分享:
分享到微信朋友圈
X
综述
重度抑郁症患者丘脑的磁共振成像研究进展
宁洪宇 刘宇威 乔琳珺 徐璐梦 李明龙 李祥林

Cite this article as: NING H Y, LIU Y W, QIAO L J, et al. Research progress of magnetic resonance imaging in thalamus of major depressive disorder[J]. Chin J Magn Reson Imaging, 2025, 16(9): 174-180.本文引用格式:宁洪宇, 刘宇威, 乔琳珺, 等. 重度抑郁症患者丘脑的磁共振成像研究进展[J]. 磁共振成像, 2025, 16(9): 174-180. DOI:10.12015/issn.1674-8034.2025.09.026.


[摘要] 重度抑郁症(major depressive disorder, MDD)是一种严重且普遍的精神疾病,是全球疾病负担十大原因之一。丘脑作为大脑的重要中继站和整合中心,在情绪调节、认知功能以及神经网络的连接中发挥着重要作用。探讨MDD的发病机制、寻找更加精准有效的治疗方法一直是该领域研究者的共同目标。近年来,MRI技术能够在脑结构、功能及代谢等诸多方面提供MDD患者丘脑的异常信息,是研究MDD神经机制的重要工具。因此本文将对不同MRI技术在MDD丘脑中的相关研究进行综述,分析现有技术的不足之处,以期为MDD的神经病理机制、诊疗及预后手段提供参考与帮助,并为今后研究及临床应用提供新思路。
[Abstract] Major depressive disorder (MDD) is a prevalent and disabling mental disorder, ranking among the top ten contributors to worldwide disease burden. The thalamus, serving as a critical neural relay hub and integration center, plays a pivotal role in emotional regulation, cognitive processing, and neural network connectivity. Elucidating the neurobiological underpinnings of MDD and developing more targeted therapeutic interventions have important clinical significance. Recent advances in magnetic resonance imaging (MRI) technology have enabled comprehensive characterization of thalamic abnormalities in MDD patients across structural, functional, and metabolic. These neuroimaging approaches have emerged as indispensable tools for investigating the neural substrates of MDD pathophysiology.Therefore, this review systematically examines studies that employ various MRI techniques to investigate thalamic abnormalities in MDD, analyzing the shortcomings of current techniques. It aims to elucidate the underlying neuropathological mechanisms and advance clinical applications in diagnosis, treatment, and prognosis, while also offering new perspectives for future research and clinical practice.
[关键词] 重度抑郁症;丘脑;磁共振成像;磁共振结构成像;磁共振功能成像;磁共振波谱
[Keywords] major depressive disorder;thalamus;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;magnetic resonance spectroscopy

宁洪宇    刘宇威    乔琳珺    徐璐梦    李明龙    李祥林 *  

滨州医学院医学影像学院,烟台 264003

通信作者:李祥林,E-mail: xlli@bzmc.edu.cn

作者贡献声明::李祥林设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目、山东省自然科学基金项目和山东省重点研发计划项目的资助;宁洪宇起草和撰写稿件,获取、分析和解释本研究文献;刘宇威、乔琳珺、徐璐梦、李明龙获取、分析和解释本研究的文献,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 62176181 山东省自然科学基金项目 ZR2022MH118 山东省重点研发计划项目 2018YFJH0501
收稿日期:2025-06-11
接受日期:2025-09-03
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.026
本文引用格式:宁洪宇, 刘宇威, 乔琳珺, 等. 重度抑郁症患者丘脑的磁共振成像研究进展[J]. 磁共振成像, 2025, 16(9): 174-180. DOI:10.12015/issn.1674-8034.2025.09.026.

0 引言

       重度抑郁症(major depression disorder, MDD)是一种严重且普遍的精神疾病,通常表现为情绪持续低落、快感缺失、认知能力下降、过度的自责感,更严重者可产生自杀想法或自杀行为。MDD是全球疾病负担十大原因之一,在全球所有疾病中导致的伤残调整生命年排名第2位,且女性患病率高于男性[1, 2, 3]。所以MDD的早期诊断和治疗对减轻患者痛苦,挽救患者生命非常重要。

       磁共振成像技术具有良好的组织分辨率和空间分辨率,并且可以无创伤、无辐射地对活体大脑结构和功能进行检测,随着对MDD的神经影像学研究越发深入,一些学者发现MDD患者的脑结构与功能均有改变,相较于以往更多关注前额叶-边缘系统的研究,本文系统梳理了基于多模态MRI技术的MDD丘脑结构、功能及代谢改变的研究进展,从丘脑的形态改变、代谢异常及神经环路连接等多个维度揭示MDD与丘脑之间关联的病理机制,填补了现有综述在该领域的空白,为临床早期诊断及治疗提供新的思路及靶点。

1 丘脑解剖与MDD

       丘脑位于第三脑室两侧,可以简单分为前核群、内侧核群和腹外侧核群三部分[4]。丘脑作为感觉和运动信息的中继站,接收来自身体各处的感觉和运动信息,并向大脑皮层投射[5]。随着对丘脑结构与功能的深入研究,丘脑还可以被分为多个亚核,但由于分割方法的不同,关于亚区及核团命名并未有统一的标准[6]。丘脑的这些核团不仅与外界有着紧密的联系,并且核团与核团之间也存在相互作用。丘脑是大脑边缘系统的一部分,参与构成边缘系统-皮质-纹状体-苍白球-丘脑(limbic-cortical-striatal-pallidal-thalamic, LCSPT)回路,从而参与情绪的处理与调节,有研究表明MDD患者情感功能障碍的易感性与该回路相关节点的异常相关[7]。此外丘脑是显著性网络皮层下结构的重要节点,构成皮质-纹状体-丘脑-皮质环路,其解剖与功能的异常与MDD临床症状有关[8]

