断价值,AUC的比较采用DeLong检验。结果 不同医师间和同一医师三次测量所测得的ADC值、D值、f值可重复性好(ICC范围0.916~0.991)。高级别膀胱癌组的ADC值、D值、f值分别为(1.403±0.575)×10-3 mm2/s、(7.276±5.895)×10-3 mm2/s、0.490±0.203,均小于低级别膀胱癌组[ADC值、D值、f值分别为(1.810±0.288)×10-3 mm2/s、(19.522±6.274)×10-3 mm2/s、0.873±0.174;P<0.001];MIBC组的ADC值、D值、f值分别为(1.382±0.334)×10-3 mm2/s、(9.686±9.069)×10-3 mm2/s、0.543±0.261,均小于NMIBC组[ADC值、D值、f值分别为(1.822±0.445)×10-3 mm2/s、(18.116±6.490)×10-3 mm2/s、0.842±0.193;P<0.001]。经DeLong检验,高、低级别膀胱癌组中,ADC、D、f独立预测效能均低于ADC、D、f三者联合的预测效能(AUC=0.774、0.822、0.801、0.869),差异有统计学意义(P=0.018、0.027、0.028);MIBC、NMIBC组中,ADC、D、f独立预测效能均低于ADC、D、f三者联合的预测效能(AUC=0.568、0.595、0.623、0.671),差异有统计学意义(P=0.009、0.034、0.024)。结论 IVIM-DWI的ADC值、D值、f值三个参数值联合对高、低级别膀胱癌以及MIBC、NMIBC的预测效能高于其独立预测效能,可用于术前预测膀胱癌级别以及有无膀胱壁肌层浸润。
[Abstract] Objective To explore the clinical value in predicting high/low grade bladder carcinoma and muscle layer invasive bladder carcinoma (MIBC) and non-myoinvasive bladder carcinoma (NMIBC) with various parameter values of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI).Materials and Methods Including 57 patients with bladder cancer, all of them underwent preoperative bladder multi-parameter magnetic resonance imaging (mp-MRI) (including T2WI, IVIM-DWI, and DWI). The patients were classified into high-grade and low-grade bladder cancer groups based on the degree of differentiation of bladder cancer; and into MIBC and NMIBC groups based on whether the bladder cancer had infiltrated the muscle layer of the bladder wall. Two physicians independently delineated region of interest (ROI) for the bladder cancer lesions on IVIM-DWI images (b = 800 s/mm²), calculated the intra-group correlation coefficients (ICC), and evaluated the repeatability and consistency of the measurement results. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), perfusion fraction (f), and perfusion-related diffusion coefficient (D*) were analyzed. Establish a binary logistic regression model, combining the parameter values to calculate the prediction values for different grades of bladder cancer and whether there is muscle invasion, both independently and in combination. Use the area under the receiver operating characteristic curve (AUC) to evaluate the diagnostic value of IVIM-DWI in predicting high-grade, low-grade, and muscle-invasive bladder cancer. The comparison of AUCs uses the DeLong test.Results The ADC, D, and f values measured by different physicians and the same physician on three occasions showed good repeatability (ICC range 0.916 to 0.991). The ADC, D, and f values for high-grade bladder cancer group were (1.403 ± 0.575) × 10-3 mm2/s, (7.276 ± 5.895) × 10-3 mm2/s, and 0.490 ± 0.203, all lower than those of the low-grade bladder cancer group [ADC, D, and f values were (1.810 ± 0.288) × 10-3 mm2/s, (19.522 ± 6.274) × 10-3 mm2/s, and 0.873 ± 0.174; P < 0.001]; the ADC, D, and f values for MIBC group were (1.382 ± 0.334) × 10-3 mm2/s, (9.686 ± 9.069) × 10-3 mm2/s, and 0.543 ± 0.261, all lower than those of the NMIBC group [ADC, D, and f values were (1.822 ± 0.445) × 10-3 mm2/s, (18.116 ± 6.490) × 10-3 mm2/s, and 0.842 ± 0.193; P < 0.001]. After DeLong testing, in both high-grade and low-grade bladder cancer groups, the independent predictive efficacy of ADC, D, and f was lower than that of their combined use (AUC = 0.774, 0.822, 0.801, 0.869), with statistically significant differences (P = 0.018, 0.027, 0.028); in MIBC and NMIBC groups, the independent predictive efficacy of ADC, D, and f was also lower than that of their combined use (AUC = 0.568, 0.595, 0.623, 0.671), with statistically significant differences (P = 0.009, 0.034, 0.024).Conclusions The combined predictive efficacy of ADC, D and f values of IVIM-DWI for high-grade and low-grade bladder cancer, MIBC and NMIBC was higher than that of independent predictive efficacy. It can be used to preoperative prediction of bladder cancer grade and presence or absence of bladder wall muscle infiltration.
[关键词] 膀胱癌;分级;肌层浸润;多参数磁共振成像;体素内不相干运动扩散加权成像
[Keywords] bladder cancer;grade;myometrial invasion;multi-parametric magnetic resonance imaging;intravoxel incoherent motion diffusion-weighted imaging

