分享:
分享到微信朋友圈
X
综述
基于磁共振成像的影像组学在食管癌中的应用进展
唐钰清 庞彩凤 周灵 李睿

Cite this article as: TANG Y Q, PANG C F, ZHOU L, et al. Progress in the application of MRI-based radiomics in esophageal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(9): 197-202.本文引用格式:唐钰清, 庞彩凤, 周灵, 等. 基于磁共振成像的影像组学在食管癌中的应用进展[J]. 磁共振成像, 2025, 16(9): 197-202. DOI:10.12015/issn.1674-8034.2025.09.030.


[摘要] 食管癌(esophageal cancer, EC)是我国消化道最常见的恶性肿瘤之一,早期诊断、分期和预后评估对提高生存率有重大意义。MRI影像组学通过从MRI图像中提取大量深度特征,为食管癌诊疗提供了全新视角。近年来,食管癌的影像组学研究主要集中于计算机体层成像(computed tomography, CT)和正电子发射计算机体层成像(positron emission tomography/computed tomography, PET/CT)方向,MRI影像组学的研究也在不断增加。相关研究发现,MRI影像组学在淋巴结转移预测和疗效评估中表现优异,但在T分期预测中效能仍低于CT和PET,主要受限于空间分辨率、样本量不足和多中心数据异质性。本文旨在总结MRI影像组学在食管癌肿瘤分期、疗效评估和生存期预测中的应用进展及不足,并展望其在推动EC精准医疗中的应用价值。
[Abstract] Esophageal cancer (EC) is one of the the most common malignant tumors of the digestive tract in China. Early diagnosis, staging, and prognosis assessment are of significant importance for improving survival rates. MRI radiomics, by extracting a large number of deep features from MRI images, provides a novel perspective for the diagnosis and treatment of esophageal cancer. In recent years, research on radiomics in esophageal cancer has primarily focused on computed tomography (CT) and positron emission tomography/computed tomography (PET/CT), while studies specifically targeting MRI radiomics are relatively scarce. Corresponding systematic reviews remain limited, with notable deficiencies particularly in areas such as multimodal integration, standardization of multi-center data, and clinical translation. This article systematically reviews the advances in the application of MRI radiomics in esophageal cancer, primarily covering tumor staging, treatment response evaluation, and survival prediction. Relevant studies have found that MRI radiomics demonstrates excellent performance in predicting lymph node metastasis and evaluating treatment efficacy. However, its efficacy in T-staging prediction still falls below that of CT and PET, mainly limited by spatial resolution, insufficient sample size, and heterogeneity of multi-center data.
[关键词] 食管癌;磁共振成像;影像组学;临床分期;化疗;放疗;预后评估
[Keywords] esophageal cancer;magnetic resonance imaging;radiomics;clinical staging;chemotherapy;radiotherapy;prognostic assessment

唐钰清 1   庞彩凤 1   周灵 2   李睿 1*  

1 川北医学院附属医院放射科,南充 637007

2 川北医学院医学影像学院,南充 637007

通信作者:李睿,E-mail: ddtwg_nsmc@163.com

作者贡献声明::李睿设计本综述的方向和框架,对稿件重要内容进行了修改,获得了四川省卫生健康委员会科技项目的资助;唐钰清起草和撰写稿件,获取、分析和解释本研究的文献;庞彩凤和周灵获取、分析和解释本研究的文献,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 四川省卫生健康委员会科技项目 24WXXT10
收稿日期:2025-03-24
接受日期:2025-08-25
中图分类号:R445.2  R735.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.030
本文引用格式:唐钰清, 庞彩凤, 周灵, 等. 基于磁共振成像的影像组学在食管癌中的应用进展[J]. 磁共振成像, 2025, 16(9): 197-202. DOI:10.12015/issn.1674-8034.2025.09.030.

