分享:
分享到微信朋友圈
X
临床研究
基于多模态影像的髌股关节与胫股关节骨性关节炎的相关性研究
冉春艳 王显高 徐高强 刘军委 王丹 李小妹 何生生 刘衡 张体江

Cite this article as: RAN C Y, WANG X G, XU G Q, et al. A study on the correlation between patellofemoral and tibiofemoral osteoarthritis based on multimodal imaging[J]. Chin J Magn Reson Imaging, 2025, 16(9): 140-145.本文引用格式:冉春艳, 王显高, 徐高强, 等. 基于多模态影像的髌股关节与胫股关节骨性关节炎的相关性研究[J]. 磁共振成像, 2025, 16(9): 140-145. DOI:10.12015/issn.1674-8034.2025.09.021.


[摘要] 目的 探讨髌股关节骨性关节炎(patellofemoral osteoarthritis, PFOA)与胫股关节骨性关节炎(tibiofemoral osteoarthritis, TFOA)的相关性,分析二者潜在共性关系。材料与方法 前瞻性招募就诊于遵义医科大学附属医院关节外科并于同日到放射科行负重位膝关节X线检查和同侧膝关节MRI检查的受检者101例(男56例,女45例)。根据负重位膝关节骨性关节炎(knee osteoarthritis, KOA)X线Kellgren-Lawrence分级(Kellgren-Lawrence grading, KLG)将所有受检者分成KLG 0~1级、KLG 2级、KLG 3级和KLG 4级共4组。根据Recht软骨损伤MRI分级将所有受检者髌股关节(patellofemoral joint, PFJ)软骨损伤分成Recht Ⅰ级、Recht Ⅱ级、Recht Ⅲ级和Recht Ⅳ级共4组。应用MRI T2 mapping技术测量PFJ髌软骨T2值,采用Pearson或Spearman相关性分析评估MRI定量参数T2值分别与年龄、身体质量指数(body mass index, BMI)、PFJ Recht分级、KOA KLG的相关性以及PFJ Recht分级与KOA KLG的相关性。结果 年龄越大,T2值越高(r=0.47,P<0.001);T2值越高,PFJ Recht分级越高(r=0.86,P<0.001);T2值越高,KOA KLG程度越高(r=0.47,P<0.001);PFJ Recht分级越高,KOA KLG越高(r=0.41,P<0.001)。结论 PFOA与TFOA存在中度相关性,提示二者存在潜在共性关系,这一关联为全膝关节保护疗法提供了影像学依据。
[Abstract] Objective To analyze the association between patellofemoral osteoarthritis (PFOA) and tibiofemoral osteoarthritis (TFOA), and analyze their potential common relationships.Materials and Methods Prospectively recruited 101 subjects (56 males, 45 females) who visited Joint Surgery Department of the Affiliated Hospital of Zunyi Medical University and underwent same-day weight-bearing knee X-ray and ipsilateral knee MRI examinations in the Radiology Department. Based on the Kellgren-Lawrence grading (KLG) system for knee osteoarthritis (KOA) on weight-bearing X-rays, the subjects were divided into four groups: KLG 0-1, KLG 2, KLG 3, and KLG 4. According to the Recht MRI grading system for cartilage damage, patellofemoral joint (PFJ) cartilage injuries were classified into four groups: Recht Ⅰ, Recht Ⅱ, Recht Ⅲ and Recht Ⅳ. MRI T2 mapping was used to measure the T2 values of patellar cartilage. Pearson or Spearman correlation analysis was employed to evaluate the relationships both between the MRI quantitative parameter (T2 values) and age, body mass index (BMI), PFJ Recht grading, KOA KLG and the correlation between PFJ Recht grading and KOA KLG.Results Higher T2 values were associated with older age (r = 0.47, P < 0.001). Higher T2 values correlated with more severe PFJ Recht grading (r = 0.86, P < 0.001). Higher T2 values were also linked to more advanced KOA KLG (r = 0.47, P < 0.001). Additionally, more severe PFJ Recht grading was associated with higher KOA KLG (r = 0.41, P < 0.001).Conclusions A moderate correlation was identified between PFOA and TFOA, indicating potential shared characteristics between the two conditions, this association serves as radiographic support for total knee protective therapy.
[关键词] 髌股关节骨性关节炎;胫股关节骨性关节炎;磁共振成像;T2 mapping;Kellgren-Lawrence分级;Recht分级
[Keywords] patellofemoral osteoarthritis;tibiofemoral osteoarthritis;magnetic resonance imaging;T2 mapping;Kellgren-Lawrence grading;Recht grading

