分享:
分享到微信朋友圈
X
综述
基于常规序列、超短回波时间序列及脂肪定量序列的磁共振技术在骨质疏松症诊断中的研究进展
成张堃 张婷婷

Cite this article as: CHENG Z K, ZHANG T T. Research progress on magnetic resonance techniques based on conventional sequences, ultra-short echo time sequences, and fat quantification sequences in the diagnosis of osteoporosis[J]. Chin J Magn Reson Imaging, 2025, 16(9): 229-234.本文引用格式:成张堃, 张婷婷. 基于常规序列、超短回波时间序列及脂肪定量序列的磁共振技术在骨质疏松症诊断中的研究进展[J]. 磁共振成像, 2025, 16(9): 229-234. DOI:10.12015/issn.1674-8034.2025.09.035.


[摘要] 骨质疏松症(osteoporosis, OP)是一种以骨量丢失和骨微结构破坏为特征的代谢性骨病,尤其在老年人群中发病率较高且会显著增加骨折的风险,传统的骨密度(bone mineral density, BMD)测量方法,如双能X线吸收法(dualenergy X-ray absorptiometry, DXA)虽然是临床上诊断OP的金标准,但其与定量计算机断层扫描(quantitative computed tomography, QCT)仅关注于骨量而忽视了骨微结构的改变并且有辐射暴露的缺点。MRI技术能够无创、多维度评估骨质量、骨髓脂肪分数(bone marrow fat fraction, BMFF)及皮质骨孔隙度等指标,有助于OP的精准诊疗。现有综述对于脂肪定量序列和超短回波时间(ultrashort echo time, UTE)序列对OP诊断中的研究进展已有总结,但是忽略了常规T1序列及多模态MRI对OP及其相关疾病的诊断意义。本文综述了基于常规T1序列、UTE序列和脂肪定量序列在OP及其相关疾病评估中的应用进展:通过计算常规T1序列下腰椎骨髓与脑脊液(cerebrospinal fluid, CSF)的信号比值即椎体骨质量(vertebral bone quality, VBQ)评分对OP及其相关疾病进行评估;采用UTE序列检测短T2组织,并量化皮质骨孔隙水浓度、孔隙度指数(porosity index, PI)、抑制率(suppression ratio, SR)及胶原结合水质子密度(collagen-bound water proton density, CBWPD)等参数以评估OP;同时,利用脂肪定量序列精准测量BMFF,并探讨其与不同序列组合在诊断OP及其相关疾病方面的研究进展。然而,这些技术在临床应用中仍面临缺乏规范标准及规范扫描方案的挑战。未来需构建融合T1序列、UTE及脂肪定量的多模态MRI体系,并解决参数标准化等关键问题,以推动临床精准诊疗。
[Abstract] Osteoporosis (OP) is a metabolic bone disease characterized by reduced bone mass and destruction of bone microstructure, which has a higher incidence among the elderly and a significant increase in the risk of fractures. Traditional bone mineral density (BMD) measurement methods, such as dual-energy X-ray absorptiometry (DXA) is the gold standard for clinical diagnosis of OP, but DXA and quantitative computed tomography (QCT) focus solely on bone mass and ignore the changes in bone microstructure,and have the risk of radiation exposure. MRI technology can non-invasively and multi-dimensionally assess the information of bone quality, bone marrow fat content, and cortical bone porosity, which is helpful for the precise diagnosis and treatment of OP. Existing reviews have summarized the research progress of fat quantification sequences and ultra-short echo time (UTE) sequences in the diagnosis of OP, but have ignored the significance of conventional T1 sequences in the diagnosis of OP and the fusion of multi-modal MRI techniques in the diagnosis of OP and related diseases. This article reviews the application progress and existing limitations of conventional T1 sequence, UTE sequence, and fat quantification sequence in the assessment of OP and related diseases: the vertebral bone quality score (VBQ), which is calculated by comparing the signal ratio of lumbar marrow to cerebrospinal fluid on conventional T1 sequence, is used to evaluate OP and related diseases; the UTE sequence is employed to detect short T2 tissues and quantify parameters such as cortical bone pore water concentration, porosity index (PI), suppression ratio (SR), and collagen-bound water proton density (CBWPD) to assess OP; meanwhile, the fat quantification sequence is utilized to precisely measure bone marrow fat fraction (BMFF) and explore the research progress of its combination with different sequences in diagnosing OP and related diseases. However, these techniques still face challenges in clinical application, such as the lack of standardized standards and standardized scanning protocols. In the future, it is necessary to construct a multimodal MRI system that integrates T1 sequence, UTE, and fat quantification, and address key issues such as parameter standardization to promote clinical precision diagnosis and treatment.
[关键词] 骨质疏松症;磁共振成像;骨密度;椎体骨质量评分;超短回波时间;脂肪定量
[Keywords] osteoporosis;magnetic resonance imaging;bone mineral density;vertebral bone quality score;ultra short echo time;fat quantification