2 磁共振结构成像

2.1 基于形态学分析的磁共振结构成像

       多项研究表明MDD患者的丘脑结构会发生改变,而使用高分辨率MRI可以通过多种方法量化大脑及其分区结构的变化,主要的方法有基于体素的形态学测量法(voxel based morphometry, VBM),该方法可评估大脑整体及大脑内不同区域的灰质密度及体积;以及基于表面的形态学测量法(surface based morphometry, SBM),可以对皮层厚度、皮层表面积及皮层褶皱进行分析。来自ZACKOVÁ等[9]的meta分析显示MDD患者和认知障碍患者均有左侧丘脑体积减小。这提示负责整合信息的丘脑可能介导二者的共同病理通路,使得MDD患者同时表现出抑郁症状和认知症状的风险增加。董玉姝等[10]也发现了在MDD患者中左侧丘脑体积减小,并且左侧丘脑体积与蒙特利尔认知评估(Montreal Cognitive Assessment, MoCA)量表得分呈正相关,MoCA得分与受试者的认知功能相关。这些研究结果表明丘脑体积减小导致信息传递与整合出现障碍,继而出现认知功能障碍相关的临床症状。LIU等[11]对具有胃肠道(gastrointestinal symptoms, GI)症状的MDD患者进行大脑结构特征分析,发现有GI症状的MDD患者双侧丘脑拥有更高的灰质下体积及灰质下密度,且与GI症状严重程度呈正相关,这表明丘脑也参与调节内脏稳态,所以丘脑的体积改变介导了食欲不振等GI症状对抑郁的间接影响。ZHANG等[12]对93名首发未用药的青少年MDD患者灰质分析发现青少年MDD患者的左侧丘脑体积减小,并且与病程呈负相关,这表明青春期是大脑结构和功能变化的重要时期,这个时期是MDD的关键危险因素,长期心理压力对丘脑结构存在重要影响。随着技术的发展,越来越多的研究开始依托高分辨率MRI及自动化分割脑图像的工具将丘脑细分为多个亚核[13]。CHIBAATAR等[14]运用此方法对76例未用药的MDD患者和76例健康对照者的丘脑体积进行了比较,发现MDD患者左侧丘脑整体体积明显减小,且减小程度与患者的HAMD评分呈负相关。而18个亚核中有16个亚核出现体积减小,且多位于左侧丘脑,这种偏侧性以及不同亚区体积改变的差异可能与丘脑不同亚核对抑郁症相关病理过程的敏感度差异有关。LI等[15]通过机器学习的方法分析,发现MDD患者丘脑的灰质体积及灰质密度均有改变,这提示丘脑的结构改变可作为辅助识别MDD的潜在影像学标志物。LIU等[16]的一项基于7 T超高场强MRI的研究发现,尽管MDD患者丘脑总体积呈现减小趋势,但其与健康者的差异不具有统计学意义。这可能是因为超高场强MRI比其他一些3 T MRI研究拥有更高的信噪比提供了更多的解剖细节,能够更清晰地区分丘脑亚核结构,还可能与研究样本异质性以及分割方法不同有关。进一步将MDD患者分为典型和非典型MDD组分析发现,典型MDD患者的双侧内侧背核、左侧后枕核体积减小,非典型MDD由于临床症状的非特异性易被忽视,且病程较长[17];复发的MDD患者左侧丘脑旁中央核比首发的抑郁症患者体积减小,这表明超高场MRI能够显示出更细致的解剖细节[18],更能帮助区分抑郁症的不同亚型。该研究还发现MDD患者双侧丘脑的体积与童年创伤的严重程度呈负相关,说明丘脑体积减小介导了早期压力、焦虑、情节记忆对抑郁的影响。

       综上所述,多项研究表明丘脑不同亚区的体积变化的敏感性不同,且丘脑及其亚核体积改变与MDD的部分临床表现有关,此外早年不良经历和家庭环境因素可能是丘脑体积减小的危险因素。值得注意的是,上述研究均未纳入性别分析。鉴于性激素的相关调控作用,以及流行病学数据中女性MDD发病率显著高于男性的现象,未来研究可以结合多模态技术系统解析不同性别患者丘脑结构-症状关联的神经机制,这将为MDD病理生理的性别特异性的探索提供关键证据。

2.2 基于扩散张量成像的磁共振结构成像

       扩散张量成像(diffusion tensor imaging, DTI)可在微观结构水平体现大脑白质特征,DTI研究中最常用的度量方法是各向异性分数(fraction anisotropy, FA),反映了白质纤维束中细胞结构的方向性程度,是一个非常敏感的关键指标。ZHOU等[19]的meta分析发现MDD患者左侧丘脑前辐射FA值降低。同样ZHANG等[20]通过分析36名13~17岁首发未用药的青少年MDD患者大脑白质结构发现,青少年MDD患者左侧丘脑后辐射FA值明显降低,这些研究证明了丘脑相关环路的白质纤维完整性的破坏可能与MDD的神经生物学机制显著相关。WEI等[21]研究发现,伴有自杀想法的MDD患者比不伴有自杀想法的MDD患者左侧丘脑后辐射FA值减低,这提示丘脑的白质异常可能会导致MDD患者负面情绪调节异常,从而导致自杀意念的出现。BAN等[22]对60名MDD患者的脑白质微结构进行分析,发现左侧丘脑前辐射的丘脑皮层部分平均扩散率及径向扩散率增高,这提示抑郁症状可能与丘脑相关的白质纤维完整性破坏及脱髓鞘有关。GUO等[23]的meta分析发现与健康组相比,MDD的左侧前丘脑辐射区域的FA值显著降低,前丘脑辐射通过内囊前肢将丘脑前核与前额叶皮层连接起来,这种损伤会影响信息传递,进而影响情绪调节功能。