冉春艳 1   王显高 1   徐高强 1   刘军委 1   王丹 1   李小妹 1   何生生 2   刘衡 1   张体江 1, 3*  

1 遵义医科大学附属医院放射科,遵义 563000

2 务川自治县人民医院放射科,遵义 564300

3 毕节医学高等专科学校医学技术系,毕节 551700

通信作者:张体江,E-mail: tijzhang@163.com

作者贡献声明::张体江、王显高、刘衡指导设计本研究的方案,对稿件重要内容进行了修改;张体江获得了贵州省科技计划支持;冉春艳起草和撰写稿件,获取、分析和解释本研究的数据,获得了遵义市科技计划支持;徐高强、刘军委、王丹、李小妹、何生生获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 贵州省科技计划项目 黔科合人才CXTD(2025)047 遵义市科技计划项目 遵市科合HZ字(2022)236号
收稿日期:2024-04-01
接受日期:2025-09-10
中图分类号:R445.2  R684.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.021
本文引用格式:冉春艳, 王显高, 徐高强, 等. 基于多模态影像的髌股关节与胫股关节骨性关节炎的相关性研究[J]. 磁共振成像, 2025, 16(9): 140-145. DOI:10.12015/issn.1674-8034.2025.09.021.

0 引言

       膝关节骨性关节炎(knee osteoarthritis, KOA)是一种受多因素影响、以关节软骨变性破坏为特征的骨性关节炎,可引起关节不同程度疼痛[1]、僵硬、功能障碍、关节畸形等,严重者可进展为肢体残疾[2, 3]。KOA患病率、发病率、致残率逐年上升,发病年龄逐渐年轻化,与心血管事件、下肢静脉栓塞、骨折等均有相关性,给患者及其家庭、社会造成沉重负担[4]。KOA主要包括髌股关节骨性关节炎(patellofemoral osteoarthritis, PFOA)和胫股关节骨性关节炎(tibiofemoral osteoarthritis, TFOA)[5],既往大部分研究认为PFOA与TFOA是同时进行,但随着研究逐渐深入,发现两者病理机制不尽相同,PFOA通常与髌骨轨迹异常、软骨磨损、髌下脂肪垫面积等相关[6, 7],而TFOA则与半月板损伤、软骨下骨硬化、身高、性别及软骨厚度等因素相关[5, 8],两者可同时存在,但PFOA亦可以孤立发病[9]。因此为了进一步探讨两者之间的潜在共性关系,本文基于膝关节负重位Kellgren-Lawrence分级(Kellgren-Lawrence grading, KLG)、MRI髌股关节(patellofemoral joint, PFJ)髌软骨Recht分级,采用T2 mapping技术测量PFJ髌软骨T2值,探讨PFJ髌软骨T2值与年龄、身体质量指数(body mass index, BMI)、PFJ软骨Recht分级及KOA KLG的相关性,进一步分析PFJ髌软骨Recht分级与TFOA KLG的相关性,分析二者潜在共性关系。

1 材料与方法

1.1 研究对象

       招募2023年12月至2024年6月就诊于遵义医科大学附属医院关节外科并于同日到放射科行膝关节负重位X线平片及同侧膝关节MRI检查的KOA患者。纳入标准:无膝关节手术、外伤、肿瘤、系统性疾病等病史。排除标准:(1)有MRI检查禁忌证;(2)合并有其他关节疾病(感染、类风湿性关节炎、痛风性关节炎等);(3)图像因运动伪影影响参数测量;(4)近1周有剧烈强度运动史。本研究遵守《赫尔辛基宣言》,经遵义医科大学附属医院伦理委员会批准,批准号:KLL-2022-838,全体受试对象均签署了知情同意书。

1.2 检查方法

1.2.1 X线平片检查

       采用联影uDR 550i X线摄影机,参数:80 kV,5 mAs。所有被检者均行膝关节负重位X线正位片检查,将X线平片图像上传至PACS系统进行KLG评估。

1.2.2 MRI检查

       采用西门子MAGNETOM Amira 1.5 T MRI扫描仪对受试者行膝关节MRI扫描,使用膝关节专用线圈,扫描时受试者取仰卧位、脚先进方式,并用沙袋进行固定减轻运动伪影。本研究的序列包括T1WI矢状位,脂肪抑制(fat saturation, FS)-T2WI轴位、矢状位、冠状位,三维扰相梯度回波(3D spoiled gradient echo, 3D SPGR)序列矢状位以及T2 mapping矢状位,详细扫描参数见表1