成张堃 1, 2   张婷婷 1, 2*  

1 三峡大学第一临床医学院,宜昌 443000

2 宜昌市中心人民医院放射科,宜昌 443000

通信作者:张婷婷,E-mail: tiana0916@sina.com

作者贡献声明::张婷婷设计本综述的框架,对稿件重要内容进行了修改,获得了湖北省自然科学基金创新发展联合基金的资助;成张堃起草和撰写稿件,获取、分析本研究的综述文献;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 湖北省自然科学基金创新发展联合基金项目 2024AFD187
收稿日期:2025-05-26
接受日期:2025-09-10
中图分类号:R445.2  R580 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.09.035
本文引用格式:成张堃, 张婷婷. 基于常规序列、超短回波时间序列及脂肪定量序列的磁共振技术在骨质疏松症诊断中的研究进展[J]. 磁共振成像, 2025, 16(9): 229-234. DOI:10.12015/issn.1674-8034.2025.09.035.

0 引言

       骨质疏松症(osteoporosis, OP)是一种以骨量丢失和骨微结构破坏为特征的系统性代谢性骨病,会导致骨骼脆性增加和骨折风险升高[1, 2]。流行病学数据显示,全球超过2亿女性罹患OP,约三分之一的50岁以上女性会发生骨质疏松性骨折[3]。而该病在骨折之前通常无临床症状[3, 4],容易被忽视。因此,在临床上建立有效的早期筛查体系并实施针对性防治策略,已成为临床OP诊疗领域的重要课题[5]

       现行的预防和治疗OP的临床医生指南指出骨密度(bone mineral density, BMD)是公认的作为量化骨量的指标,并被广泛应用于科学研究和临床实践中[6]。BMD可通过双能X线吸收法(dualenergy X-ray absorptiometry, DXA)和定量计算机断层扫描(quantitative computed tomography, QCT)进行测量[7, 8],是诊断OP的最常用技术[9, 10],且DXA是临床上测量BMD的金标准[10, 11]。但这两种技术在某些方面均存在着局限性[12],如均无法评估骨折的易感性[13],且DXA容易受到主动脉钙化、骨赘的影响,还易依赖于技术人员操作水平[14],QCT虽可避免这些影响,但相对于 DXA 有更多的辐射暴露[15, 16]

       MRI通过施加静态强磁场和特定频率的射频脉冲,激发人体内氢原子核(质子)发生共振,在射频脉冲中止后,探测器接收氢原子核弛豫过程中释放的电磁信号,并利用空间编码技术和图像重建算法,生成高分辨率、高对比度的软组织图像。由于其优异的组织分辨能力,MRI在肌肉骨骼系统的疾病诊断、损伤评估及治疗监测中具有重要的临床应用价值。然而,由于骨组织的横向弛豫时间短、信号衰减快,常显示为低信号,限制了常规MRI对BMD和骨微结构等质量指标的评估能力,而这类指标对骨强度及骨折风险的判断至关重要。近年来,MRI新技术的出现弥补了常规序列无法对骨质量进行评估的缺点,脂肪定量技术对骨髓脂肪含量的测量既能反映骨质代谢状态也能提示骨转换失衡与OP的风险,UTE序列则能获取常规MRI无法显示的短T2信号以及获得胶原结合水、孔隙水和孔隙度等微结构信息。以上参数与BMD、骨小梁结构破坏和骨折风险有紧密联系,可为骨质疏松、骨代谢失衡、骨折风险等提供无创的影像学评估方法。本文总结了MRI技术在OP诊断中的研究现状并分析其优势和局限性,重点补充了常规T1序列、脂肪定量序列和多序列融合在OP与相关疾病诊断中的应用价值,期望能为OP与相关疾病的临床早期诊断、风险评估和未来科研方向提供支持。