刘华琼 1, 2   张晶晶 1   张志卿 1   许万博 2   许昌 1*  

1 滨州医学院附属医院放射科,滨州 256603

2 山东大学齐鲁医院德州医院放射科,德州 253000

通信作者:许昌,E-mail: xuchang3183@126.com

作者贡献声明::许昌设计本研究的方案,对稿件重要内容进行了修改;刘华琼实施研究,查阅文献,起草和撰写稿件,获取、分析和解释本研究的数据;张晶晶、张志卿查阅文献,分析本研究的数据,对稿件重要内容进行了修改,获得了滨州医学院2024年度大学生创新创业训练计划基金项目资助;许万博分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 滨州医学院2024年度大学生创新创业训练计划项目 S202410440086,X202410440194
收稿日期:2025-02-21
接受日期:2025-08-25
中图分类号:R445.2  R737.14 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.018
本文引用格式:刘华琼, 张晶晶, 张志卿, 等. 体素内不相干运动扩散加权成像在评估膀胱癌分级及肌层浸润中的价值研究[J]. 磁共振成像, 2025, 16(9): 118-123. DOI:10.12015/issn.1674-8034.2025.09.018.

0 引言

       膀胱癌是泌尿系统最常见的恶性肿瘤,是男性第六大常见癌症和第九大癌症死亡病因[1, 2]。膀胱癌最多见尿路上皮癌,95%以上局限于膀胱腔内[3]。根据肿瘤是否侵入膀胱壁固有肌层可分为非肌层浸润性膀胱癌(non-muscle- invasive bladder cancer, NMIBC)与肌层浸润性膀胱癌(muscle-invasive bladder cancer, MIBC)。NMIBC约占膀胱癌总病例数的70%~80%,MIBC约占20%~30%[4]。根据分化程度不同分为低级别和高级别。大量研究表明,吸烟是膀胱癌的主要危险因素[5],近几年来死亡率有所降低[6]。NMIBC采取经尿道肿瘤切除术并术后辅助腔内化疗或免疫治疗,有约47%的NMIBC患者在术后5年内出现复发[7],大多数NMIBC患者复发及进展为MIBC的可能性较小[8]。高级别膀胱癌及MIBC患者预后较差,治疗方案是根治性膀胱切除联合淋巴结清扫,术后辅助放化疗[9]。但仍有患者发生体内其他器官、组织转移,主要发生在骨骼[10]、远处淋巴结、肺[11]和肝脏[12, 13]。近期研究[14, 15]表明,晚期膀胱癌患者需要定期复诊、终身监测[16],早期、准确对肿瘤类型做出判断并干预有助于提升患者治愈率。YANAGISAWA等[17]的Meta分析发现,MIBC患者术后残留肿瘤的几率约31.4%,需多次进行手术,患者身心承受巨大压力。

       多参数磁共振成像(multi-parametric magnetic resonance imaging, mp-MRI)能全面准确显示肌层浸润及邻近组织关系,突破局部分期限制,对病情进展进行判断与评估,指导临床制订治疗方案,是膀胱癌分期的理想方式[18]。体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion-weighted imaging, IVIM-DWI)由DIXON等[19]首次提出。IVIM-DWI通过双指数模型分析提取纯扩散系数(D),伪扩散系数(D*)和灌注分数(f)[20]。已用于多种病变诊断,如颅脑肿瘤[21]、肺结节[22]、肝脏肿瘤[23]、胰腺肿瘤[24]、前列腺肿瘤[25]、直肠癌[26]等,既往研究发现NMIBC、MIBC与IVIM-DWI各参数值之间存在关联[27],本研究同时对高、低级别膀胱癌与IVIM-DWI各参数值之间的关联性展开分析,对前人研究进行补充。本研究利用IVIM-DWI探索高、低级别膀胱癌及NMIBC、MIBC与IVIM-DWI中诸参数的相关性,进而在患者术前预测膀胱癌分级及是否肌层浸润,有助于临床选择个体化治疗方案,降低患者复发率。