表1  受试者MRI扫描序列及其扫描参数
Tab. 1  MRI acquisition protocols and parameters in the study

1.3 图像评估

       所有图像由两名从事放射诊断专业10~15年的副主任医师采取双盲法分别对膝关节X线负重位片进行KOA KLG、对膝关节MRI图像(包括膝关节常规图像、T2 mapping矢状位及3D SPGR矢状位)进行PFJ髌软骨损伤综合判读并进行Recht分级,如遇分级不同,则需协商达成一致(两位医师的一致性分析方法采用Kappa一致性检验)。所有被试负重位X线片根据KLG评分[10]共分为4组:KLG 0~1级、KLG 2级、KLG 3级、KLG 4级;对所有被试同侧膝关节MRI图像进行PFJ Recht评分,如图1所示。PFJ软骨损伤共分为4组:Recht Ⅰ级、Recht Ⅱ级、Recht Ⅲ级、Recht Ⅳ级。由上述其中1名从事放射诊断专业10余年的副主任医师应用西门子工作站软件在膝关节矢状位T2 mapping伪彩图相对应的原始灰度图像中勾画髌软骨感兴趣区(region of interest, ROI),并测得T2值(同一图像由同一观察者勾画三次、取三次测量的平均值为最终T2值,三次ROI勾画均在重新加载图像后再进行测量),ROI定位层面选择正中矢状位层面,ROI为直径约3~5 mm圆形区域,注意避开相邻结构,提高ROI T2值精准度,如图1D~1E所示。

图1  男,43岁,髌股关节髌软骨显示及ROI勾画示意图。1A:T1WI矢状位序列;1B:FS-T2WI矢状位;1C:3D SPGR矢状位;1D:T2 mapping序列伪彩图(提示髌软骨蓝色背景中出现红色及黄色异常信号带,直观显示软骨损伤);1E:在图1D相同层面矢状位原始图测量ROI T2值,显示病变区T2值为75 ms。ROI:感兴趣区;FS:脂肪抑制;3D SPGR:三维扰相梯度回波。
Fig. 1  Male, 43-year-old, schematic diagram of patellar cartilage display and ROI delineation in the patellofemoral joint. 1A: T1WI sagittal sequence; 1B: FS-T2WI sagittal sequence; 1C: 3D SPGR sagittal sequence; 1D: T2 mapping sequence pseudo-color map (the pseudo-color map shows red and yellow abnormal signal bands against a blue background in the patellar cartilage, visually indicating cartilage damage); 1E: Original sagittal image of the same slice as Figure 1D for ROI T2 value measurement, showing a T2 value of 75 ms in the ROI. ROI: region of interest; FS: fat-suppressed; 3D SPGR: 3D spoiled gradient recalled echo.

1.4 统计学方法

       应用SPSS 29.0软件(IBM Corp., Armonk, NY, USA)进行数据统计分析。利用Kolmogorov-Smirnov检验分析资料是否符合正态分布,年龄、BMI、T2值等数据符合正态分布以均值±标准差表示。利用单因素方差分析分别检验PFJ Recht分级及KOA KLG组间年龄、BMI、T2值是否有差异,事后两两比较采用Bonferroni校正法调整显著性值。采用Pearson或Spearman相关性分析评估MRI定量参数T2值分别与年龄、BMI、PFJ Recht分级、KOA KLG的相关性以及PFJ Recht分级与KOA KLG的相关性。相关性系数分为五级,|r|<0.2为极弱相关,0.2≤|r|<0.4为弱相关,0.4≤|r|<0.6为中度相关,0.6≤|r|<0.8为强相关,|r|≥0.8为极强相关。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       本研究共招募了117例患者,其中11例因不符合纳入标准被排除(曾有过膝关节外伤史3例,痛风性关节炎病史2例,类风湿性关节炎病史2例,膝关节抽液术后2例,半月板修补术1例,前交叉韧带重建术1例);5例因符合排除标准被排除(运动伪影影响参数测量2例,MRI诊断色素沉着绒毛结节性滑膜炎1例,股骨中下段内生软骨瘤1例,1周内参加马拉松运动1例),最终共纳入患者101例(男56例,女45例),年龄19~66(48.73±10.83)岁。两位医师对受试者KLG、Recht分级的一致性分析结果显示,KLG的Kappa值为0.85,Recht分级的Kappa值为0.78,一致性较好。