0 引言

       食管癌(esophageal cancer, EC)死亡率在全球各类癌症中位列第七,我国EC发病人数占全球50%以上[1]。EC发病隐匿,确诊时多数的患者已属中晚期,预后通常不佳[2]。早期诊断、早期干预对提高治愈率和远期预后至关重要。目前,EC的常规影像学在食管癌的诊疗及预后评估中具有重要作用[3]。然而,常规影像学检查诸如计算机体层成像(computed tomography, CT)、内镜等在挖掘肿瘤内部更深层次特征上具有一定局限性[4]。影像组学通过高通量提取医学影像中的定量特征,实现对肿瘤全域异质性的无创量化[5],目前基于CT和正电子发射计算机体层成像(positron emission tomography/computed tomography, PET/CT)的影像组学在EC诊疗中取得了显著进展,主要在肿瘤分期预测、疗效评估和生存期预测等方面展现出良好效能[6, 7, 8, 9, 10]。MRI可无辐射、多参数成像,比CT有更好的软组织分辨力[11],弥散加权成像(diffusion weighted imaging, DWI)、动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)等功能序列能量化肿瘤细胞密度和血流动力学特征[12, 13],这些优势使得MRI影像组学逐渐成为EC影像组学研究新方向。近两年来,在EC领域鲜见全面整合MRI影像组学最新进展的综述报道。本文就MRI影像组学在EC分期、疗效预测及预后评估中的研究进展予以综述,通过结合国内外研究动态及不足,重点探讨多模态融合、多中心数据标准化和跨组学整合策略,展望其在临床实践中的应用价值。

1 食管癌MRI影像组学研究现状

       自从Lambin提出影像组学概念后,已有大量针对EC的CT和PET/CT影像组学研究[14]。临床中,MRI并非EC的常规影像学检查手段,因其检查价格昂贵,检查时间长,不可避免会受患者胸部呼吸和心脏运动影响,从而产生伪影,降低影像质量[15],甚至出现假性淋巴结[16],极大限制了其临床应用。近年来,虽然食管癌MRI影像组学相对于CT和PET/CT的影像组学还存在一些局限(如无法预测放射性肺炎[17, 18, 19]),但随着MRI和呼吸门控技术的进步,EC的MRI影像组学研究有望得到一定突破。如自由呼吸StarVIBE(stack-of-stars volumetric interpolated breath-hold examination, StarVIBE)和周期性旋转重叠平行线增强重建(periodically rotated overlapping parallEL lines with enhanced reconstruction;即西门子BLADE或通用电气螺旋桨序列),可有效减少呼吸伪影,提高图像质量,适用于无法屏住呼吸的患者[20]。常规MRI(平扫及增强T1WI、T2WI)序列为EC的临床分期提供了重要的形态学信息,在衡量食管癌大小及侵犯等方面具有独特优势,在影像组学研究方面也有了一定应用。相比之下,部分特殊成像序列可提取更多放射组学特征,更能反映肿瘤深层特性。如弥散加权成像(diffusion weighted imaging, DWI)信号反映了人体细胞内水分子运动情况,其中表观弥散系数(apparent diffusion coefficient, ADC)常用来衡量水分子弥散速度[21],也是组学分析的一个重要要素。此外,多模态影像学检查手段如PET/MRI融合代谢与解剖信息,可让EC影像组学分析更加准确[22]。目前MRI影像组学在食管癌中的研究处于起步阶段。表1汇总了近年来食管癌MRI影像组学的主要研究进展,涵盖肿瘤分期、放化疗(chemradiotherapy, CRT)疗效和生存期预测等多个研究方向。表中详细列出了各研究的目标、影像序列、样本量、分析方法及验证结果。这些研究展示了不同方法学及MR影像序列的多样化应用。

2.1 预测肿瘤分期

2.1.1 T分期

       T分期对决定个体化治疗方案具有重要作用,准确评估T分期对于指导EC治疗决策和预测预后具有重要意义。陈思浩等[23]纳入105例食管鳞癌(esophageal squamous cell carcinoma, ESCC)患者,利用增强T1WI序列图像提取训练组影像组学参数并生成评分(Radscore),通过logistic回归构建影像组学模型,分别绘制训练组和验证组ROC曲线,以评价该模型区分T1~T2期和T3期EC的诊断效能,结果显示训练组和验证组模型的AUC分别为0.71和0.70。刘绅等[24]分别从径向容积内插屏气检查(radial volumetric interpolated breath-hold examination, r-VIBE)序列食管癌图像感兴趣区域(region of interest, ROI)及瘤周区提取影像组学特征并建模,用筛选的特征组合在一起后进行混合建模,测试集AUC为0.675(敏感度96.6%,特异度53.1%,准确度73.8%)。此外,他们还利用ResNet网络建模,并与影像组学结合,最终模型训练集和验证集AUC为0.765,测试集AUC达到0.783,模型诊断效果和泛化能力显著增强。该研究选择从特殊序列影像中提取特征,纳入瘤周区域,创新性地采用深度学习方法,提高了模型效能。然而,深度学习模型依赖大规模标注数据,且对算力要求高,限制了其在资源有限场景的应用。以上研究表明MRI影像组学模型对EC的T分期具有一定诊断效能,但AUC值相对于CT、PET组学研究仍较低,存在进一步优化、改善的潜力。同期CT、PET影像组学研究报道的AUC可达0.8以上[37, 38]。效能受限的主要原因可能包括:一是解剖分辨率不足。虽然MRI对食管壁分层结构显示较好,但仅通过MRI判断EC原发灶范围仍具有一定难度,因此影响了分期预测准确性。二是功能信息利用不足,现有研究缺乏对特殊序列功能参数的整合。另外设备扫描序列不统一,缺乏标准化,使得MRI影像组学在EC的T分期中面临挑战。