       综上所述,MDD患者的丘脑辐射存在微观结构的异常,其机制可能与少突胶质细胞相关基因表达下调、相关营养因子缺乏[24]及慢性压力导致髓鞘结构异常有关[25]。传统DTI技术提示MDD患者存在丘脑相关神经环路的白质纤维异常,但缺乏病理特异性,有少数研究利用神经突定向分散密度成像(neurite orientation dispersion and density imaging, NODDI)技术进一步评估丘脑内短程纤维的变化。OTA等[26]对23名MDD患者及26名健康对照者的脑部MRI进行分析,发现MDD患者左侧丘脑方向分散指数降低,这可能提示MDD患者存在神经网络连接紊乱。但是目前相关研究较少,这是因为大脑应被视为综合性的网络,而不是孤立的区域,且丘脑参与组成LCSPT情绪调节环路,未来应从情感环路及脑网络的角度入手,进一步探索丘脑在MDD发病机制中的作用。此外,这些研究虽然发现MDD患者白质纤维束的异常,但将异常区域的FA值与MDD的认知功能障碍等其他临床症状联系起来的研究较少,未来可能需要进一步联合其他MRI技术对MDD的神经病理机制方面进行结构-功能的多角度、多模态分析。

3 功能磁共振成像

       功能磁共振成像(functional magnetic resonance imaging, fMRI)技术通过捕捉大脑中的血氧水平依赖(blood oxygenation level dependent, BOLD)信号,间接展现大脑的神经元活动,受到血流、心率、呼吸及头部运动的影响,包括两种方式:任务态fMRI(task-state fMRI, ts-fMRI)和静息态fMRI(resting-state fMRI, rs-fMRI)。

3.1 ts-fMRI

       ts-fMRI通常是在扫描中给予受试者一个简单的任务,比如接受感官刺激、进行思维活动,从而可以揭示患者在神经功能环路中的关键脑区[27]。LI等[28]研究发现,经历负面压力生活事件(negative stressful life events, NSLEs)的女性MDD患者在负性情绪图片刺激下,双侧丘脑的激活显著增强。丘脑异常活动可能反映了MDD患者情绪调节功能的失调,经历NSLEs的MDD患者的丘脑对于负性情绪的感知、调节与记忆更敏感。MDD患者通常具有悲观的思想,容易接受、解释、回忆负面信息。KUSTUBAYEVA等[29]对30名忧郁型MDD患者进行试验发现,抑郁组的左侧丘脑及广泛前额叶区域的BOLD信号减低,这些区域的低激活提示忧郁型MDD患者丘脑及广泛前额叶皮层的神经反应降低。丘脑-前额叶皮层环路被认为在抑郁发生中扮演关键角色[30],该环路的兴奋与抑制神经元失衡,可能是导致MDD的部分原因。ts-fMRI研究的设计具有挑战性,易受多种因素影响,如样本异质性、受试者的理解合作能力、药物残留效应等,所以针对这方面的研究较少,且结果存在争议。未来可能需要更大的样本量、更多样及更完善的试验设计进一步探索MDD患者特异性神经标志物。

3.2 rs-fMRI

       与ts-fMRI不同,rs-fMRI在无需患者执行特定任务,无需进行思想活动的情况下进行扫描[31],主要通过功能连接(functional connectivity, FC)、局部一致性(regional homogeneity, ReHo)、低频振幅(amplitude of low-frequency fluctuation, ALFF)这三种方法来反映脑区活动的动态变化。

       ReHo值可衡量局部脑区神经活动同步性,能够反映局部脑区功能协同程度[32]。WANG等[33]对26名有自杀倾向的MDD患者进行rs-fMRI研究发现,MDD组右侧丘脑的ReHo值降低,该结果与SUN等[34]对40例复发性抑郁症患者的研究一致。此外丘脑的功能紊乱可能影响皮层-边缘环路的协调性,介导了情绪失调,LIU等[35]发现MDD患者的左侧丘脑、左侧海马旁回、双侧壳核、右侧角回的ReHo值降低。这些区域参与感觉-运动整合,从而影响情绪表达的灵活性和准确性。大脑活动是动态的,ZHONG等[36]结合多项动态指标发现吸烟的MDD患者的中央前回、丘脑、内侧额叶及小脑后叶区域活动不稳定性增加。这代表丘脑的紊乱可能是MDD情绪异常及认知症状的神经基础。

       ALFF反映静息状态下大脑某区域自发活动强度的波动[37]。叶郭锡等[38]对40例首发MDD患者进行研究发现MDD组左颞下回、左眶部额下回、双侧丘脑等区域的ALFF值升高。同样LIU等[39]对57例首发未用药的MDD患者进行分析发现MDD患者丘脑、前扣带回及额上回的ALFF值增加,表明MDD患者丘脑的神经活动增加。大脑各区域之间可通过相互整合、协作,形成大脑的FC,FC分析方法可分析特定脑区内部或脑区之间的关系。HU等[40]对比MDD合并失眠的患者、单纯MDD患者和健康组,发现MDD合并失眠症的患者左侧丘脑-左侧颞极的FC增强。陈丽梅等[41]也得出了类似的结果,发现首发抑郁共病失眠的患者右侧前扣带皮质喙部-左侧丘脑的FC增强,这说明异常的情绪可能会影响睡眠,从而导致与情绪相关的大脑功能的改变,可能是MDD早期脑功能障碍的病理生理机制。未来丘脑也可能成为改善抑郁症患者睡眠问题的新靶点。