2.2 PFJ髌软骨T2值与年龄、软骨损伤Recht分级、KOA KLG、BMI相关性

       PFJ髌软骨T2值与年龄呈中度正相关(r=0.47,P<0.001;图2A);PFJ髌软骨T2值与BMI无相关性(P=0.062);PFJ髌软骨T2值与软骨损伤Recht分级呈极强正相关(r=0.86,P<0.001;图2B);PFJ髌软骨T2值与KOA KLG呈中度正相关(r=0.47,P<0.001;图2C)。

图2  T2 值与年龄(2A)、髌股关节(PFJ)髌软骨Recht 分级(2B)、骨性关节炎(KOA 请)kellgren-kawrence 分级(KLG;2C)相关性散点图。
Fig. 2  The scatter plot of the correlation between T2 mapping parameter (T2 value) and age (2A), the cartilage Recht grading (2B) of patellofemoral joint (PFJ), and the Kellgren-Lawrence grading (KLG; 2C) of knee osteoarthritis (KOA).

2.3 PFJ髌软骨Recht分级与KOA KLG相关性分析

       PFJ髌软骨Recht分级与KOA KLG呈中度正相关(r=0.41,P<0.001;图3)。

图3  髌股关节(PFJ)髌软骨Recht分级与骨性关节炎(KOA)kellgren-kawrence分级(KLG)的相关性散点图。
Fig. 3  The scatter plot of the correlation between patellar cartilage Recht grading of patellofemoral joint (PFJ) and the Kellgren-Lawrence grading (KLG) of knee osteoarthritis (KOA).

2.4 PFJ髌软骨Recht分级不同分组间年龄、BMI以及T2值差异统计

       RechtⅠ级、Recht Ⅱ级、Recht Ⅲ级、Recht Ⅳ级4组年龄差异分析提示,Recht Ⅰ级与Recht Ⅱ级间年龄差异无统计学意义,余Recht分组间年龄差异有统计学意义(P<0.001);4组BMI差异有统计学意义(P<0.001);4组间T2值差异有统计学意义(P<0.001)。详见表2

表2  临床资料及T2 mapping参数与PFJ髌软骨Recht分级的统计结果
Tab. 2  Statistical results of clinical data and T2 mapping parameter with patellar cartilage Recht of PFJ

2.5 KOA KLG不同分组间年龄、BMI以及PFJ髌软骨T2值差异统计

       KLG 0~1级、KLG 2级、KLG 3级、KLG 4 级4组间年龄差异有统计学意义(P<0.001);4组间BMI差异有统计学意义(P=0.018);4组间T2值差异有统计学意义(P<0.001)。详见表3

表3  临床资料及T2 mapping参数与KOA KLG的统计结果
Tab. 3  Statistical results of clinical data and T2 mapping parameter with KLG of KOA

3 讨论

       本研究应用双盲法分别对膝关节X线负重位片进行KOA KLG、对膝关节MRI进行PFJ髌软骨Recht分级。在膝关节MRI图像上进行PFJ髌软骨定量测量得出ROI的T2值,分析PFJ髌软骨T2 mapping定量参数评估KOA KLG及软骨损伤Recht分级的价值,研究结果表明,髌软骨T2值与PFJ软骨Recht分级呈极强度相关,髌软骨T2值与KOA KLG呈中度正相关,PFJ软骨Recht分级与KOA KLG为中度正相关,PFJ髌软骨T2值可作为量化PFJ髌软骨损伤严重程度的指标,PFOA(PFJ髌软骨Recht分级)与TFOA(KLG)存在中度相关性,提示两者存在潜在共性关系。

3.1 定量MRI在软骨损伤中的应用

       MRI是唯一能活体检测关节软骨的影像技术,定量MRI可以在关节软骨形态学改变之前量化软骨退变相关的软骨大分子和水含量以及胶原纤维超微结构的变化[11, 12],如T1 mapping、T2 mapping、T1ρ[13, 14]、T2* mapping技术等,进一步提高了KOA诊断的敏感度和特异度[15, 16],有助于更好地了解KOA疾病机制和更快速地调查手术和药物治疗效果,针对没有KOA影像学征象的高风险个体早期疾病诊断和预防策略可以最大限度地提高治疗有效性,首选推荐3T MRI进行扫描[11]。本研究应用的是1.5 T MRI检查设备,选择原因是1.5 T MRI设备普及率更高,尤其是在基层医院或资源有限的地区,旨在探索1.5 T MRI在软骨损伤中的应用;其次有文献提出1.5 T MRI的磁场不均匀性通常比3 T更低,在T2 mapping成像中可减少由于磁场不均匀性引起的伪影从而提高测量的准确性[17]。T2 mapping技术通过组织的横向磁化衰减来反映组织的结构特性,对软骨内的水分子、胶原纤维及组织各向异性的改变尤为敏感,是目前常用的非侵入性关节软骨定量的检查方法[18, 19]