1 常规序列基于椎体骨质量评分对于OP的评价

1.1 椎体骨质量评分及多序列组合椎体骨质量评分与椎旁肌质量评分的应用价值

       有研究表明椎体骨质量(vertebral bone quality, VBQ)评分是一种新型的基于MRI的BMD评估工具,VBQ是T1WI序列下腰1~腰4椎体骨髓的中位信号强度与腰3椎体水平脑脊液(cerebrospinal fluid, CSF)信号强度的比值[17]。通过分析VBQ的骨质量量化结果,发现其与DXA测得BMD显著相关,可有效评估骨量减少(osteopenia, OPE)和OP[18, 19]。与单独应用T1WI的VBQ评分相比,ROCH等[20]的研究发现通过结合不同MRI序列的VBQ [如T1WI、T2WI和短时翻转恢复(short time inversion recovery, STIR)序列VBQ的组合参数:VBQT1×VBQT2/VBQSTIR]可以显著增强OP的预测准确性,即VBQT1×VBQT2/VBQSTIR的组合参数能显著增加VBQ与BMD的负相关分析显著性。此外,也有研究表明VBQ衍生的椎旁肌质量(paravertebral muscle quality, PVMQ)评分(椎旁肌信号强度与腰3 CSF信号强度的比值),是首个基于常规MRI的肌肉-骨骼双效评估工具,在评估女性肌肉质量和骨质量方面优于VBQ评分[21],这为女性骨质疏松早期诊断提供新思路。

1.2 VBQ在骨质疏松性椎体压缩性骨折评估中的扩展应用:诊断优化与术后风险预测

       VBQ还是评估骨质疏松性椎体压缩性骨折(osteoporotic vertebral compressibility fracture, OVCF)患者骨质量的有效指标,尤其在60岁以上患者中与DXA的T评分效果相当,且使用不同节段CSF的T1WI信号值进行计算所获得的VBQ评分,在反映骨质量方面具有相似的诊断效能,可作为DXA的补充或替代方法用于临床评估[22]。此外有研究表明[23]通过在腰3/4椎间盘中点处测量多裂肌(multifidi, MF)的横截面积(cross-sectional area, CSA),并将MF CSA与VBQ评分联合使用时,当VBQ评分≥3.46或MF CSA≤11.83 cm2,平行组合可提高敏感度至92.8%;当VBQ评分≥3.46且MF CSA≤11.83 cm2,串联组合可提高特异度至85.6%,能显著提高对OVCF的诊断效能。OVCF患者在进行椎体增强术后,由于手术椎体刚性发生改变,使得邻近椎体容易发生压缩性骨折,CAI等[24]通过回顾性分析135名接受椎体增强术的OVCF患者,发现基于VBQ评分能够有效评估术后2年内手术椎体邻近椎体骨折的风险,研究通过术前腰椎MRI的T1WI、T2WI和STIR序列计算VBQ评分,发现术后新发椎体骨折组的VBQ-T1WI和VBQ-T2WI评分显著高于无术后新发椎体骨折组,VBQ联合评分(结合VBQ-T1WI和VBQ-T2WI)在术后新发椎体骨折组也更高。

       通过整合多模态MRI的VBQ参数和椎旁肌肉群影像学参数,可提高对OP、OVCF的诊断、风险预测以及术后检测的能力。但该评分体系也存在着若干需要解决的问题,如该评分流程缺乏统一的标准(如未明确最佳的扫描参数、椎体信号取中位数还是平均数)、应用该评分体系可能会增加MRI扫描的时长等,后续的研究应该致力于规范VBQ评分体系的使用标准、优化临床操作流程,从而增强该评分体系在临床上的实用性和可重复性。

2 UTE和零回波时间序列对于OP的评价

       UTE和零回波时间(zero echo time, ZTE)可以通过极短的回波时间检测到常规MRI无法检测的短T2组织如皮质骨、肌腱、韧带等,使其在图像上呈现出高信号[25, 26]。由此UTE和ZTE可以获取常规MRI无法获得的与骨密度相关的参数如腰椎椎体孔隙水浓度、PI、SR、胶原结合水质子密度(collagen-bound water proton density, CBWPD)等,为骨质疏松的诊断作出贡献。