       丘脑常被认为是向皮质传递感觉和运动信息的中继站,接收大量的感觉输入并投射到皮质和皮层下区域从而在意识、情感、认知及痛觉处理方面发挥作用,因此丘脑-皮质环路的功能失调可能与MDD的发病机制有关。ZHENG等[42]发现,首发未用药的MDD患者左侧感觉丘脑与广泛脑区(包括额、颞、顶叶和皮层下区域)的功能连接波动性出现异常,并且与患者的信息处理速度和童年创伤有关,这提示大脑网络动态切换的紊乱是MDD患者认知和行为灵活性受损的原因之一。进一步分析发现,童年创伤可能影响左侧感觉丘脑-右侧颞下回、梭状回环路,从而导致症状加重。这可能证明丘脑各个亚核存在异质性,左侧感觉丘脑是与抑郁症相关的脆弱脑区,率先发生功能改变。静态功能连接(static FC, sFC)反映整个扫描时段内大脑各区域之间的平均功能连接强度,而大脑具有动态性,因此动态功能连接(dynamic FC, dFC)可以反映大脑功能连接在短时间内的动态变化[43]。YU等[44]对MDD患者及健康对照组分为伴有或不伴有童年虐待组,以丘脑的多个亚区为种子点发现有童年虐待的MDD患者丘脑部分亚区与大脑内其他区域的dFC有显著差异,具体有左侧距状皮质、左侧扣带回中部皮质、左额中回、左侧楔前叶、右侧颞上回,主要与童年虐待的创伤效应和抑郁效应有关;以下腹前丘脑后部区域为种子点,发现与左侧扣带回中部皮质的sFC显著降低,并且与童年虐待的严重程度呈负相关。LU等[45]将双侧丘脑细分为16个种子点,其中有12个种子点出现了dFC的显著差异,并且MDD患者的丘脑与左角回、右尾状核、左海马均有dFC显著增加,主要属于丘脑-边缘系统回路和纹状体-丘脑回路。这些回路均与情绪调节有关,共同构成情绪处理的神经基础,是MDD潜在的神经病理学机制。并且MDD患者抑郁发作的次数与右额颞丘脑-右侧颞上回的dFC呈正相关。dFC可利用动态框架为MDD的发病机制提供新的解释,并且精确的丘脑亚核可以更好地探索丘脑皮层回路与MDD的关系。SHI等[46]对23名首发未用药的MDD患者进行分析发现,右侧中央后回、左侧丘脑、左侧颞下回的FC强度(FC strength, FCS)增高,并且左侧丘脑FCS值与认知处理评分呈负相关。这表明负性刺激的过度激活可以加速诱导负性情绪,从而导致认知功能下降。上述结果有助于寻找MDD早期干预的靶点。未来可以开展更大样本量或横向研究,以便更全面地探讨MDD的神经生物学机制。DONG等[47]利用功能梯度分析发现,MDD患者丘脑-躯体运动网络及丘脑-背侧注意网络均有功能梯度的压缩,其与认知控制和注意力缺陷相关。WEI等[48]对28名MDD患者进行电休克治疗,并针对治疗前后的MRI数据进行分析发现,经电休克治疗后MDD患者左后丘脑枕核-顶叶皮层的FC明显降低,并且与患者的语言流畅度呈负相关。这表明ECT疗法可调节丘脑-皮层的功能连接,为MDD治疗提供新的支持。

4 磁共振波谱

       磁共振波谱(magnetic resonance spectroscopy, MRS)是利用MRI的化学位移来测量体内代谢物浓度的一种MRI技术。大脑内常见的代谢物包括N-乙酰天门冬氨酸(N-acetyl aspartate, NAA)、胆碱复合物(choline-containing compounds, Cho)、肌酸(creatine and phosphocreatine, Cr)、谷氨酸(glutamate, Glu)、谷氨酰胺(glutamine, Gln)、谷氨酸复合物(glutamate+glutamine, Glx)、肌醇(myo-inositol, mI)和γ-氨基丁酸(gamma-aminobutyric acid, GABA)[49]。有许多研究表明大脑生物化学代谢异常与抑郁症的发病机制密切相关[50, 51, 52],但是关于丘脑的MRS研究较少。Cho与细胞膜磷脂代谢密切相关[53]。ZOU等[54]对31名青少年MDD患者的大脑进行代谢物分析发现青少年MDD患者双侧丘脑的Cho/Cr和mI/Cr的比值低于健康组。这提示丘脑的代谢变化可能与青少年MDD的病理生理机制密切相关。进一步分析发现MDD患者Cho/Cr和mI/Cr的比值与抑郁严重程度呈负相关,与记忆商数呈正相关。这表明丘脑代谢物水平的改变还可能影响患者的记忆能力。ZHANG等[55]的研究发现青少年MDD患者伴非自杀性自伤(non-suicidal self-injury, NSSI)组右侧丘脑的Cho/Cr的比值显著低于MDD不伴NSSI组及健康组,这表明丘脑代谢改变介导了自我批评与负性情绪对抑郁的影响。YAN等[56]一项针对伴NSSI的青少年MDD患者的研究中发现男性患者右侧丘脑具有类似的改变,而在女性患者中未发现差异,这一发现提示丘脑的代谢改变可能是男女性MDD患者某些临床特征差异的生物学基础。并且在识别自伤高风险个体、尽早展开干预措施方面有一定的价值。NAA参与脂质生物的合成,被认为是神经元完整性和代谢的标志物[57]。HUANG等[58]研究发现,MDD患者无论是否伴有GI症状,其右侧丘脑NAA/Cr比值均比健康组降低,并且伴有GI症状组的比值更低,丘脑的神经代谢变化可能是MDD患者中GI症状的神经基础。此外伴有GI症状组右侧丘脑的NAA/Cr比值与推理和问题解决领域的评分呈负相关,这表明右侧丘脑的神经代谢变化可能与认知功能的某些方面有关。ZHANG等[59]对30名未用过抗抑郁药物的MDD患者进行分析发现MDD患者右侧丘脑的NAA/Cr比值比健康组降低,经过8周的抗抑郁药物治疗后,比值有所增加,但未达到统计学意义,这证明神经元的完整性可能得到恢复,但需要更长的随访时间验证。Glu和GABA分别是中枢神经系统中主要的兴奋性和抑制性神经递质[60]。丘脑是谷氨酸能神经元重要靶区之一,通过Glu能纤维和GABA能纤维与多个脑区联系,参与奖赏回路、影响情绪反应和认知功能。Glu能神经传递下调导致Glx与GABA水平降低,这在MDD的发病机制中起着关键作用[61, 62]。关于MDD的Glu代谢研究多聚焦于前扣带皮层、前额叶皮层、海马等脑区[63, 64, 65],在丘脑的Glu能研究还有待进一步的探索。未来可以结合更先进的化学交换饱和转移(chemical exchange saturation transfer, CEST)技术及MEGA-PRESS频谱编辑技术,更精准地检测丘脑内Glu、GABA的含量,可以从分子和细胞水平进一步探索MDD的病理生理机制。