1 材料与方法

1.1 研究对象

       前瞻性纳入滨州医学院附属医院2022年5月至2024年5月临床怀疑膀胱癌进行膀胱mp-MRI扫描的患者,包括T2WI、IVIM-DWI及DWI检查。本研究严格遵守《赫尔辛基宣言》,并通过滨州医学院医学伦理委员会审批,批准文号:伦研批第(2021-368)号,所有患者均签署了书面知情同意书。纳入标准:(1)年龄≥18周岁;(2)临床诊断为膀胱占位性病变的患者;(3)进行膀胱T2WI、IVIM-DWI及DWI检查前未做过膀胱镜检查、未接受过其他治疗;(4)符合《2022年世界卫生组织泌尿系统和男性生殖器官肿瘤分类——B部分:前列腺和泌尿道肿瘤》[28]中膀胱癌的病理诊断标准并诊断为膀胱癌;(5)患者依从性良好。排除标准:(1)存在MRI检查禁忌证;(2)影像学或病理资料不全;(3)图像质量不佳导致无法勾画感兴趣区(region of interest, ROI)。患者在膀胱T2WI、IVIM-DWI及DWI检查结束后,临床医师根据检查结果及患者耐受情况在两周内完成为患者留取肿瘤标本、报送病理科进行活检。根据病理结果,按照膀胱癌分化程度不同分为高级别膀胱癌组与低级别膀胱癌组,根据膀胱癌是否浸润膀胱壁肌层分为MIBC组与NMIBC组。

1.2 mp-MRI资料收集

       建议患者在进行膀胱T2WI、IVIM-DWI及DWI检查前当天清晨排出肠道气体及粪便,最大限度地降低扫描过程中的肠道运动伪影。叮嘱患者在进行检查前40 min排空膀胱后饮用温水700 mL,以确保患者在检查时膀胱处于适度充盈状态。若患者感到膀胱过度充盈,可在检查前排出部分尿液。患者在检查前去除身上金属制品,防止出现金属伪影。

       本研究采用美国GE 3.0 T磁共振扫描仪(设备型号:DISCOVERY 750 W)进行扫描,线圈使用8通道体部相控阵线圈。检查采用仰卧位、脚先进的方式。患者首先佩戴专用定制的腹部绑带,再盖上体线圈,并在体线圈上放置沙袋,最大限度地减少呼吸运动伪影及肠道运动伪影的影响。T2WI序列及DWI序列均在横轴位上采集。对于男性患者,扫描范围尽可能包括整个膀胱、前列腺、近端尿道及盆腔淋巴结;对于女性患者,扫描范围尽可能包括整个膀胱、子宫、双侧附件区、阴道及盆腔淋巴结。IVIM-DWI序列采用单次激发自旋回波扩散加权平面回波成像(spin-echo diffusion-weighted echo planar imaging, SE-DW-EPI),在横轴位上采集,采用双指数衰减模型,选取10个b值(0、20、40、80、120、200、400、800、1000、1500 s/mm2),层数20,激励次数为4。每次IVIM-DWI序列扫描的时间约为6 min。扫描范围与T2WI序列及DWI序列保持一致。扫描序列及参数详见表1

表1  扫描序列及参数
Tab. 1  The scan sequences and parameters

1.3 IVIM-DWI扫描图像后处理

       采用ADW 4.6后处理工作站中的mADC后处理软件进行图像后处理。分别由两名具有十年以上工作经验的放射科主治医师参考T2WI、DWI序列在IVIM-DWI图像上手动选取膀胱肿瘤ROI,在肿瘤显示的最大层面上进行,尽量避开肿瘤囊变、坏死、液化区域,避开膀胱壁,避开肿瘤与膀胱壁交界区域,并尽可能使ROI范围显示为最大,由一名具有三十年以上工作经验的放射科副主任医师解决相关争议问题并确定最终的ROI范围。每位患者的膀胱肿瘤病灶均选取3个ROI,通过mADC后处理软件分别得出图像分析数据:表观扩散系数(apparent diffusion coefficient, ADC)、真实扩散系数(D值)、灌注分数(f值)以及灌注相关扩散系数(D*值),对这3个ROI的ADC值、f值、D值、D*值分别取平均值。ROI勾画见图1

图1  感兴趣区勾画示意图。
Fig. 1  Schematic diagram of region of interest delineation.