       JONES等[27]的研究中,使用UTE与反转恢复UTE(inversion recovery UTE, IR-UTE)序列[28, 29]对受试者胫骨进行扫描,通过建立基于参考样品信号强度、激发效率因子及有效横向弛豫时间的定量模型,计算皮质骨总水浓度与结合水浓度,进一步通过二者差值获得孔隙水浓度;通过³¹P ZTE MRI扫描胫骨,利用已知浓度的外部参考样本校准信号强度,结合翻转角效率校正和弛豫效应补偿模型,实现³¹P浓度的定量测定[30],结果显示OP组患者的孔隙水和总水浓度较非OP对照组显著升高而31P密度显著降低,这表明OP患者皮质骨孔隙度增加、骨矿化程度降低,与BMD呈负相关。除直接测量出孔隙水浓度外,已有研究[31, 32]表明通过双回波UTE序列测量胫骨皮质骨信号比值计算得出的PI以及通过结合UTE和IR-UTE测量的皮质骨信号计算的SR在骨量正常受试者、OPE受试者和OP受试者中,OP组的PI和SR均高于正常组和OPE组。此外,在另一项研究中,PI升高与慢性肾脏疾病分期进展有显著的相关性[33]。在测量孔隙度相关指标如SR时,以往的研究需要耗费大量的精力对受试人群的胫骨皮质骨靶区进行手动勾画,JONES等[34]利用UTE和深度学习技术,开发了一种自动、免校准的皮质骨孔隙度和几何形状量化方法,能在繁重的靶区勾画工作上节省大量的人力物力,由此可以为未来进行大样本研究提供相应的便利。与使用UTE对受试者胫骨进行扫描不同,LIU等[35]的研究表明通过三维短重复时间绝热反转恢复制备的UTE(3D short repetition time adiabatic inversion recovery prepared UTE;3D STAIR-UTE)序列测量腰椎骨小梁中的CBWPD,发现其与BMD、T评分和骨折风险评分均具有显著相关性,且在区分正常、OPE和OP患者方面优于非对称回波的最小二乘估算法迭代水脂分离技术(iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantification, IDEAL-IQ)量化的骨髓脂肪分数(bone marrow fat fraction, BMFF),表明CBWPD也是一种有前景的OP评估生物标志物。

       UTE和ZTE能够获取OP早期的病理改变信息,如相对于传统BMD检测方法(DXA与QCT)能提供皮质骨孔隙度、CBWPD、结合水含量以及骨质矿化程度等,并且UTE与ZTE有无辐射的优点,可以进行长期随访、消除患者对传统检测方法辐射剂量的担忧。但UTE与ZTE也存在着一定的局限性,一方面,其依赖专用的MRI设备、线圈及对技术人员的专业能力有较高的要求,另一方面,其扫描时间相对较长,某些患者可能因疾病导致的疼痛无法长时间保持同一体位。在未来的研究中,通过对技术及临床实践的探索来克服上述局限性将成为该领域重要的研究方向。

3 脂肪定量MRI技术对于OP的评价

       绝经后妇女是OP的重要疾病群体,绝经后骨质疏松症(postmenopausal osteoporosis, PMOP)已成为全球性的公共卫生问题。研究表明,骨髓脂肪组织是骨稳态的关键调节因素,大量的证据表明绝经后妇女或卵巢切除动物模型的骨质流失通常伴随着骨髓脂肪组织的异常积累[36, 37, 38, 39],并且另有研究[40, 41]指出骨髓脂肪细胞分泌的脂肪因子(Visfatin)可作为RANKL下游的正反馈调节因子,可以通过协同激活RANKL-NF-κB/MAPK-NFATc1信号轴(促进破骨细胞分化)来显著增强破骨细胞分化与骨吸收功能,因此骨髓脂肪的增多可能直接影响骨质流失。当前,BMFF的无创MRI量化技术主要包括化学移位编码MRI(chemical shift encoded MRI, CSE-MRI)脂质分离技术和磁共振波谱(magnetic resonance spectroscopy, MRS),前者主要采用Philips的mDIXON-Quant序列、siemens的Dixon-VIBE序列、GE的IDEAL-IQ序列等。MRS被广泛认为是体内脂肪定量评估的金标准,然而,由于扫描时间长,后处理复杂[42],在骨骼系统疾病方面的应用较为有限。随着CSE-MRI技术的出现,快速准确地评估骨髓脂肪已成为现实[43],并且其结果与MRS测量结果有良好的一致性。该类技术通过精准分离水脂信号并计算BMFF,实现了骨髓脂肪含量的无创定量评估,为OP等疾病的诊断和研究提供了重要支持。CSE-MRI的基础原理高度统一,均建立在多回波采集和复杂迭代分解算法的核心框架上,以实现精准水脂分离和脂肪/铁定量,扫描一次就可以同时获取同相位、反相位、水相位、脂相位以及脂肪分数相。其已经逐渐被用于脊柱相关病变的评估,包括OP及其与椎间盘退变的相关性研究、急性骨质疏松骨折与恶性骨折的鉴别诊断及不同程度异常BMD的区分判断等。