5 总结与展望

       通过总结近期磁共振成像技术在MDD患者丘脑区域的体积、丘脑区域及丘脑神经环路功能改变方面的研究成果,为MDD的神经生物学基础提供了初步阐释。然而单一的成像技术只能揭示其复杂病理基础的一个侧面,丘脑作为脑网络的核心枢纽,通过广泛的连接整合和传递信息,对大脑功能的协调性至关重要[66]。因此,未来研究应着重于将这些技术联合应用,让多模态MRI技术的结果在宏观结构、微观白质及功能代谢方面相互印证,从而对于深入理解MDD的神经机制、寻找潜在生物标志物、预测治疗反应及监测治疗效果等方面提供更坚实的理论依据。此外,由于一些研究MDD患者样本量较小、纳入标准不同、扫描参数不同、数据处理方法不同等多方面因素,可能会导致研究结果不一致的情况。未来可以在标准一致的基础上,扩大研究样本量,优化感兴趣区的选取以及统一计算方法,才能对MDD的神经机制做出更详细更有力的解释。近几年随着人工智能领域蓬勃发展,可以对人类的语言、面部表情及智能设备收集的行为数据等方面进行综合分析,从而对低落情绪进行早期预警与持续关注,为社会心理健康作出贡献。

[1]
GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Psychiatry, 2022, 9(2): 137-150. DOI: 10.1016/s2215-0366(21)00395-3.
[2]
赵聪, 杨瑞雪, 顾宣, 等. 首次发作抑郁症患者的海马体磁共振成像研究进展[J]. 神经疾病与精神卫生, 2024, 24(12): 896-900. DOI: 10.3969/j.issn.1009-6574.2024.12.010.
ZHAO C, YANG R X, GU X, et al. Research progress on hippocampal magnetic resonance imaging in patients with first-episode of depressive disorder[J]. Neuroscience and Mental Health, 2024, 24(12): 896-900. DOI: 10.3969/j.issn.1009-6574.2024.12.010.
[3]
VOS T, LIM S S, ABBAFATI C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/s0140-6736(20)30925-9.
[4]
李玲玲, 张劼, 罗本燕. 丘脑亚区及相关环路在意识加工和调节中的作用[J]. 临床医学研究与实践, 2022, 7(26): 190-193, 198. DOI: 10.19347/j.cnki.2096-1413.202226054.
LI L L, ZHANG J, LUO B Y. Role of thalamic subregions and related circuits in consciousness processing and regulation[J]. Clinical Research and Practice, 2022, 7(26): 190-193, 198. DOI: 10.19347/j.cnki.2096-1413.202226054.
[5]
MARCUSE L V, LANGAN M, HOF P R, et al. The thalamus: Structure, function, and neurotherapeutics[J/OL]. Neurotherapeutics, 2025, 22(2): e00550 [2025-06-11]. http://doi.org/10.1016/j.neurot.2025.e00550. DOI: 10.1016/j.neurot.2025.e00550.
[6]
CASSEL J C, PEREIRA D E VASCONCELOS A. Routes of the thalamus through the history of neuroanatomy[J]. Neurosci Biobehav Rev, 2021, 125: 442-465. DOI: 10.1016/j.neubiorev.2021.03.001.
[7]
KANG W, SHIN J H, HAN K M, et al. Local shape volume alterations in subcortical structures of suicide attempters with major depressive disorder[J]. Hum Brain Mapp, 2020, 41(17): 4925-4934. DOI: 10.1002/hbm.25168.
[8]
PETERS S K, DUNLOP K, DOWNAR J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment[J/OL]. Front Syst Neurosci, 2016, 10: 104 [2025-06-11]. http://doi.org/10.3389/fnsys.2016.00104. DOI: 10.3389/fnsys.2016.00104.
[9]
ZACKOVÁ L, JÁNI M, BRÁZDIL M, et al. Cognitive impairment and depression: Meta-analysis of structural magnetic resonance imaging studies[J/OL]. NeuroImage Clin, 2021, 32: 102830 [2025-06-11]. http://doi.org/10.1016/j.nicl.2021.102830. DOI: 10.1016/j.nicl.2021.102830.
[10]
董玉姝, 于加贝, 商忠权, 等. 抑郁症患者脑灰质体积变化与睡眠质量、认知功能的相关性研究[J]. 精神医学杂志, 2023, 36(4): 366-370. DOI: 10.3969/j.issn.2095-9346.2023.04.007.
DONG Y S, YU J B, SHANG Z Q, et al. Correlations among changes in gray matter volume, sleep quality and cognitive function in patients with depression[J]. Psychiatry, 2023, 36(4): 366-370. DOI: 10.3969/j.issn.2095-9346.2023.04.007.
[11]
LIU P H, LI Y, ZHANG A X, et al. Brain structural alterations in MDD patients with gastrointestinal symptoms: Evidence from the REST-meta-MDD project[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 111: 110386 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2021.110386. DOI: 10.1016/j.pnpbp.2021.110386.
[12]
ZHANG B, WU B, ZHANG X, et al. Gray matter structural alterations in first-episode drug-naïve adolescents with major depressive disorder: a comprehensive morphological analysis study[J/OL]. Psychol Med, 2025, 55: e113 [2025-06-11]. http://doi.org/10.1017/s0033291725000790. DOI: 10.1017/s0033291725000790.
[13]
SEGOBIN S, HAAST R A M, KUMAR V J, et al. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei[J]. Nat Rev Neurosci, 2024, 25(12): 792-808. DOI: 10.1038/s41583-024-00867-1.
[14]
CHIBAATAR E, WATANABE K, OKAMOTO N, et al. Volumetric assessment of individual thalamic nuclei in patients with drug-naïve, first-episode major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1151551 [2025-06-11]. http://doi.org/10.3389/fpsyt.2023.1151551. DOI: 10.3389/fpsyt.2023.1151551.
[15]
LI H, SONG S, WANG D, et al. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features[J/OL]. BMC Psychiatry, 2021, 21(1): 415 [2025-06-11]. http://doi.org/10.1186/s12888-021-03414-9. DOI: 10.1186/s12888-021-03414-9.
[16]
LIU W, HEIJ J, LIU S, et al. Hippocampal, thalamic, and amygdala subfield morphology in major depressive disorder: an ultra-high resolution MRI study at 7-Tesla[J]. Eur Arch Psychiatry Clin Neurosci, 2025, 275(4): 1113-1129. DOI: 10.1007/s00406-024-01874-0.