1.4 统计学方法

       数据分析采用IBM SPSS 27.0软件进行。计数资料采用均数±标准差表示;对高、低级别膀胱癌组及MIBC、NMIBC组之间IVIM-DWI各参数值(ADC值、f值、D值、D*值)各定量参数进行方差齐性及正态分布检验,若满足正态分布且同时满足方差齐性,则进行独立样本t检验分析,若不满足方差齐性,进行校正的独立样本t检验分析。采用组内相关系数(intra-class correlation coefficient, ICC)评价不同医师之间和同一医师三次测量结果的观察者内一致性。建立二元logistic回归模型,对于差异具有统计学意义的IVIM-DWI各参数值进行组合,计算各参数值分别独立以及共同组合对膀胱癌病理级别及膀胱壁肌层浸润与否的预测值,并绘制ROC曲线,评价其在膀胱癌病理分级及肌层浸润性中的诊断价值。运用DeLong检验比较不同预测模型间AUC的差异。P<0.05表示差异具有统计学意义。

2 结果

2.1 临床资料分析

       本研究最初采集了62例患者的影像学资料,其中5例患者的病理结果提示为腺性膀胱炎被排除,最终57例膀胱癌患者被纳入本研究,其中,男46例,女11例,年龄30~80(67.75±11.41)岁。57例患者中高级别膀胱癌21例,低级别膀胱癌36例;MIBC 21例,NMIBC 36例。在高级别膀胱癌组中,有19例为MIBC,约占90.476%;在MIBC组中,有19例为高级别膀胱癌,约占90.476%。

2.2 IVIM-DWI各参数值组间差异分析

       两名医师测得的ADC、f、D、D*值具有良好的观察者间一致性,ICC分别为0.981、0.973、0.952、0.916;同一医师三次测量上述参数具有良好的观察者内一致性,ICC分别为0.991、0.976、0.989、0.971。结果显示,在高、低级别膀胱癌组中,低级别膀胱癌的ADC、f、D值均大于高级别膀胱癌,差异具有统计学意义(P<0.001),而D*差异无统计学意义;在MIBC、NMIBC组中,NMIBC的ADC、f、D值均大于MIBC,差异具有统计学意义(P<0.001),而D*差异无统计学意义。IVIM-DWI各参数值组间统计结果详见表2表3,典型病例IVIM-DWI、ADC、f、D、D*图像及病理结果见图2图3

图2  女,74岁,膀胱左后壁占位性病变。2A:IVIM-DWI(b=800 s/mm2)图像;2B~2E:分别为ADC(2B)、D(2C)、D*(2D)、f(2F)伪彩图;2F:术后病理(HE 10×10)示膀胱左侧壁浸润性尿路上皮癌,高级别,侵犯肌层、神经。
图3  男,73岁,膀胱右前壁占位性病变。3A:IVIM-DWI(b=800 s/mm2)图像;3B~3E:分别为ADC(3B)、D(3C)、D*(3D)、f(3F)伪彩图;3F:术后病理(HE 10×10)显示膀胱右前壁高级别尿路上皮癌,侵犯膀胱壁肌层。IVIM-DWI:体素内不相干运动扩散加权成像;ADC:表观扩散系数;D:真实扩散系数;D*:灌注相关扩散系数;f:灌注分数。
Fig. 2  Female, 74 years old, space occupying lesion of the left posterior wall of the bladder. 2A: IVIM-DWI image (b=800 s/mm2); 2B-2E: The pseudo-color graph of ADC (2B), D (2C), D* (2D), f (2E), respectively. 2F: Postoperative pathology (HE 10 × 10) shows invasive urothelial carcinoma of the left lateral wall of the bladder, of high grade, invading the muscular layer and nerves.
Fig. 3  Male, 73 years old, space occupying lesion of the right anterior wall of the bladder. 3A: IVIM-DWI image (b=800 s/mm2); 3B-3E: The pseudo-color graph of ADC (3B), D (3C), D* (3D), f (3E), respectively. 3F: Postoperative pathology (HE 10 × 10) shows high-grade urothelial carcinoma of the right anterior wall of the bladder, invading the muscular layer of the bladder wall. IVIM-DWI: intravoxel incoherent motion diffusion-weighted imaging; ADC: apparent diffusion coefficient; D: true diffusion coefficient; D*: perfusion-related diffusion coefficient; f: perfusion fraction
表2  高、低级别膀胱癌组IVIM-DWI各参数值统计结果
Tab. 2  Statistical results of each parameter value of IVIM-DWI in the high and low-grade bladder cancer groups
表3  MIBC、NMIBC组IVIM-DWI各参数值统计结果
Tab. 3  Statistical results of each parameter value of IVIM-DWI in the MIBC and NMIBC groups