       ZHOU等[44]的研究利用IDEAL-IQ序列定量分析了OP患者的BMFF和R2*发现BMFF值与BMD呈中度负相关,尤其是在女性中,而R2*值在男性中与BMD呈弱正相关,表明BMFF和R2*值在OP评估中具有一定的潜在应用价值。成东亮等[45]使用IDEAL-IQ技术能够精准量化椎体的骨髓脂肪含量。根据DXA结果分为正常骨量组、OPE组、OP组,对三组进行骨髓脂肪量化时发现三组的BMFF值组间差异显著,以OP组最高,进一步支持了骨髓脂肪含量与骨质状况之间的关联。

       除了单纯使用CSE-MRI序列对OP进行评价外,CSE-MRI序列与其他序列的结合使用还可以在多种骨骼肌肉系统疾病的诊断、鉴别中展现出重要价值。有研究表明,对正常骨密度组、OPE组和OP组进行Q-Dixon和GRAPPATINI T2 mapping序列的联合扫描,发现三组间BMFF存在显著差异,BMFF随着BMD降低而升高,其中OP组BMFF最高(64.5%±5.9%),此外还发现BMFF与腰1~腰3椎间盘的T2值呈显著负相关,OP组椎间盘的T2值要显著低于其他两组,这提示OP患者伴有更明显的椎间盘退变、BMFF增高可能与椎间盘退变进程相关[46],由此可见Q-Dixon和GRAPPATINI T2 mapping技术的结合为评估椎体和椎间盘的生化成分提供了新工具,有助于深入理解OP与椎间盘退变的关系。此外,LI等[47]发现,基于T2*校正的Q-Dixon对于BMFF的定量测量在区分正常与异常BMD(OPE与OP)受试者方面表现出良好的诊断能力,但在区分OPE和OP(评估BMD降低的严重程度)方面存在局限性,相比之下缩小视野扩散峰度成像(reduced field of view diffusion kurtosis imaging, reduced FOV DKI)序列所获得的平均峰度(mean kurtosis, MK)和平均扩散率(mean diffusivity, MD)在鉴别OPE与OP方面表现优于Q-Dixon所测的BMFF和T2*参数,并且联合模型(Q-Dixon+DKI),在区分正常BMD和异常BMD及区分OPE和OP中均获得最高或接近最高的诊断效能,此外T2*校正的Q-Dixon技术对比于传统双回波Dixon技术在评估BMFF方面有更高的精确度,与MRS的测量结果一致性更好[47]。因此,结合Q-Dixon和DKI的多参数MRI模型是未来评估骨密度状态和诊断OP的新方向。

       MRS成像对于骨髓脂肪的定量分析可为OP等疾病的诊断提供重要依据[48, 49],目前应用于骨髓脂肪定量的MRS技术以单体素¹H-MRS为主,该技术通过测量感兴趣区内骨髓脂肪与水的信号,计算平均骨髓脂肪分数。在采集方面,主要采用点分辨波谱(point-resolved spectroscopy, PRESS)或受激回波采集模式(stimulated echo acquisition mode, STEAM)序列,在目标骨髓区域(如腰椎椎体)放置单体素,避开皮质骨和血管,通过使用后处理软件对脂质各峰总面积和水峰面积进行积分,最终获得BMFF。多项基于MRS对腰椎脂肪的研究[50]表明,饱和脂肪酸与不饱和脂肪酸对老年人群的骨密度和骨折风险的影响相反:饱和脂肪酸含量的增加与骨密度降低和骨折风险增加相关,而不饱和脂肪酸的含量增加则表现出一定的骨保护效应,其潜在机制可能为饱和脂肪酸可能通过促炎机制(饱和脂肪酸可能通过诱导炎症基因表达,引发慢性低度炎症,从而破坏骨代谢平衡,导致骨密度下降和骨折风险增加)、促脂肪生成[饱和脂肪酸可能与sclerostin(硬化蛋白)水平升高有关,促进骨髓脂肪细胞生成,抑制成骨细胞活性]和代谢紊乱(饱和脂肪酸可能与胰岛素抵抗、糖尿病等代谢异常相关,这些代谢紊乱本身就会影响骨代谢)等途径损害骨骼,而不饱和脂质可能通过抗炎和调节骨代谢平衡来保护骨骼。目前上述机制尚未明确,仍需进一步研究,这将成为未来的研究热点。因此分别测量饱和脂肪酸与不饱和脂肪酸的含量在研究骨髓脂肪与骨骼健康的关系时显得格外重要。