[17]
GUO Z P, CHEN L, TANG L R, et al. The differential orbitofrontal activity and connectivity between atypical and typical major depressive disorder[J/OL]. Neuroimage Clin, 2025, 45: 103717 [2025-06-11]. http://doi.org/10.1016/j.nicl.2024.103717. DOI: 10.1016/j.nicl.2024.103717.
[18]
CATTARINUSSI G, DELVECCHIO G, MAGGIONI E, et al. Ultra-high field imaging in Major Depressive Disorder: a review of structural and functional studies[J]. Journal of Affective Disorders, 2021, 290: 65-73. DOI: 10.1016/j.jad.2021.04.056.
[19]
ZHOU C, CUI J, XU X, et al. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis[J/OL]. J Integr Neurosci, 2024, 23(9): 170 [2025-06-11]. http://doi.org/10.31083/j.jin2309170. DOI: 10.31083/j.jin2309170.
[20]
ZHANG W, ZHAI X, ZHANG C, et al. Regional brain structural network topology mediates the associations between white matter damage and disease severity in first-episode, Treatment-naïve pubertal children with major depressive disorder[J/OL]. Psychiatry Res Neuroimaging, 2024, 344: 111862 [2025-06-11]. http://doi.org/10.1016/j.pscychresns.2024.111862. DOI: 10.1016/j.pscychresns.2024.111862.
[21]
WEI S, WOMER F Y, EDMISTON E K, et al. Structural alterations associated with suicide attempts in major depressive disorder and bipolar disorder: A diffusion tensor imaging study[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 98: 109827 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2019.109827. DOI: 10.1016/j.pnpbp.2019.109827.
[22]
BAN M, HE J, WANG D, et al. Association between segmental alterations of white matter bundles and cognitive performance in first-episode, treatment-naïve young adults with major depressive disorder[J]. J Affect Disord, 2024, 358: 309-317. DOI: 10.1016/j.jad.2024.05.001.
[23]
GUO Y, LIU Y, ZHANG T, et al. Intrinsic disruption of white matter microarchitecture in major depressive disorder: A voxel-based meta analysis of diffusion tensor imaging[J]. J Affect Disord, 2024, 363: 161-173. DOI: 10.1016/j.jad.2024.07.050.
[24]
BODA E. Myelin and oligodendrocyte lineage cell dysfunctions: New players in the etiology and treatment of depression and stress-related disorders[J]. Eur J Neurosci, 2021, 53(1): 281-297. DOI: 10.1111/ejn.14621.
[25]
SMAGA I. Understanding the Links among Maternal Diet, Myelination, and Depression: Preclinical and Clinical Overview[J/OL]. Cells, 2022, 11(3): 540 [2025-06-11]. http://doi.org/10.3390/cells11030540. DOI: 10.3390/cells11030540.
[26]
OTA M, NODA T, SATO N, et al. The use of diffusional kurtosis imaging and neurite orientation dispersion and density imaging of the brain in major depressive disorder[J]. J Psychiatr Res, 2018, 98: 22-29. DOI: 10.1016/j.jpsychires.2017.12.011.
[27]
LESKINEN S, SINGHA S, MEHTA N H, et al. Applications of Functional Magnetic Resonance Imaging to the Study of Functional Connectivity and Activation in Neurological Disease: A Scoping Review of the Literature[J]. World Neurosurg, 2024, 189: 185-192. DOI: 10.1016/j.wneu.2024.06.003.
[28]
LI G, MA X, BIAN H, et al. A pilot fMRI study of the effect of stressful factors on the onset of depression in female patients[J]. Brain Imaging and Behavior, 2015, 10(1): 195-202. DOI: 10.1007/s11682-015-9382-8.
[29]
KUSTUBAYEVA A, ELIASSEN J, MATTHEWS G, et al. FMRI study of implicit emotional face processing in patients with MDD with melancholic subtype[J/OL]. Front Hum Neurosci, 2023, 17: 1029789 [2025-06-11]. http://doi.org/10.3389/fnhum.2023.1029789. DOI: 10.3389/fnhum.2023.1029789.
[30]
LI F, ZHENG X, WANG H, et al. Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors[J]. Neuropsychopharmacology, 2024, 49(8): 1318-1329. DOI: 10.1038/s41386-024-01829-y.
[31]
CANARIO E, CHEN D, BISWAL B. A review of resting-state fMRI and its use to examine psychiatric disorders[J]. Psychoradiology, 2021, 1(1): 42-53. DOI: 10.1093/psyrad/kkab003.
[32]
YU S, SHU C, WANG G. Abnormal static and dynamic regional homogeneity in adolescent major depressive disorder with somatic symptoms: a resting-state fMRI study[J/OL]. Ann Gen Psychiatry, 2025, 24(1): 41 [2025-06-11]. http://doi.org/10.1186/s12991-025-00581-x. DOI: 10.1186/s12991-025-00581-x.
[33]
WANG X, WU H, WANG D, et al. Reduced suicidality after electroconvulsive therapy is linked to increased frontal brain activity in depressed patients: a resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1224914 [2025-06-11]. http://doi.org/10.3389/fpsyt.2023.1224914. DOI: 10.3389/fpsyt.2023.1224914.