2.1.2 N分期

       N分期是制订个体化治疗方案的关键指标,淋巴结转移是影响患者生存预后的重要因素[39]。MRI影像组学在预测淋巴结转移上显示出较大潜力。QU等[25]从181例EC患者T2快速自旋回波(turbo spin echo, TSE)BLADE和增强StarVIBE序列中提取影像组学特征,通过最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)和弹性网回归模型降维,用多变量logistic回归分析筛选出9个关键特征构建预测模型。模型在训练集和验证集均得到了较好的诊断效能(AUC值分别为0.821和0.762)。杨日辉等[26]提取并筛选120例EC患者T2WI平扫和T1WI增强影像组学特征预测转移淋巴结,利用logistic回归构建三个预测模型:T2WI平扫、T1WI增强和联合模型。研究结果表明,增强T1WI模型的AUC值(0.805)高于T2WI模型(0.779),而联合模型具有更高的AUC值(训练组0.884,验证组0.765),预测效果最佳。得益于MRI良好的软组织分辨力,MRI影像组学模型可很好地区分EC转移性和非转移性淋巴结,其诊断效能与CT、PET相当[40, 41, 42]。但这些研究勾画的ROI体积和范围小,图像容易失真和模糊,且未针对瘤周淋巴结勾勒。未来需探索瘤周影像组学与功能MRI(如DWI、DCE-MRI)的联合分析,以提升预测特异性。

2.1.3 预测临床分期

       EC的早期准确分期有助于制订个体化及有效的治疗方案[43]。CHEN等[27]纳入42例ESCC患者,利用DCE-MRI药代动力学参数直方图预测肿瘤T分期及淋巴结转移,发现T1及T2期相关组学参数(如Ktrans的中位数和平均值等)均显著低于T3期(P<0.05)。特别是Ve的熵在区分这两期中最为有效,AUC为0.773。与淋巴结阴性患者相比,发生淋巴转移的ESCC患者Ktrans的熵等参数增高,Kep的偏度减低,其中Kep的标准差对识别淋巴转移的肿瘤最为有效。杨日辉等[28]提取并筛选EC患者T2WI平扫和T1WI增强图像组学特征,依据TNM分期第8版标准将EC分为早期(Ⅰ~Ⅱ期)和进展期(Ⅲ~Ⅳ期),运用这些特征和logistic回归分析构建三个影像组学预测模型进行验证:T2WI平扫、T1WI增强以及联合模型。结果显示多模态MRI影像组学联合模型在区分EC早期与进展期时具有最高的AUC值(训练集0.884,验证集0.765),显示出较好的预测效能。这项研究也凸显了多模态影像组学对于提升EC分期准确性的重要作用。目前EC的MRI影像组学在预测临床分期方面的效能与T分期相当,现有研究大部分只纳入了影像组学,在未来可将MRI影像组学与病理组学或基因组学跨组学整合,为临床治疗提供更多依据。

       此外,有研究发现EC的部分MRI影像组学特征与其转移发生率密切相关。BAIOCCO等[29]对20例胃食管癌患者进行PET/MRI检查,提取了氟代脱氧葡萄糖正电子发射断层扫描(18F-fluorodeoxyglucose-positron emission tomography, 18F-FDG PET)、T1WI、T2WI、DWI与ADC图的一阶直方图和二阶灰度共生矩阵特征,并计算PET标准化吸收值(standardized uptake value, SUV),发现低二阶SUV熵和高二阶ADC熵是鉴别肿瘤转移最佳特征,且与更高转移发生率相关。