4 小结与展望

       MRI技术对OP的评估不同于DXA与QCT仅关注于BMD,还对骨质量进行了评估,并且多种MRI技术的联合使用可以扩展其应用范围。未来,多模态MRI技术的应用将在临床与科研领域展现广阔的应用前景,其中常规T1序列应用的VBQ评分可以对椎体骨质量进行初步的评估,而脂肪定量序列与UTE序列能够补充常规序列不能获取的信息,在OP的诊断、鉴别与相关疾病的评估中变现出良好的应用前景。但这些技术也存在着相应的局限性,如常规T1序列需要规范扫描标准,UTE序列需要完善扫描方案、缩短扫描时长,脂肪定量序列则需要探讨联合其他MRI技术对OP及相关疾病的诊断。未来的研究还可以借助人工智能与深度学习技术来简化繁重的图像及数据处理过程。

       综上所述MRI技术探索了传统技术在OP及其相关疾病早期诊断及治疗监测中的盲区,为OP的诊疗提供了新的技术支撑,未来通过对上述MRI新技术的不断优化,有望为OP及其相关疾病的临床管理带来更显著的进展。

[1]
AYERS C, KANSAGARA D, LAZUR B, et al. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the American college of physicians[J]. Ann Intern Med, 2023, 176(2): 182-195. DOI: 10.7326/M22-0684.
[2]
FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123: 14-21. DOI: 10.1016/j.semcdb.2021.05.014.
[3]
JOHNSTON C B, DAGAR M. Osteoporosis in older adults[J]. Med Clin N Am, 2020, 104(5): 873-884. DOI: 10.1016/j.mcna.2020.06.004.
[4]
ACOG Committee on Clinical Practice Guidelines-Gynecology. Management of postmenopausal osteoporosis: ACOG clinical practice guideline No. 2[J]. Obstet Gynecol, 2022, 139(4): 698-717. DOI: 10.1097/AOG.0000000000004730.
[5]
VILACA T, EASTELL R, SCHINI M. Osteoporosis in men[J]. Lancet Diabetes Endocrinol, 2022, 10(4): 273-283. DOI: 10.1016/S2213-8587(22)00012-2.
[6]
YIN H J, LIN W T, XIE F Q, et al. MRI-based vertebral bone quality score for osteoporosis screening based on different osteoporotic diagnostic criteria using DXA and QCT[J]. Calcif Tissue Int, 2023, 113(4): 383-392. DOI: 10.1007/s00223-023-01115-x.
[7]
YONG E L, LOGAN S. Menopausal osteoporosis: screening, prevention and treatment[J]. Singapore Med J, 2021, 62(4): 159-166. DOI: 10.11622/smedj.2021036.
[8]
ZAMAN M U, FATIMA N. Dual energy X-ray absorptiometry (DXA) in the management of osteoporosis[J]. J Coll Physicians Surg Pak, 2024, 34(6): 633-635. DOI: 10.29271/jcpsp.2024.06.633.
[9]
SLART R H J A, PUNDA M, ALI D S, et al. Updated practice guideline for dual-energy X-ray absorptiometry (DXA)[J]. Eur J Nucl Med Mol Imaging, 2025, 52(2): 539-563. DOI: 10.1007/s00259-024-06912-6.
[10]
SALZMANN S N, OKANO I, JONES C, et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion[J]. Spine J, 2022, 22(8): 1301-1308. DOI: 10.1016/j.spinee.2022.03.006.
[11]
SHEVROJA E, REGINSTER J Y, LAMY O, et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging[J]. Osteoporos Int, 2023, 34(9): 1501-1529. DOI: 10.1007/s00198-023-06817-4.
[12]
ENGELKE K, LANG T, KHOSLA S, et al. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III[J]. J Clin Densitom, 2015, 18(3): 393-407. DOI: 10.1016/j.jocd.2015.06.010.
[13]
ÖZMEN E, BIÇER O, MERIÇ E, et al. Vertebral bone quality score for opportunistic osteoporosis screening: a correlation and optimal threshold analysis[J]. Eur Spine J, 2023, 32(11): 3906-3911. DOI: 10.1007/s00586-023-07912-0.
[14]
BRISTOW S M, GAMBLE G D, HORNE A M, et al. Longitudinal changes in bone mineral density, bone mineral content and bone area at the lumbar spine and hip in postmenopausal women, and the influence of abdominal aortic calcification[J/OL]. Bone Rep, 2018, 10: 100190 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/30766896/. DOI: 10.1016/j.bonr.2018.100190.
[15]
PAGGIOSI M A, DEBONO M, WALSH J S, et al. Quantitative computed tomography discriminates between postmenopausal women with low spine bone mineral density with vertebral fractures and those with low spine bone mineral density only: the SHATTER study[J]. Osteoporos Int, 2020, 31(4): 667-675. DOI: 10.1007/s00198-020-05317-z.