[34]
SUN J, GAO S, MA Y, et al. A Study of Differential Resting-State Brain Functional Activity in Males and Females with Recurrent Depressive Disorder[J/OL]. Brain Sci, 2022, 12(11): 1508 [2025-06-11]. http://doi.org/10.3390/brainsci12111508. DOI: 10.3390/brainsci12111508.
[35]
LIU S, MA R, LUO Y, et al. Facial Expression Recognition and ReHo Analysis in Major Depressive Disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2025-06-11]. http://doi.org/10.3389/fpsyg.2021.688376. DOI: 10.3389/fpsyg.2021.688376.
[36]
ZHONG M, HOU W, LIU Z, et al. Temporal dynamic changes of intrinsic brain regional activity in depression with smoking[J]. J Affect Disord, 2025, 377: 175-183. DOI: 10.1016/j.jad.2025.02.061.
[37]
TARIQ A, HUSSAIN A U, ALI Y, et al. Alterations in Cerebral Intrinsic Activity in First-Episode, Drug-Naive Patients With Major Depressive Disorder[J/OL]. Cureus, 2025, 17(5): e83737 [2025-06-11]. http://doi.org/10.7759/cureus.83737. DOI: 10.7759/cureus.83737.
[38]
叶郭锡, 徐凡, 熊玉超, 等. 首发重度抑郁症脑功能变化:基于静息态fMRI的低频振幅和局部一致性分析[J]. 放射学实践, 2024, 39(2): 164-168. DOI: 10.13609/j.cnki.1000-0313.2024.02.004.
YE G X, XU F, XIONG Y C, et al. Brain functional changes in first-episode major depression disorder: low-frequency fluctuation and regional homogeneity analysis based on resting-state fMRI[J]. Radiol Practice, 2024, 39(2): 164-168. DOI: 10.13609/j.cnki.1000-0313.2024.02.004.
[39]
LIU Y, ZHANG B, ZHOU Y, et al. Plasma oxidative stress marker levels related to functional brain abnormalities in first-episode drug-naive major depressive disorder[J/OL]. Psychiatry Res, 2024, 333: 115742 [2025-06-11]. http://doi.org/10.1016/j.psychres.2024.115742. DOI: 10.1016/j.psychres.2024.115742.
[40]
HU Y X, SHI J Y, XIA G Y, et al. Analysis of functional connectivity changes in attention networks and default mode networks in patients with depression and insomnia[J]. Sleep Breath, 2024, 28(4): 1731-1742. DOI: 10.1007/s11325-024-03064-7.
[41]
陈丽梅, 李梦瑶, 黄颖欣, 等. 首发和复发抑郁症共病失眠的静息态脑功能网络特征初步比较研究[J]. 磁共振成像, 2025, 16(1): 89-94, 110. DOI: 10.12015/issn.1674-8034.2025.01.014.
CHEN L M, LI M Y, HUANG Y X, et al. A preliminary comparative study on the characteristics of resting-state brain functional networks in patients with comorbid insomnia in first-episode and recurrent depression[J]. Chin J Magn Reson Imaging, 2025, 16(01): 89-94, 110. DOI: 10.12015/issn.1674-8034.2025.01.014.
[42]
ZHENG Y, WU Y, LIU Y, et al. Abnormal dynamic functional connectivity of thalamic subregions in patients with first-episode, drug-naïve major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1152332 [2025-06-11]. http://doi.org/10.3389/fpsyt.2023.1152332. DOI: 10.3389/fpsyt.2023.1152332.
[43]
ZHOU B, CHEN Y, ZHENG R, et al. Alterations of Static and Dynamic Functional Connectivity of the Nucleus Accumbens in Patients With Major Depressive Disorder[J/OL]. Front Psychiatry, 2022, 13: 877417 [2025-06-11]. http://doi.org/10.3389/fpsyt.2022.877417. DOI: 10.3389/fpsyt.2022.877417.
[44]
YU T, ZOU Y, NIE H, et al. The role of the thalamic subregions in major depressive disorder with childhood maltreatment: Evidences from dynamic and static functional connectivity[J]. J Affect Disord, 2024, 347: 237-248. DOI: 10.1016/j.jad.2023.11.074.
[45]
LU F, CHEN Y, CUI Q, et al. Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder[J]. Cereb Cortex, 2023, 33(11): 6681-6692. DOI: 10.1093/cercor/bhac534.
[46]
SHI Y, LI J, FENG Z, et al. Abnormal functional connectivity strength in first-episode, drug-naïve adult patients with major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 97: 109759 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2019.109759. DOI: 10.1016/j.pnpbp.2019.109759.
[47]
DONG Q, LI X, ZHANG Q, et al. Aberrant functional gradient of thalamo-cortical circuitry in major depressive disorder and generalized anxiety disorder[J]. J Affect Disord, 2025, 376: 473-486. DOI: 10.1016/j.jad.2025.02.021.
[48]
WEI Q, BAI T, BROWN E C, et al. Thalamocortical connectivity in electroconvulsive therapy for major depressive disorder[J]. J Affect Disord, 2020, 264: 163-171. DOI: 10.1016/j.jad.2019.11.120.
[49]
GODFREY K, DOUGLASS H, ERRITZOE D, et al. The role of GABA, glutamate, and Glx levels in treatment of major depressive disorder: A systematic review and meta-analysis[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2025, 141: 111455 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2025.111455. DOI: 10.1016/j.pnpbp.2025.111455.
[50]