3.2 PFOA与TFOA的相关性及分析

       KOA是一种常见的可导致身体残疾、疼痛和生活质量下降的疾病,给患者家庭、社会带来重大的经济负担[20],约64%的50岁以上成年人患有PFOA,其中1/3患有孤立性PFOA,且影像学表现为孤立性PFOA比孤立性TFOA更常见[20]。胫股关节(tibiofemoral joint, TFJ)主要与承重、运动、稳定等相关,而PFJ主要与杠杆力臂、保护股骨、引导髌骨运动等有关[21]。既往研究表明两者可独立发病,亦可相互影响,但未具体阐明两者相互作用的共同影响因素有哪些,本研究结果发现PFJ软骨Recht分级与KOA KLG为中度正相关,这可能与以下潜在共性因素相关:第一,两个关节之间生物力学相互影响[20, 22],TFJ是膝关节的主要承重部分,其骨性关节炎会导致关节间隙变窄、软骨磨损和力线改变,这会使得关节的整体力学分布发生改变,因此增加TFJ压力;PFOA也可能导致髌骨轨迹异常(如髌骨外移或倾斜),这会进一步影响TFJ的应力分布,加速TFOA进展。第二、炎症因子、滑膜免疫细胞失调作用[23, 24],PFOA、TFOA都可能伴随滑膜免疫细胞失调、滑膜炎和关节内炎症因子的释放,这些炎症因子不仅影响局部关节,还可能通过关节液扩散到其他部位,加速整个关节骨性关节炎的建筑。第三,肌肉功能的改变[25, 26],TFOA常伴随股四头肌力量减弱,而股四头肌功能下降会导致髌骨轨迹异常,进而引发PFOA。第四,年龄[10],在本次研究中PFJ髌软骨T2值与年龄呈中度正相关,随着年龄增长,关节软骨、滑液、肌肉和韧带的功能逐渐下降,导致KOA的发生率和严重程度显著增加。综上PFOA与TFOA存在中度相关性,两者的潜在共性可能与膝关节活动、解剖、生物力学、炎症反应等方面相关。

3.3 PFJ髌软骨T2值与年龄、BMI的关系

       KOA是最常见的退行性关节病,与年龄、关节变性、遗传、炎症、肥胖差异[24]等有关,其中年龄是主要危险因素[27],发病率随年龄增长而增加,40岁以上患病率约46.3%[28],65岁以上达50%,75岁以上更是高达80%[29, 30]。本研究发现髌软骨T2值与年龄呈正相关,即年龄越大,髌软骨T2值越高,而髌软骨T2值与髌软骨损伤及KOA严重程度密切相关,与既往研究结果一致。郝天琦等[31]学者应用髌下脂肪垫脂肪分数和T2 mapping定量参数分析其与KOA程度的相关性得出随着KOA严重程度增大T2值升高,且无KOA、轻度KOA和重度KOA三组间T2值差异有统计学意义,与本研究结果一致,但此次研究与既往研究的差异在于,本研究应用KOA KLG 0~4级对所有受试者进行分级,分组更细,更能凸显T2值的作用。本研究中不同分组间BMI有差异但未得出T2值与BMI指数有显著相关性的结果,既往文献提出肥胖是KOA的危险因素[24, 32],可能与本组被试的BMI相对均衡,无大基数BMI受试者有关。

3.4 髌软骨T2值与PFJ软骨损伤Recht分级、KOA KLG的关系

       既往在肩关节研究中发现其Recht分级与年龄有显著相关性,并得出T2值可以作为量化肩关节软骨损伤的指标[33]。在膝关节研究中发现相较对照组,负重区软骨T2值会增高,但在不同损伤分级中T2值差异无统计学意义[34]。基于T2值评估软骨损伤分级存在异同,在此基础上继续探讨非持重关节——PFJ髌软骨T2值分别与软骨损伤Recht分级及KLG的相关性,研究发现受试组PFJ髌软骨T2值越高,PFJ Recht分级越高,进一步提示PFJ髌软骨T2值可作为量化膝关节软骨损伤的指标,与既往在肩关节中的研究结果一致。PFJ髌软骨T2值与KOA KLG呈中度正相关,即PFJ髌软骨T2值越高,KOA KLG越高,提示PFJ髌软骨T2值升高可能是评估KOA KLG损伤分级较高的危险因素。