[16]
XIA N, LIAO D F, LI X W, et al. Advances in research on application of quantitative CT in clinical diagnosis and treatment of osteoporosis[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2025, 47(1): 118-123. DOI: 10.3881/j.issn.1000-503X.16035.
[17]
EHRESMAN J, SCHILLING A, YANG X H, et al. Vertebral bone quality score predicts fragility fractures independently of bone mineral density[J]. Spine J, 2021, 21(1): 20-27. DOI: 10.1016/j.spinee.2020.05.540.
[18]
AYNASZYAN S, DEVIA L G, UDOEYO I F, et al. Patient physiology influences the MRI-based vertebral bone quality score[J]. Spine J, 2022, 22(11): 1866-1874. DOI: 10.1016/j.spinee.2022.06.003.
[19]
NAJAFI A, BAGHERI A B, HADAVI D, et al. Vertebral bone quality score as a new tool for osteoporosis diagnosis in patients undergoing lumbosacral fusion surgery: a single center cohort study[J/OL]. Eur J Transl Myol, 2024, 34(4): 12311 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/39283159/. DOI: 10.4081/ejtm.2024.12311.
[20]
ROCH P J, ÇELIK B, JÄCKLE K, et al. Combination of vertebral bone quality scores from different magnetic resonance imaging sequences improves prognostic value for the estimation of osteoporosis[J]. Spine J, 2023, 23(2): 305-311. DOI: 10.1016/j.spinee.2022.10.013.
[21]
WANG S, ZHANG X, QU B, et al. A novel MRI-based paravertebral muscle quality (PVMQ) score for evaluating muscle quality and bone quality: a comparative study with the VBQ score[J]. Clin Interv Aging, 2024, 19: 1203-1215. DOI: 10.2147/CIA.S464187.
[22]
LI R Y, YIN Y J, JI W, et al. MRI-based vertebral bone quality score effectively reflects bone quality in patients with osteoporotic vertebral compressive fractures[J]. Eur Spine J, 2022, 31(5): 1131-1137. DOI: 10.1007/s00586-022-07177-z.
[23]
WANG S, LIU L, LIU H, et al. Comprehensive diagnostic value of vertebral bone quality scores and paravertebral muscle quality parameters in osteoporotic vertebral fractures[J/OL]. World Neurosurg, 2025, 194: 123503 [2025-08-21]. https://pubmed.ncbi.nlm.nih.gov/39603452/. DOI: 10.1016/j.wneu.2024.11.086.
[24]
CAI J H, HAN W, YANG T Q, et al. MRI-based vertebral bone quality score can predict the imminent new vertebral fracture after vertebral augmentation[J]. Neurosurgery, 2024, 95(3): 566-575. DOI: 10.1227/neu.0000000000002901.
[25]
WU Z Z, ZAYLOR W, SOMMER S, et al. Assessment of ultrashort echo time (UTE) T2* mapping at 3T for the whole knee: repeatability, the effects of fat suppression, and knee position[J]. Quant Imaging Med Surg, 2023, 13(12): 7893-7909. DOI: 10.21037/qims-23-459.
[26]
CHENG K Y, MOAZAMIAN D, NAMIRANIAN B, et al. Estimation of trabecular bone volume with dual-echo ultrashort echo time (UTE) magnetic resonance imaging (MRI) significantly correlates with high-resolution computed tomography (CT)[J/OL]. J Imaging, 2025, 11(2): 57 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/39997559/. DOI: 10.3390/jimaging11020057.
[27]
JONES B C, LEE H, CHENG C C, et al. MRI quantification of cortical bone porosity, mineralization, and morphologic structure in postmenopausal osteoporosis[J/OL]. Radiology, 2023, 307(2): e221810 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/36692396/. DOI: 10.1148/radiol.221810.
[28]