2.3 ROC曲线分析

       将差异具有统计学意义的IVIM-DWI各参数值(ADC值、D值、f值)独立以及三者联合对膀胱癌肌层浸润预测效能绘制ROC曲线,并经DeLong检验,结果显示,在高、低级别膀胱癌组中,ADC、D、f独立预测效能均低于三者联合的预测效能,差异具有统计学意义(P=0.018、0.027、0.028)。在MIBC、NMIBC组中,ADC、D、f独立预测效能均低于三者联合的预测效能,差异具有统计学意义(P=0.009、0.034、0.024)。详细分析结果见表4表5图4

图4  ADC、D、f及三者联合对高、低级别膀胱癌(4A)及MIBC、NMIBC肌层浸润(4B)预测ROC曲线。ADC:表观扩散系数;D:真实扩散系数;f:灌注分数;MIBC:肌层浸润性膀胱癌;NMIBC:非肌层浸润性膀胱癌。
Fig. 4  ROC curve of ADC, D, f and their combination for predicting high and low grade bladder cancer, and predicting myometrial invasion of MIBC and NMIBC. ADC: apparent diffusion coefficient; D: true diffusion coefficient; f: perfusion fraction; MIBC: muscle-invasive bladder cancer; NMIBC : non-muscle- invasive bladder cancer.
表4  ADC、D、f及三者联合对高、低级别膀胱癌预测效能
Tab. 4  The predictive efficacy of ADC, D, f and their combination for high-grade and low-grade bladder cancer group
表5  ADC、D、f及三者联合对MIBC、NMIBC肌层浸润预测效能
Tab. 5  The predictive efficacy of ADC, D, f and their combination for myospheric infiltration of MIBC and NMIBC

3 讨论

       对膀胱癌患者进行早期诊断,并结合临床治疗研究制定更合理的治疗方案,有助于减轻患者痛苦,提高术后生存率并提升患者生活质量。本研究通过IVIM-DWI参数ADC、D、f独立以及联合后对膀胱癌不同级别及肌层浸润与否进行预测,研究结果显示,ADC、D、f值对鉴别高、低级别膀胱癌及MIBC、NMIBC均有一定诊断价值。

3.1 IVIM-DWI各参数值与高、低级别膀胱癌及MIBC、NMIBC关系

       本研究显示,低级别膀胱癌组的ADC值、D值、f值高于高级别膀胱癌组,NMIBC组的ADC值、D值、f值高于MIBC组。但D*值在组间并没有表现出差异性,分析其原因可能是膀胱癌的病理改变以细胞变性、坏死为主,微环境的灌注改变并不明显。ELSHEWY等[29]研究了ADC值在高、低级别膀胱癌中的差异,结果显示低级别膀胱癌患者的ADC值高于高级别膀胱患者,本研究验证了以上观点,并且本研究的IVIM-DWI为双指数模型。组织中水分子的随机运动是其成像的基础,水分子的平均自由运动程度越大,扩散成像的信号损耗就越大[30],IVIM-DWI无需对比剂即可提供有关组织微循环灌注信息,利用ADC、D、f等参数来记录病变特征,比单独一个参数值测量病变得到的结果更加准确,对高、低级别膀胱癌之间的鉴别及术前预测更加具有说服力。ZHANG等[31]在研究报告中也提到ADC值在MIBC、NMIBC中存在组间差异,ADC值越小,膀胱癌病灶存在肌层浸润的可能性越高,与本研究结果类似,且本研究同时运用了D、f参数,进一步对其研究进行了丰富、补充。研究证明IVIM-DWI具有鉴别诊断恶性和良性肿瘤及监测肿瘤治疗效果的潜力[32]。同时,多项研究表明,IVIM-DWI在预测前列腺癌、肝癌、骨髓瘤等多种疾病组织学级别中发挥了重大作用[33, 34, 35]

3.2 IVIM-DWI多参数联合与单一参数预测效能比较

       已有多项研究基于mp-MRI中T2WI、DWI及相关ADC值对膀胱癌进行病理学分级预测[36, 37],但鲜有研究者将IVIM-DWI中各参数值联合起来共同预测膀胱癌病理分级及有无肌层浸润。本研究同时建立了ADC、D、f三者联合与各参数单一预测模型,分别绘制ROC曲线,曲线结果显示,高、低级别膀胱癌组中,ADC、D、f三者联合的预测效能最高,同时MIBC、NMIBC组中,ADC、D、f三者联合的预测效能也最高,均高于其他各参数单一预测效能。在MIBC、NMIBC组中,ADC、D、f三者联合的预测效能AUC值为0.671,分析其原因可能是研究样本数量有限,在反映膀胱癌有无肌层浸润方面存在一定的局限性。IVIM-DWI各参数单一使用预测膀胱癌的效能较低,分析其原因可能为高、低级别膀胱及MIBC、NMIBC各定量参数存在一定交叉重叠,不能够全面准确地反映膀胱癌病灶中组织微环境特征,单独应用可能存在一定局限性,而多参数共同联合能够提供更全面的诊断信息。因此,ADC、D、f三种定量参数结合的多参数模型可作为进一步研究的有效指标。