2.2 CRT疗效预测

       CRT是EC主要治疗方式之一[44, 45]。尽早预测CRT反应可评估其治疗效果,以便制定下一步个性化治疗方案。SUN等[30]纳入72例局部晚期ESCC患者,用DCE-MRI直方图预测患者CRT反应,结果相关直方图参数与CRT反应密切相关,可作为评价疗效良好指标。HIRATA等[31]回顾性分析58例接受CRT后手术的ESCC患者,用ROI的ADC直方图预测其病理完全缓解(pathological complete response, pCR)。研究表明,发生pCR的肿瘤ADC更低,峰度和偏度更高,其中偏度是pCR的最佳预测特征(AUC 0.86,敏感度80.0%,特异度87.5%)。QU等[32]纳入82例未发生远处转移的EC患者,根据Mandard分类肿瘤消退分级(tumor regression grade, TRG)评估后把患者分为反应者(TRG 1+2)和无反应者(TRG 3+4+5),通过DCE-MRI提取并筛选影像组学特征和血管通透性参数建立三种预测模型:放射组学特征模型、DCE-MRI预测模型和联合预测模型,结果发现联合模型AUC最高(训练集0.84,测试集0.86),区分反应者和无反应者效果最佳。LU等[33]搜集新辅助化疗(neoadjuvant chemotherapy, NACT)前后ESCC患者T2-TSE BLADE MRI图像并从中提取影像组学特征,建立Pre、Post和Delta三种预测模型(分别为利用NACT前、后提取筛选的组学特征及NACT前后提取的特征矩阵相减后得到的差异特征矩阵所建立的模型),将纳入患者分为反应良好(GR,TRG 0+1)和反应不佳(非GR,TRG 2+3)两组。三种预测模型中,Delta模型AUC最高(AUC:训练集0.851,测试集0.831)。在一项纳入了151例ESCC的多中心回顾性研究中,LIU等[34]利用机器学习开发出一种基于MR图像的集成模型,用于预测新辅助放化疗(neoadjuvant chemoradiotherapy, nCRT)后的病理反应。该模型结合了T2、DWI以及CT的传统和深度学习影像组学特征,在测试集中AUC达到0.868(敏感度88.0%,特异度78.4%),高于临床模型和任意单模态影像参数模型,显著提高了预测效能。

       综上所述,MRI影像组学模型可预测EC患者CRT疗效。一项Meta分析报告[46]显示,CT、PET或MRI影像组学研究此方向的AUC范围为0.65至0.86。其中MRI影像组学的AUC达到了0.86,其效能不亚于CT和PET[47, 48]。MRI影像组学在EC患者CRT疗效预测方面有一定研究价值。尽管现有的研究模型已能较好地预测EC疗效,但研究多基于回顾性单中心数据,尚未系统性评估肿瘤的动态特征(如治疗前后ADC变化率)等,还存在发展空间。

2.3 预测生存期

       预测EC生存期对于患者预后评估、个性化治疗方案制订都具有重要作用。在模型构建中,多数研究采用分层k折交叉验证(k=5或10)以平衡类别分布,并通过网格搜索或随机搜索优化超参数。CHU等[35]提取ESCC患者1-mm-isotropic-3D对比增强StarVIBE MRI图像影像组学特征,用随机生存森林(random survival forest, RSF)和变量狩猎法进行筛选,通过LASSO-Cox回归分析构建三种预测1年、2年和3年无病生存期(disease free survival, DFS)和总生存期(overall survival, OS)的模型:单独临床、单独影像组学和临床-影像组学联合模型,发现联合模型在验证组中预测性能最高(C指数:DFS 0.729,OS 0.712)。HIRATA等[31]纳入58例术前接受CRT的EC患者,利用治疗前ADC衍生直方图分析其与生存率的相关性,发现偏度是预测生存率的最佳特征。褚福宁等[36]针对410例ESCC患者,利用对比增强CT和StarVIBE序列MRI扫描提取影像组学特征,并结合交叉验证和弹性网络-Cox回归构建1年、2年和3年生存期预测模型。研究发现,基于MRI影像组学的单模态DFS和OS预测模型表现良好,特别是在新辅助治疗组(C指数:DFS 0.721,OS 0.650)。将CT与MRI影像组学特征结合构建的多模态模型进一步提高了预测准确性,特别是在直接手术组(C指数:DFS 0.750,OS 0.898)。结果表明,MRI影像组学结合不同影像成像方式的影像组学能显著提高ESCC患者生存预测能力,为个体化治疗提供支持。其预测能力可进一步结合深度学习等方法改善,以达到CT和PET/CT组学相似水平[49, 50]。但此类研究普遍存在外部验证不足,且缺乏与基因组学(如TP53突变)的整合等问题,未来需设计前瞻性多中心试验验证其临床适用性。

表1  食管癌MRI影像组学研究一览表
Tab. 1  Summary of MRI-based radiomics studies in esophageal cancer