3.5 本研究的局限性

       本研究存在一些局限性:(1)本研究为单中心研究,样本数量相对较少,今后将继续扩大样本量进行探究;(2)本研究未对被试进行纵向跟踪;(3)本研究局限于影像学分析,缺乏影像与关节镜下关节软骨损伤分级的对比分析。

4 结论

       综上所述,PFJ髌软骨T2值可作为量化PFJ Recht损伤严重程度的指标。PFOA与TFOA存在中度相关性,提示两者存在潜在共性关系,这一关联为全膝关节保护疗法提供了影像学依据,即提示临床需超越孤立关节视角,从全膝关节出发优化管理。对PFOA患者,早期干预可能预防TFOA进展,而TFOA的炎症控制也可能改善PFOA症状。

[1]
YU H, HUANG T W, LU W W, et al. Osteoarthritis pain[J/OL]. Int J Mol Sci, 2017, 23(9): 4642 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/35563035/. DOI: 10.3390/ijms23094642.
[2]
刘晓艺, 蒲如剑, 梁洁, 等. 3.0 T MRI T2 mapping纹理特征在膝关节骨性关节炎软骨损伤分级中的价值[J]. 磁共振成像, 2021, 12(7): 34-38. DOI: 10.12015/issn.1674-8034.2021.07.007.
LIU X Y, PU R J, LIANG J, et al. The value of T2 mapping texture features of 3.0 T MRI in grading cartilage injury of knee osteoarthritis[J]. Chin J Magn Reson Imag, 2021, 12(7): 34-38. DOI: 10.12015/issn.1674-8034.2021.07.007.
[3]
TIEGS-HEIDEN C A, LONG Z Y, LU A M, et al. Osteoarthritis-related knee pain: MRI-guided focused ultrasound ablation treatment[J/OL]. Int J Hyperthermia, 2025, 42(1): 2451686 [2025-03-12]. https://pubmed.ncbi.nlm.nih.gov/39828268/. DOI: 10.1080/02656736.2025.2451686.
[4]
YANG G M, WANG J, LIU Y, et al. Burden of knee osteoarthritis in 204 countries and territories, 1990-2019: results from the global burden of disease study 2019[J]. Arthritis Care Res (Hoboken), 2023, 75(12): 2489-2500. DOI: 10.1002/acr.25158.
[5]
XING X, WANG Y N, ZHU J N, et al. Predictive validity of consensus-based MRI definition of osteoarthritis plus radiographic osteoarthritis for the progression of knee osteoarthritis: a longitudinal cohort study[J/OL]. Osteoarthr Cartil Open, 2025, 7(2): 100582 [2025-03-14]. https://pubmed.ncbi.nlm.nih.gov/40061840/. DOI: 10.1016/j.ocarto.2025.100582.
[6]
ACKERMANN J, BERGHEIM N, HARTMANN M, et al. Trochlear dysplasia is associated with increased sagittal tibial tubercle trochlear-groove distance in patients with patellar instability[J]. Arthroscopy, 2025, 41(4): 1002-1008. DOI: 10.1016/j.arthro.2024.05.023.
[7]
ACKERMANN J, CALISKAN B, HARTMANN M, et al. The effect of a supratrochlear spur on patellofemoral cartilage in patients with trochlear dysplasia[J]. Am J Sports Med, 2025, 53(5): 1127-1132. DOI: 10.1177/03635465251323806.
[8]
JANSEN M P, TURMEZEI T D, DATTANI K, et al. Cartilage thickness distribution and its dependence on demographic, radiographic, and MRI structural pathology in knee osteoarthritis-data from the IMI-APPROACH cohort[J]. Skeletal Radiol, 2025, 54(10): 2025-2034. DOI: 10.1007/s00256-025-04907-4.
[9]
BEISCHL S, BANKE I J, VON EISENHART-ROTHE R, et al. Isolated patellofemoral osteoarthritis[J]. Z Orthop Unfall, 2024, 162(1): 93-107. DOI: 10.1055/a-2012-2473.
[10]
LANGWORTHY M, DASA V, SPITZER A I. Knee osteoarthritis: disease burden, available treatments, and emerging options[J/OL]. Ther Adv Musculoskelet Dis, 2024, 16: 1759720X241273009 [2025-03-15]. https://pubmed.ncbi.nlm.nih.gov/39290780/. DOI: 10.1177/1759720X241273009.
[11]
KIJOWSKI R. Standardization of compositional MRI of knee cartilage: why and how[J]. Radiology, 2021, 301(2): 433-434. DOI: 10.1148/radiol.2021211957.
[12]
洪国斌, 李绍林. 关节炎影像学发展历程及未来展望[J]. 中华放射学杂志, 2024, 58(11): 1286-1291. DOI: 10.3760/cma.j.cn112149-20240715-00407.