3.3 本研究的局限性

       本研究也具有部分局限性。第一,由于临床实际条件限制,本研究纳入的受试者数量相对较少,这可能会导致统计分析产生偏差。未来要纳入更多受试者开展更大规模研究,以进一步完善研究。第二,部分受试者的膀胱癌病灶体积较大,内部信号不均匀,对于勾画ROI及测量IVIM-DWI参数值造成偏倚,今后要继续完善ROI勾画方法,尽可能使测量结果更为准确。第三,与常规DWI相比,多b值的IVIM-DWI扫描时间极大延长,患者在检查之前膀胱处于充盈状态,会遭受更多的痛苦。

4 结论

       综上所述,IVIM-DWI的ADC、D、f三个参数值联合对高、低级别膀胱癌以及MIBC、NMIBC的预测效能高于其独立预测效能。这将进一步从影像学角度为膀胱癌临床诊疗工作提供支持。

[1]
ALÌ A, LEIBOWITZ D, BHATT N, et al. Preliminary efficacy of [90Y] DOTA-biotin-avidin radiotherapy against non-muscle invasive bladder cancer[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 692-700. DOI: 10.1007/s00259-022-06027-w.
[2]
WANG S, WANG H, ZHU S, et al. Systematical analysis of ferroptosis regulators and identification of GCLM as a tumor promotor and immunological biomarker in bladder cancer[J/OL]. Front Oncol, 2022, 12: 1040892 [2024-12-17]. https://pubmed.ncbi.nlm.nih.gov/36353567/. DOI: 10.3389/fonc.2022.1040892.
[3]
XIAO J S, CHEN H, GE J Q, et al. Clinical efficacy analysis of partial cystectomy and radical cystectomy in the treatment of muscle-invasive sarcomatoid carcinoma of the urinary bladder[J/OL]. Front Oncol, 2024, 14: 1324487 [2025-02-17]. https://pubmed.ncbi.nlm.nih.gov/38371629/. DOI: 10.3389/fonc.2024.1324487.
[4]
SUN J X, XIA Q D, ZHONG X Y, et al. The bladder microbiome of NMIBC and MIBC patients revealed by 2bRAD-M[J/OL]. Front Cell Infect Microbiol, 2023[2024-12-07]. https://pubmed.ncbi.nlm.nih.gov/37351184/,13:1182322. DOI: 10.3389/fcimb.2023.1182322.
[5]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[6]
SARRIO-SANZ P, MARTINEZ-CAYUELAS L, BELTRAN-PEREZ A, et al. A novel decision tree model for predicting the cancer-specific survival of patients with bladder cancer treated with radical cystectomy[J/OL]. J Clin Med, 2024, 13(8): 2177 [2025-01-07]. https://pubmed.ncbi.nlm.nih.gov/38673449/. DOI: 10.3390/jcm13082177.
[7]
TANTRAY I, OJHA R, SHARMA A P. Non-coding RNA and autophagy: finding novel ways to improve the diagnostic management of bladder cancer[J/OL]. Front Genet, 2022, 13: 1051762 [2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/36685879/. DOI: 10.3389/fgene.2022.1051762.
[8]
HOLZBEIERLEIN J M, BIXLER B R, BUCKLEY D I, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline: 2024 amendment[J]. J Urol, 2024, 211(4): 533-538. DOI: 10.1097/JU.0000000000003846.
[9]
GHANSHYAM K, NACHIKET V, GOVIND S, et al. Validation of Vesical Imaging Reporting and Data System score for the diagnosis of muscle-invasive bladder cancer: A prospective cross-sectional study[J]. Asian J Urol, 2022, 9(4): 467-472. DOI: 10.1016/j.ajur.2021.06.001.
[10]
HU Z Y, YANG S, XU Z P, et al. Prevalence and risk factors of bone metastasis and the development of bone metastatic prognostic classification system: a pan-cancer population study[J]. Aging (Albany NY), 2023, 15(22): 13134-13149. DOI: 10.18632/aging.205224.
[11]
XIE T, QIU B M, LUO J, et al. Distant metastasis patterns among lung cancer subtypes and impact of primary tumor resection on survival in metastatic lung cancer using SEER database[J/OL]. Sci Rep, 2024, 14(1): 22445 [2025-02-11]. https://pubmed.ncbi.nlm.nih.gov/39341901/. DOI: 10.1038/s41598-024-73389-6.
[12]
DROUAUD A, XU V, VELASQUEZ A, et al. Metastatic tropism in urothelial carcinoma with variant histology: a comprehensive NCDB analysis[J/OL]. Clin Genitourin Cancer, 2024, 22(5): 102179 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/39153901/. DOI: 10.1016/j.clgc.2024.102179.