3 小结与展望

       目前MRI影像组学在食管癌中相比于CT和PET/CT影像组学的研究尚少。MRI影像组学在T分期和临床分期预测中的效能仍相对较低。在预测N分期和CRT疗效方面展现出较高潜力,通过多序列融合效能可进一步提升。在预测3年生存期方面初显价值,但仍需外部验证。总体上,当前研究的普遍局限性仍在于多中心数据标准化不足(扫描设备、协议差异导致特征漂移)和单中心回顾性研究为主导。未来EC的MRI影像组学研究需注重于以下几点:(1)T分期精度的提升,可探索更高空间分辨率的MRI序列、结合DCE-MRI等功能参数的多参数模型,并利用深度学习优化分层能力和特征提取;(2)多中心标准化与验证,应建立统一的食管癌MRI影像组学扫描协议与特征提取流程,并通过前瞻性、多中心、大样本研究严格验证现有模型适用性;(3)进一步研究治疗前后MRI影像组学特征变化对疗效评估和生存预测的价值,并加强MRI与CT及PET/CT等多模态信息的融合;(4)逐渐探索多组学融合,可开展小规模探索性研究,寻找MRI影像组学特征与关键分子标志物(如与治疗反应、预后相关基因)之间的可靠关联,为提升模型效能提供新思路。