HONG G B, LI S L. Development and future prospects of arthritis imaging[J]. Chin J Radiol, 2024, 58(11): 1286-1291. DOI: 10.3760/cma.j.cn112149-20240715-00407.
[13]
CHAMPAGNE A A, ZULEGER T M, SMITH D R, et al. Quantitative susceptibility and T1 ρ mapping of knee articular cartilage at 3T[J/OL]. Osteoarthr Cartil Open, 2024, 6(3): 100509 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/39224132/. DOI: 10.1016/j.ocarto.2024.100509.
[14]
WYATT C R. Editorial for "simultaneous bilateral T1, T2, and T1ρ relaxation mapping of hip joint with 3D-MRI fingerprinting[J]. J Magn Reson Imaging, 2025, 62(1): 174-175. DOI: 10.1002/jmri.29685.
[15]
MONGA A, DE MOURA H L, ZIBETTI M V W, et al. Simultaneous bilateral T1, T2, and T1ρ relaxation mapping of hip joint with 3D-MRI fingerprinting[J]. J Magn Reson Imaging, 2025, 62(1): 160-173. DOI: 10.1002/jmri.29679.
[16]
DE MOURA H L, MONGA A, ZHANG X X, et al. Feasibility of 3D MRI fingerprinting for rapid knee cartilage T1, T2, and T1ρ mapping at 0.55T: Comparison with 3T[J/OL]. NMR Biomed, 2024, 37(12): e5250 [2025-03-17]. https://pubmed.ncbi.nlm.nih.gov/39169559/. DOI: 10.1002/nbm.5250.
[17]
YASUDA N, KATO S, HORITA N, et al. Synthetic extracellular volume fraction as an imaging biomarker of the myocardial interstitium without blood sampling: a systematic review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101889 [2025-03-17]. https://pubmed.ncbi.nlm.nih.gov/40139292/. DOI: 10.1016/j.jocmr.2025.101889.
[18]
LOCKARD C A, NOLTE P C, GAWRONSKI K M B, et al. Quantitative T2 mapping of the glenohumeral joint cartilage in asymptomatic shoulders and shoulders with increasing severity of rotator cuff pathology[J/OL]. Eur J Radiol Open, 2021, 8: 100329 [2025-03-19]. https://pubmed.ncbi.nlm.nih.gov/33644264/. DOI: 10.1016/j.ejro.2021.100329.
[19]
KASAR S, OZTURK M, POLAT A V. Quantitative T2 mapping of the sacroiliac joint cartilage at 3T in patients with axial spondyloarthropathies[J]. Eur Radiol, 2022, 32(2): 1395-1403. DOI: 10.1007/s00330-021-08357-z.
[20]
BHATTACHARJEE R, HAMMOND E, CHOTIGAR N, et al. The relationships between patellofemoral bone remodeling, cartilage composition, and vertical loading rate: PET/MRI in isolated patellofemoral osteoarthritis[J]. Osteoarthritis Cartilage, 2024, 32(12): 1591-1600. DOI: 10.1016/j.joca.2024.09.001.
[21]
TREPCZYNSKI A, KNEIFEL P, HEYLAND M, et al. Impact of the external knee flexion moment on patello-femoral loading derived from in vivo loads and kinematics[J/OL]. Front Bioeng Biotechnol, 2025, 12: 1473951 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/39881960/. DOI: 10.3389/fbioe.2024.1473951.
[22]
CHEN Y R, TIAN W, LI J, et al. Decreased association between patellar axial malalignment and patellar height and increased association between patellar axial malalignment and tibial tubercle-trochlear groove during weightbearing[J]. Clin Orthop Relat Res, 2025, 483(6): 1096-1109. DOI: 10.1097/CORR.0000000000003357.
[23]
CHENG L, CHANG S W, TAN Y J, et al. Platelet-rich plasma combined with isometric quadriceps contraction regulates autophagy in chondrocytes via the PI3K/AKT/mTOR pathway to promote cartilage repair in knee osteoarthritis[J]. Regen Ther, 2024, 28: 81-89. DOI: 10.1016/j.reth.2024.11.013.