[13]
MARTINS-LIMA C, CHIANESE U, BENEDETTI R, et al. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game [J/OL]. Front Mol Biosci, 2022, 9: 1070383 [2024-12-03]. https://pubmed.ncbi.nlm.nih.gov/36699696/. DOI: 10.3389/fmolb.2022.1070383.
[14]
FLAIG T W, SPIESS P E, ABERN M, et al. NCCN guidelines® insights: bladder cancer, version 3.2024[J]. J Natl Compr Canc Netw, 2024, 22(4): 216-225. DOI: 10.6004/jnccn.2024.0024.
[15]
GIUDICE G C, SONPAVDE G P. Vaccine approaches to treat urothelial cancer[J/OL]. Hum Vaccin Immunother, 2024, 20(1): 2379086 [2025-02-19]. https://pubmed.ncbi.nlm.nih.gov/39043175/. DOI: 10.1080/21645515.2024.2379086.
[16]
VUKOVIC M, CHAMLATI J M, HENNENLOTTER J, et al. Interleukin-1β/interleukin (IL)-1-receptor-antagonist (IL1-RA) axis in invasive bladder cancer-an exploratory analysis of clinical and tumor biological significance[J/OL]. Int J Mol Sci, 2024, 25(4): 2447 [2024-12-19]. https://pubmed.ncbi.nlm.nih.gov/38397123/. DOI: 10.3390/ijms25042447.
[17]
YANAGISAWA T, KAWADA T, VON DEIMLING M, et al. Repeat transurethral resection for non-muscle-invasive bladder cancer: an updated systematic review and meta-analysis in the contemporary era[J]. Eur Urol Focus, 2024, 10(1): 41-56. DOI: 10.1016/j.euf.2023.07.002.
[18]
ALCHERA E, MONIERI M, MATURI M, et al. Early diagnosis of bladder cancer by photoacoustic imaging of tumor-targeted gold nanorods[J/OL]. Photoacoustics, 2022, 28: 100400 [2024-11-28]. https://pubmed.ncbi.nlm.nih.gov/36386292/. DOI: 10.1016/j.pacs.2022.100400.
[19]
DIXON W T. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential[J]. Radiology, 1988, 168(2): 566-567. DOI: 10.1148/radiology.168.2.3393682.
[20]
BORTOLOTTO C, STELLA G M, MESSANA G, et al. Correlation between PD-L1 expression of non-small cell lung cancer and data from IVIM-DWI acquired during magnetic resonance of the Thorax: preliminary results[J/OL]. Cancers (Basel), 2022, 14(22): 5634 [2024-11-25]. https://pubmed.ncbi.nlm.nih.gov/36428726/. DOI: 10.3390/cancers14225634.
[21]
FEDERAU C. Clinical interpretation of intravoxel incoherent motion perfusion imaging in the brain[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 85-92. DOI: 10.1016/j.mric.2023.07.002.
[22]
CHEN Y, HAN Q, HUANG Z, et al. Value of IVIM in differential diagnoses between benign and malignant solitary lung nodules and masses: a meta-analysis[J/OL]. Front Surg, 2022, 9: 817443 [2024-10-25]. https://pubmed.ncbi.nlm.nih.gov/36017515/. DOI: 10.3389/fsurg.2022.817443.
[23]
ZHOU Y, ZHENG J, YANG C, et al. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(27): 3334-3345. DOI: 10.3748/wjg.v28.i27.3334.
[24]
NADOLSKA K, BIAŁECKA A, ZAWADA E, et al. Analysis of IVIM perfusion fraction improves detection of pancreatic ductal adenocarcinoma[J/OL]. Diagnostics (Basel), 2024, 14(6): 571 [2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/38534992/. DOI: 10.3390/diagnostics14060571.
[25]
ZHOU K P, HUANG H B, BU C, et al. Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process[J/OL]. Front Oncol, 2023, 13: 1092073 [2024-12-02]. https://pubmed.ncbi.nlm.nih.gov/36845749/. DOI: 10.3389/fonc.2023.1092073.
[26]