       总之,尽管面临各种局限和挑战,MRI影像组学在食管癌精准医疗应用中仍具有独特价值和应用前景。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
WATERS J K, REZNIK S I. Update on management of squamous cell esophageal cancer[J]. Curr Oncol Rep, 2022, 24(3): 375-385. DOI: 10.1007/s11912-021-01153-4.
[3]
SHAHEEN N J, FALK G W, IYER P G, et al. Diagnosis and management of barrett's esophagus: an updated ACG guideline[J]. Am J Gastroenterol, 2022, 117(4): 559-587. DOI: 10.14309/ajg.0000000000001680.
[4]
XIAO N P, PEI Z D, LU W H, et al. Editorial: Application of radiomics in understanding tumor biological behaviors and treatment response[J/OL]. Front Oncol, 2023, 13: 1257447 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/37664068/. DOI: 10.3389/fonc.2023.1257447.
[5]
ZHANG W H, ZHUANG D M, WEI W Z, et al. The 100 most-cited radiomics articles in cancer research: a bibliometric analysis[J/OL]. Clin Imaging, 2025, 121: 110442 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/40086035/. DOI: 10.1016/j.clinimag.2025.110442.
[6]
ZHU Y, ZHANG Z Z, BAI G J, et al. Delta/pre-radiomics based on enhanced CT predicts complete response in locally advanced esophageal squamous cell carcinoma[J]. Am J Transl Res, 2025, 17(1): 162-177. DOI: 10.62347/WQYO9624.
[7]
LI H J, LIANG S M, CUI M X, et al. A preoperative pathological staging prediction model for esophageal cancer based on CT radiomics[J/OL]. BMC Cancer, 2025, 25(1): 298 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39972430/. DOI: 10.1186/s12885-025-13697-w.
[8]
QI W X, LI S Y, XIAO J F, et al. A machine learning approach using 18F-FDG PET and enhanced CT scan-based radiomics combined with clinical model to predict pathological complete response in ESCC patients after neoadjuvant chemoradiotherapy and anti-PD-1 inhibitors[J/OL]. Front Immunol, 2024, 15: 1351750 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/38352868/. DOI: 10.3389/fimmu.2024.1351750.
[9]
HINZPETER R, MIRSHAHVALAD S ALI, KULANTHAIVELU R, et al. Gastro-esophageal cancer: can radiomic parameters from baseline 18F-FDG-PET/CT predict the development of distant metastatic disease [J/OL]. Diagnostics (Basel), 2024, 14(11): 1205 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/38893731/. DOI: 10.3390/diagnostics14111205.
[10]
余凌云, 韩硕, 刘志翔. 食管癌PET/CT影像组学应用的研究进展[J]. 中国临床新医学, 2024, 17(6): 709-712. DOI: 10.3969/j.issn.1674-3806.2024.06.23.
YU L Y, HAN S, LIU Z X. Research progress on the application of PET/CT radiomics in esophageal cancer[J]. Chin J New Clin Med, 2024, 17(6): 709-712. DOI: 10.3969/j.issn.1674-3806.2024.06.23.
[11]
武聪聪, 陈殿森, 强军, 等. 影像学在食管癌诊断与治疗中的应用[J]. 食管疾病, 2022, 4(2): 124-127, 160. DOI: 10.15926/j.cnki.issn2096-7381.2022.02.011.
WU C C, CHEN D S, QIANG J, et al. Application of imaging in diagnosis and treatment of esophageal cancer[J]. J Esophageal Dis, 2022, 4(2): 124-127, 160. DOI: 10.15926/j.cnki.issn2096-7381.2022.02.011.
[12]
LEE S L, YADAV P, STAREKOVA J, et al. Diagnostic performance of MRI for esophageal carcinoma: a systematic review and meta-analysis[J]. Radiology, 2021, 299(3): 583-594. DOI: 10.1148/radiol.2021202857.
[13]
PELLAT A, DOHAN A, SOYER P, et al. The role of magnetic resonance imaging in the management of esophageal cancer[J/OL]. Cancers (Basel), 2022, 14(5): 1141 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/35267447/. DOI: 10.3390/cancers14051141.
[14]
SAH B R, OWCZARCZYK K, SIDDIQUE M, et al. Radiomics in esophageal and gastric cancer[J]. Abdom Radiol (NY), 2019, 44(6): 2048-2058. DOI: 10.1007/s00261-018-1724-8.
[15]
中华医学会放射学分会腹部学组, 赵心明, 曲金荣. 食管癌MRI 技术及结构式报告规范化应用专家共识[J]. 中华放射学杂志, 2023, 57(8): 836-843. DOI: 10.3760/cma.j.cn112149-20220823-00692.
Abdominal Group of the Radiology Branch of the Chinese Medical Association, ZHAO X M, QU J R. Expert consensus on MRI examination and structured report of esophageal cancer[J]. Chin J Radiol, 2023, 57(8): 836-843. DOI: 10.3760/cma.j.cn112149-20220823-00692.
[16]
XU Y H, LU P, GAO M C, et al. Progress of magnetic resonance imaging radiomics in preoperative lymph node diagnosis of esophageal cancer[J]. World J Radiol, 2023, 15(7): 216-225. DOI: 10.4329/wjr.v15.i7.216.
[17]
HU S L, LI Y L, FAN X P. Predictive value of simulated CT radiomics combined with ipsilateral lung dosimetry parameters for radiation pneumonitis in patients with esophageal cancer: a machine learning-based retrospective study[J]. Int J Gen Med, 2024, 17: 4127-4140. DOI: 10.2147/IJGM.S475302.
[18]
LI C Y, ZHANG J, NING B D, et al. Radiation pneumonitis prediction with dual-radiomics for esophageal cancer underwent radiotherapy[J/OL]. Radiat Oncol, 2024, 19(1): 72 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/38851718/. DOI: 10.1186/s13014-024-02462-1.