HAHN A, BANSAL R, HELLERSTEIN D J, et al. Effects of the antidepressant medication duloxetine on brain metabolites in persistent depressive disorder: A randomized, controlled trial[J/OL]. PloS One, 2019, 14(7): e0219679 [2025-06-11]. http://doi.org/10.1371/journal.pone.0219679. DOI: 10.1371/journal.pone.0219679.
[51]
SARAWAGI A, SONI N D, PATEL A B. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder[J/OL]. Front Psychiatry, 2021, 12: 637863 [2025-06-11]. http://doi.org/10.3389/fpsyt.2021.637863. DOI: 10.3389/fpsyt.2021.637863.
[52]
KAHL K G, ATALAY S, MAUDSLEY A A, et al. Altered neurometabolism in major depressive disorder: A whole brain (1)H-magnetic resonance spectroscopic imaging study at 3T[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 101: 109916 [2025-06-11]. http://doi.org/10.1016/j.pnpbp.2020.109916. DOI: 10.1016/j.pnpbp.2020.109916.
[53]
COELHO D R A, TURAL Ü, HURTADO PUERTO A M, et al. Neurometabolite Changes After Transcranial Photobiomodulation in Major Depressive Disorder: A Randomized Controlled Trial Investigating Dose-Dependent Effects[J/OL]. J Clin Med, 2025, 14(10): 3402 [2025-06-11]. http://doi.org/10.3390/jcm14103402. DOI: 10.3390/jcm14103402.
[54]
ZOU Y, WU Y Q, HAN Y J, et al. Application of proton magnetic resonance spectroscopy in metabolic alterations of prefrontal white and gray matter in depression adolescents[J]. World J Psychiatry, 2024, 14(11): 1652-1660. DOI: 10.5498/wjp.v14.i11.1652.
[55]
ZHANG Y, LAI S, WU W, et al. Associations between executive function impairment and biochemical abnormalities in depressed adolescents with non-suicidal self-injury[J]. J Affect Disord, 2022, 298(Pt A): 492-499. DOI: 10.1016/j.jad.2021.10.132.
[56]
YAN S, ZHANG Y, HE X, et al. Sex differences in brain metabolites of unmedicated depressed adolescents with non-suicidal self-injury: a proton magnetic resonance spectroscopy study[J]. J Affect Disord, 2025, 382: 167-175. DOI: 10.1016/j.jad.2025.03.147.
[57]
SACCARO L F, TASSONE M, TOZZI F, et al. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis[J]. J Affect Disord, 2024, 355: 265-282. DOI: 10.1016/j.jad.2024.03.150.
[58]
HUANG X, LAI S, LU X, et al. Cognitive dysfunction and neurometabolic alternations in major depressive disorder with gastrointestinal symptoms[J]. J Affect Disord, 2023, 322: 180-186. DOI: 10.1016/j.jad.2022.10.036.
[59]
ZHANG Y, LAI S, ZHANG J, et al. The effectiveness of vortioxetine on neurobiochemical metabolites and cognitive of major depressive disorders patients: A 8-week follow-up study[J]. J Affect Disord, 2024, 351: 799-807. DOI: 10.1016/j.jad.2024.01.272.
[60]
SHEFFIELD Z, PAUL P, KRISHNAKUMAR S, PAN D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications[J/OL]. Adv Sci (Weinh), 2025, 12(5): e2411339 [2025-06-11]. http://doi.org/10.1002/advs.202411339. DOI: 10.1002/advs.202411339.
[61]
XIE X, SHI Y, MA L, et al. Altered neurometabolite levels in the brains of patients with depression: A systematic analysis of magnetic resonance spectroscopy studies[J]. J Affect Disord, 2023, 328: 95-102. DOI: 10.1016/j.jad.2022.12.020.
[62]
BI Y, HUANG N, XU D, et al. Manganese exposure leads to depressive-like behavior through disruption of the Gln-Glu-GABA metabolic cycle[J/OL]. J Hazard Mater, 2024, 480: 135808 [2025-06-11]. http://doi.org/10.1016/j.jhazmat.2024.135808. DOI: 10.1016/j.jhazmat.2024.135808.
[63]
RITTER C, BUCHMANN A, MÜLLER S T, et al. Evaluation of Prefrontal γ-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy[J]. JAMA Psychiatry, 2022, 79(12): 1209-1216. DOI: 10.1001/jamapsychiatry.2022.3384.
[64]
ERMIS C, AYDIN B, KUCUKGUCLU S, et al. Association Between Anterior Cingulate Cortex Neurochemical Profile and Clinical Remission After Electroconvulsive Treatment in Major Depressive Disorder: A Longitudinal 1H Magnetic Resonance Spectroscopy Study[J]. J ECT, 2021, 37(4): 263-269. DOI: 10.1097/yct.0000000000000766.
[65]
ZENG Z, DONG Y, ZOU L, et al. GluCEST Imaging and Structural Alterations of the Bilateral Hippocampus in First-Episode and Early-Onset Major Depression Disorder[J]. J Magn Reson Imaging, 2023, 58(5): 1431-1440. DOI: 10.1002/jmri.28651.
[66]
HWANG W J, KWAK Y B, CHO K I K, et al. Thalamic Connectivity System Across Psychiatric Disorders: Current Status and Clinical Implications[J]. Biol Psychiatry Glob Open Sci, 2022, 2(4): 332-340. DOI: 10.1016/j.bpsgos.2021.09.008.

上一篇 磁共振成像设备在公立医院医学影像科学科建设中的现状分析:以江苏省为例
下一篇 静息态功能磁共振成像在卒中后抑郁中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2