JIA Y P, SONG G S, WU R, et al. Intravoxel incoherent motion DWI with different mathematical models in predicting rectal adenoma with and without canceration[J/OL]. Eur J Radiol, 2022, 155: 110496 [2024-12-04]. https://pubmed.ncbi.nlm.nih.gov/36030659/. DOI: 10.1016/j.ejrad.2022.110496.
[27]
FAN Z, GUO J, ZHANG X, et al. Non-Gaussian diffusion metrics with whole-tumor histogram analysis for bladder cancer diagnosis: muscle invasion and histological grade[J/OL]. Insights Imaging, 2024, 15(1): 138 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/38853200/. DOI: 10.1186/s13244-024-01701-z.
[28]
NETTO G J, AMIN M B, BERNEY D M, et al. The 2022 World Health Organization classification of tumors of the urinary system and male genital organs-part B: prostate and urinary tract tumors[J]. Eur Urol, 2022, 82(5): 469-482. DOI: 10.1016/j.eururo.2022.07.002.
[29]
ELSHEWY N E, RAMADAN A ALI, SAMEH W M, et al. Does volumetric measurement of ADC values achieve higher diagnostic performance in bladder cancer MRI [J]. Acta Radiol, 2024, 65(5): 506-512. DOI: 10.1177/02841851241241055.
[30]
GULATI V, CHHABRA A. Qualitative and quantitative MRI techniques for the evaluation of musculoskeletal neoplasms[J]. Semin Roentgenol, 2022, 57(3): 291-305. DOI: 10.1053/j.ro.2021.11.002.
[31]
ZHANG W, ZHANG Z C, XIAO W X, et al. Multiple directional DWI combined with T2WI in predicting muscle layer and Ki-67 correlation in bladder cancer in 3.0-T MRI[J]. Cancer Med, 2023, 12(9): 10462-10472. DOI: 10.1002/cam4.5782.
[32]
GOWDA P, BAJAJ G, SILVA F D, et al. Does the apparent diffusion coefficient from diffusion-weighted MRI imaging aid in the characterization of malignant soft tissue tumors and sarcomas[J]. Skeletal Radiol, 2023, 52(8): 1475-1484. DOI: 10.1007/s00256-023-04289-5.
[33]
SEYREK N, HOLLEMANS E, SCHOOTS I G, et al. Association of quantifiable prostate MRI parameters with any and large cribriform pattern in prostate cancer patients undergoing radical prostatectomy[J/OL]. Eur J Radiol, 2023, 166: 110966 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37453276/. DOI: 10.1016/j.ejrad.2023.110966.
[34]
WANG Q, YU G H, QIU J F, et al. Application of intravoxel incoherent motion in clinical liver imaging: a literature review[J]. J Magn Reson Imaging, 2024, 60(2): 417-440. DOI: 10.1002/jmri.29086.
[35]
ZHANG B, BIAN B Y, ZHANG Y J, et al. The apparent diffusion coefficient of diffusion-weighted whole-body magnetic resonance imaging affects the survival of multiple myeloma independently[J/OL]. Front Oncol, 2022, 12: 780078 [2024-11-27]. https://pubmed.ncbi.nlm.nih.gov/35311101/. DOI: 10.3389/fonc.2022.780078.
[36]
黄翔, 曹康养, 邹玉坚, 等. 基于T2WI的ResNet深度学习模型术前预测膀胱癌病理分级的研究[J]. 磁共振成像, 2024, 15(1): 125-131. DOI: 10.12015/issn.1674-8034.2024.01.020.
HUANG X, CAO K Y, ZOU Y J, et al. Preoperative prediction of pathological grading in bladder cancer by deep residual network model based on T2WI[J]. Chin J Magn Reson Imag, 2024, 15(1): 125-131. DOI: 10.12015/issn.1674-8034.2024.01.020.
[37]
XU Y, ZHOU C Y, HE X J, et al. Deep learning-assisted LI-RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT: a two-center study[J]. Eur Radiol, 2023, 33(12): 8879-8888. DOI: 10.1007/s00330-023-09857-w.

上一篇 磁敏感加权成像在诊断Bosniak ⅡF~Ⅲ级肾脏囊性病变良恶性中的应用价值
下一篇 基于多参数磁共振成像影像组学聚类分析评估前列腺癌侵袭性及判断预后的临床价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2