[19]
PUTTANAWARUT C, SIRIRUTBUNKAJORN N, TAWONG N, et al. Radiomic and dosiomic features for the prediction of radiation pneumonitis across esophageal cancer and lung cancer[J/OL]. Front Oncol, 2022, 12: 768152 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/35251959/. DOI: 10.3389/fonc.2022.768152.
[20]
VERMERSCH M, EMSEN B, MONNET A, et al. Chest PET/MRI in solid cancers: comparing the diagnostic performance of a free-breathing 3D-T1-GRE stack-of-stars volume interpolated breath-hold examination (StarVIBE) acquisition with that of a 3D-T1-GRE volume interpolated breath-hold examination (VIBE) for chest staging during whole-body PET/MRI[J]. J Magn Reson Imaging, 2022, 55(6): 1683-1693. DOI: 10.1002/jmri.27981.
[21]
王慧莹, 强军, 陈殿森, 等. 食管癌的磁共振影像研究进展[J]. 食管疾病, 2022, 4(2): 128-132. DOI: 10.15926/j.cnki.issn2096-7381.2022.02.012.
WANG H Y, QIANG J, CHEN D S, et al. Advances in magnetic resonance imaging studies of esophageal cancer[J]. J Esophageal Dis, 2022, 4(2): 128-132. DOI: 10.15926/j.cnki.issn2096-7381.2022.02.012.
[22]
O'SHEA R J, ROOKYARD C, WITHEY S, et al. Radiomic assessment of oesophageal adenocarcinoma: a critical review of 18F-FDG PET/CT, PET/MRI and CT[J/OL]. Insights Imaging, 2022, 13(1): 104 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/35715706/. DOI: 10.1186/s13244-022-01245-0.
[23]
陈思浩. 基于增强MRI影像组学术前评估食管鳞状细胞癌T分期[D]. 重庆: 重庆医科大学, 2020. DOI: 10.27674/d.cnki.gcyku.2020.001145.
CHEN S H. Preoperative evaluation of T stage of esophageal squamous cell carcinoma based on radiomics of enhanced MRI[D]. Chongqing: Chongqing Medical University, 2020. DOI: 10.27674/d.cnki.gcyku.2020.001145.
[24]
刘绅. 基于人工智能的磁共振成像食管癌T分期研究[D]. 上海: 华东师范大学, 2021. DOI: 10.27149/d.cnki.ghdsu.2021.000853.
LIU S. Artificial Intelligence-based T staging of Esophageal Cancer by Magnetic Resonance Imaging[D]. Shanghai: East China Normal University, 2021. DOI: 10.27149/d.cnki.ghdsu.2021.000853.
[25]
QU J R, SHEN C, QIN J J, et al. The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer[J]. Eur Radiol, 2019, 29(2): 906-914. DOI: 10.1007/s00330-018-5583-z.
[26]
杨日辉, 廖玉婷, 范伟雄, 等. 基于MRI影像组学模型对食管癌淋巴结转移的预测价值[J]. 国际医学放射学杂志, 2022, 45(6): 626-631. DOI: 10.19300/j.2022.L19528.
YANG R H, LIAO Y T, FAN W X, et al. Predictive value of MRI radiomics models for lymph node metastasis in patients with esophageal cancer[J]. Int J Med Radiol, 2022, 45(6): 626-631. DOI: 10.19300/j.2022.L19528.
[27]
CHEN Y L, LI R, CHEN T W, et al. Whole-tumour histogram analysis of pharmacokinetic parameters from dynamic contrast-enhanced MRI in resectable oesophageal squamous cell carcinoma can predict T-stage and regional lymph node metastasis[J]. Eur J Radiol, 2019, 112: 112-120. DOI: 10.1016/j.ejrad.2019.01.012.
[28]
杨日辉, 廖玉婷, 范伟雄, 等. 基于多模态MRI影像组学预测食管癌术前分期的价值[J]. 实用放射学杂志, 2022, 38(8): 1252-1255. DOI: 10.3969/j.issn.1002-1671.2022.08.008.
YANG R H, LIAO Y T, FAN W X, et al. The value of multimodal MRI radiomics in predicting preoperative staging of esophageal cancinoma[J]. J Pract Radiol, 2022, 38(8): 1252-1255. DOI: 10.3969/j.issn.1002-1671.2022.08.008.
[29]
BAIOCCO S, SAH B R, MALLIA A, et al. Exploratory radiomic features from integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer[J]. Eur J Nucl Med Mol Imaging, 2019, 46(7): 1478-1484. DOI: 10.1007/s00259-019-04306-7.
[30]
SUN N N, GE X L, LIU X S, et al. Histogram analysis of DCE-MRI for chemoradiotherapy response evaluation in locally advanced esophageal squamous cell carcinoma[J]. Radiol Med, 2020, 125(2): 165-176. DOI: 10.1007/s11547-019-01081-1.
[31]
HIRATA A, HAYANO K, OHIRA G, et al. Volumetric histogram analysis of apparent diffusion coefficient for predicting pathological complete response and survival in esophageal cancer patients treated with chemoradiotherapy[J]. Am J Surg, 2020, 219(6): 1024-1029. DOI: 10.1016/j.amjsurg.2019.07.040.
[32]
QU J R, MA L, LU Y N, et al. DCE-MRI radiomics nomogram can predict response to neoadjuvant chemotherapy in esophageal cancer[J/OL]. Discov Oncol, 2022, 13(1): 3 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/35201487/. DOI: 10.1007/s12672-022-00464-7.
[33]
LU S, WANG C L, LIU Y, et al. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma[J]. Eur Radiol, 2024, 34(1): 485-494. DOI: 10.1007/s00330-023-10040-4.
[34]
LIU Y S, WANG Y, HU X Y, et al. Multimodality deep learning radiomics predicts pathological response after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma[J/OL]. Insights Imaging, 2024, 15(1): 277 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39546168/. DOI: 10.1186/s13244-024-01851-0.
[35]