[24]
HARASYMOWICZ N S, HARISSA Z, RASHIDI N, et al. Injury and obesity differentially and synergistically induce dysregulation of synovial immune cells in osteoarthritis[J]. Ann Rheum Dis, 2025, 84(6): 1033-1044. DOI: 10.1016/j.ard.2025.03.001.
[25]
CIGERCIOGLU N, BAZANCIR-APAYDIN Z, UNUVAR-YUKSEL E, et al. The role of muscle architecture as a determinant of functional performance in women with knee osteoarthritis[J/OL]. Physiother Res Int, 2025, 30(2): e70030 [2025-03-23]. https://pubmed.ncbi.nlm.nih.gov/39902801/. DOI: 10.1002/pri.70030.
[26]
LI S H, LU B, ZHANG Y Y, et al. The effect of neuromuscular electrical stimulation superimposed on quadriceps training on gait dynamics after anterior cruciate ligament reconstruction[J]. J Back Musculoskelet Rehabil, 2025, 38(1): 139-147. DOI: 10.1177/10538127241296376.
[27]
SACITHARAN P K. Ageing and osteoarthritis[J]. Subcell Biochem, 2019, 91: 123-159. DOI: 10.1007/978-981-13-3681-2_6.
[28]
薛庆云, 王坤正, 裴福兴, 等. 中国40岁以上人群原发性骨关节炎患病状况调查[J]. 中华骨科杂志, 2015(12): 1206-1212. DOI: 10.3760/cma.j.issn.0253-2352.2015.12.005.
XUE Q Y, WANG K Z, PEI F X, et al. The survey of the prevalence of primary osteoarthritis in the population aged 40 years and over in China[J]. Chin J Orthop, 2015(12): 1206-1212. DOI: 10.3760/cma.j.issn.0253-2352.2015.12.005.
[29]
TANG X, WANG S F, ZHAN S Y, et al. The prevalence of symptomatic knee osteoarthritis in China: results from the China health and retirement longitudinal study[J]. Arthritis Rheumatol, 2016, 68(3): 648-653. DOI: 10.1002/art.39465.
[30]
LESPASIO M J, PIUZZI N S, HUSNI M E, et al. Knee osteoarthritis: a primer[J]. Perm J, 2017, 21: 16-183. DOI: 10.7812/tpp/16-183.
[31]
郝天琦, 张园, 王国华, 等. 髌下脂肪垫IDEAL-IQ和T2 mapping定量参数与膝骨关节炎程度的相关性研究[J]. 磁共振成像, 2024, 15(7): 137-142. DOI: 10.12015/issn.1674-8034.2024.07.023.
HAO T Q, ZHANG Y, WANG G H, et al. Study on the correlation between infrapatellar fat pad IDEAL-IQ and T2 mapping sequences and the severity of knee osteoarthritis[J]. Chin J Magn Reson Imag, 2024, 15(7): 137-142. DOI: 10.12015/issn.1674-8034.2024.07.023.
[32]
ALLEN K D, ARBEEVA L, CALLAHAN L F, et al. Optimizing osteoarthritis care through clinical and community partnership: Results of an exploratory trial[J/OL]. Osteoarthr Cartil Open, 2025, 7(2): 100588 [2025-03-24]. https://pubmed.ncbi.nlm.nih.gov/40093662/. DOI: 10.1016/j.ocarto.2025.100588.
[33]
CAO G J, GAO S B, XIONG B. Application of quantitative T1, T2 and T2* mapping magnetic resonance imaging in cartilage degeneration of the shoulder joint[J/OL]. Sci Rep, 2023, 13: 4558 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/36941288/. DOI: 10.1038/s41598-023-31644-2.
[34]
孙兆男, 王旭超, 徐敏, 等. 磁共振T2 mapping成像评价膝关节骨关节炎软骨损伤的应用价值[J]. 磁共振成像, 2019, 10(9): 680-684. DOI: 10.12015/issn.1674-8034.2019.09.008.
SUN Z N, WANG X C, XU M, et al. Application value of magnetic resonance T2 mapping imaging in evaluation of knee osteoarthritis cartilage injury[J]. Chin J Magn Reson Imag, 2019, 10(9): 680-684. DOI: 10.12015/issn.1674-8034.2019.09.008.

上一篇 ADC直方图术前预测早期宫颈癌淋巴脉管间隙浸润的价值研究
下一篇 基于DCE-MRI多参数影像组学模型分析中轴型脊柱关节炎炎症活动性的初步研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2