CHU F N, LIU Y, LIU Q P, et al. Development and validation of MRI-based radiomics signatures models for prediction of disease-free survival and overall survival in patients with esophageal squamous cell carcinoma[J]. Eur Radiol, 2022, 32(9): 5930-5942. DOI: 10.1007/s00330-022-08776-6.
[36]
褚福宁. 基于CT和MRI的影像组学模型预测食管鳞癌患者生存期的研究[D]. 郑州: 郑州大学, 2023.
CHU F N. Radiomics models based on CT and MRI to predict survival in patients with esophageal squamous cell carcinoma[D]. Zhengzhou: Zhengzhou University, 2023.
[37]
LI Y, YANG L, GU X L, et al. Computed tomography radiomics identification of T1-2 and T3-4 stages of esophageal squamous cell carcinoma: two-dimensional or three-dimensional [J]. Abdom Radiol (NY), 2024, 49(1): 288-300. DOI: 10.1007/s00261-023-04070-1.
[38]
LEI X Y, CAO Z, WU Y B, et al. Preoperative prediction of clinical and pathological stages for patients with esophageal cancer using PET/CT radiomics[J/OL]. Insights Imaging, 2023, 14(1): 174 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/37840068/. DOI: 10.1186/s13244-023-01528-0.
[39]
RAMOS-FRESNEDO A, PHILLIPS A L, CANTRELL M C, et al. Cancer recurrence and survival among patients who underwent neoadjuvant treatment and surgery for esophageal cancer: a single-institution 10-year experience[J/OL]. Surgery, 2025, 179: 108901 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39490255/. DOI: 10.1016/j.surg.2024.07.092.
[40]
CHEN L, OUYANG Y, LIU S, et al. Radiomics analysis of lymph nodes with esophageal squamous cell carcinoma based on deep learning[J/OL]. J Oncol, 2022, 2022: 8534262 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/36147442/. DOI: 10.1155/2022/8534262.
[41]
WU Y P, WU L, OU J, et al. Preoperative identification of small metastatic lymph nodes in esophageal squamous cell carcinoma using CT radiomics of lymph nodes[J]. Abdom Radiol, 2025, 50(3): 1123-1132. DOI: 10.1007/s00261-024-04585-1.
[42]
JANNATDOUST P, VALIZADEH P, PAHLEVAN-FALLAHY M T, et al. Diagnostic accuracy of CT-based radiomics and deep learning for predicting lymph node metastasis in esophageal cancer[J/OL]. Clin Imaging, 2024, 113: 110225 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/38905878/. DOI: 10.1016/j.clinimag.2024.110225.
[43]
陈天武, 曹金明. 食管和食管-胃交界部癌AJCC第八版TNM分期指南更新解读[J]. 西部医学, 2021, 33(4): 473-477. DOI: 10.3969/j.issn.1672-3511.2021.04.002.
CHEN T W, CAO J M. Update of AJCC guidelines for esophageal and esophagogastric junction cancer[J]. Med J West China, 2021, 33(4): 473-477. DOI: 10.3969/j.issn.1672-3511.2021.04.002.
[44]
YANG H, WANG F, HALLEMEIER C L, et al. Oesophageal cancer[J]. Lancet, 2024, 404(10466): 1991-2005. DOI: 10.1016/s0140-6736(24)02226-8.
[45]
PAPE M, VISSERS P A J, BEEREPOOT L V, et al. A population-based study in resected esophageal or gastroesophageal junction cancer aligned with CheckMate 577[J/OL]. Ther Adv Med Oncol, 2022, 14: 17588359221075495 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/35237351/. DOI: 10.1177/17588359221075495.
[46]
KAO Y S, HSU Y. A meta-analysis for using radiomics to predict complete pathological response in esophageal cancer patients receiving neoadjuvant chemoradiation[J]. In Vivo, 2021, 35(3): 1857-1863. DOI: 10.21873/invivo.12448.
[47]
LU Z H, LI Y S, HU W X, et al. Radiomics nomogram combined with clinical factors for predicting pathological complete response in resectable esophageal squamous cell carcinoma[J/OL]. Front Oncol, 2024, 14: 1347650 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39544301/. DOI: 10.3389/fonc.2024.1347650.
[48]
ZHENG Y T, MEI P Y, WANG M L, et al. CT-based delta-radiomics for predicting pathological response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma: a multicenter study[J/OL]. BMC Med Imaging, 2024, 24(1): 329 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39627736/. DOI: 10.1186/s12880-024-01503-1.
[49]
ZHAO B, WANG Y Q, ZHU H T, et al. Integrating tumour and lymph node radiomics features for predicting disease-free survival in locally advanced esophageal squamous cell cancer after neoadjuvant chemotherapy and complete resection[J/OL]. Eur J Surg Oncol, 2025, 51(3): 109547 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39729864/. DOI: 10.1016/j.ejso.2024.109547.
[50]
GONG J, LU J, ZHANG W, et al. A CT-based subregional radiomics nomogram for predicting local recurrence-free survival in esophageal squamous cell cancer patients treated by definitive chemoradiotherapy: a multicenter study[J/OL]. J Transl Med, 2024, 22(1): 1108 [2025-08-05]. https://pubmed.ncbi.nlm.nih.gov/39639328/. DOI: 10.1186/s12967-024-05897-y.

上一篇 多发性硬化中血管周围间隙的影像学研究进展
下一篇 心脏磁共振在急性心肌炎风险分层及预后评估中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2