HARKINS K D, KETSIRI T, NYMAN J S, et al. Fast bound and pore water mapping of cortical bone with arbitrary slice oriented two-dimensional ultra-short echo time[J]. Magn Reson Med, 2023, 89(2): 767-773. DOI: 10.1002/mrm.29484.
[29]
JERBAN S, MA Y J, WEI Z, et al. Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis[J]. J Bone Miner Res, 2024, 39(6): 707-716. DOI: 10.1093/jbmr/zjae053.
[30]
ZHAO X, SONG H K, WEHRLI F W. In vivo bone 31P relaxation times and their implications on mineral quantification[J]. Magn Reson Med, 2018, 80(6): 2514-2524. DOI: 10.1002/mrm.27230.
[31]
JERBAN S, MA Y J, MOAZAMIAN D, et al. MRI-based porosity index (PI) and suppression ratio (SR) in the tibial cortex show significant differences between normal, osteopenic, and osteoporotic female subjects[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1148345 [2024-12-06]. https://pubmed.ncbi.nlm.nih.gov/37025410/. DOI: 10.3389/fendo.2023.1148345.
[32]
MA Y J, JERBAN S, JANG H, et al. Quantitative ultrashort echo time (UTE) magnetic resonance imaging of bone: an update[J/OL]. Front Endocrinol (Lausanne), 2020, 11: 567417 [2024-11-08]. https://pubmed.ncbi.nlm.nih.gov/33071975/. DOI: 10.3389/fendo.2020.567417.
[33]
XIONG Y, HE T X, WANG Y N, et al. CKD stages, bone metabolism markers, and cortical porosity index: associations and mediation effects analysis[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 775066 [2024-11-09]. https://pubmed.ncbi.nlm.nih.gov/34803931/. DOI: 10.3389/fendo.2021.775066.
[34]
JONES B C, WEHRLI F W, KAMONA N, et al. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning[J/OL]. Bone, 2023, 171: 116743 [2025-07-06]. https://pubmed.ncbi.nlm.nih.gov/36958542/. DOI: 10.1016/j.bone.2023.116743.
[35]
LIU J, LIAO J W, LI W, et al. Assessment of osteoporosis in lumbar spine: in vivo quantitative MR imaging of collagen bound water in trabecular bone[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 801930 [2025-04-02]. https://pubmed.ncbi.nlm.nih.gov/35250862/. DOI: 10.3389/fendo.2022.801930.
[36]
WOODS G N, EWING S K, SIGURDSSON S, et al. Greater bone marrow adiposity predicts bone loss in older women[J]. J Bone Miner Res, 2020, 35(2): 326-332. DOI: 10.1002/jbmr.3895.
[37]
NIU H F, ZHOU M F, XU X Y, et al. Bone marrow adipose tissue as a critical regulator of postmenopausal osteoporosis - a concise review[J]. Clin Interv Aging, 2024, 19: 1259-1272. DOI: 10.2147/CIA.S466446.
[38]
BADR S, COTTEN A, MENTAVERRI R, et al. Relationship between bone marrow adipose tissue and kidney function in postmenopausal women[J/OL]. Bone Rep, 2023, 19: 101713 [2025-03-21]. https://pubmed.ncbi.nlm.nih.gov/37711545/. DOI: 10.1016/j.bonr.2023.101713.
[39]
高垒, 苗淼, 张伟, 等. R2*、PDFF评估中老年女性腰椎骨髓铁沉积、脂肪含量及对骨质疏松的诊断价值[J]. 磁共振成像, 2025, 16(3): 90-95. DOI: 10.12015/issn.1674-8034.2025.03.014.
GAO L, MIAO M, ZHANG W, et al. R2* and PDFF quantification: evaluation of lumbar spine bone marrow iron deposition, fat content and diagnostic value of osteoporosis in middle-aged and elderly women[J]. Chin J Magn Reson Imag, 2025, 16(3): 90-95. DOI: 10.12015/issn.1674-8034.2025.03.014.
[40]
OK C Y, KWON R J, JANG H O, et al. Visfatin enhances RANKL-induced osteoclastogenesis in vitro: synergistic interactions and its role as a mediator in osteoclast differentiation and activation[J/OL]. Biomolecules, 2024, 14(12): 1500 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/39766208/. DOI: 10.3390/biom14121500.
[41]
XU Z H, XIONG C W, MIAO K S, et al. Adipokines regulate mesenchymal stem cell osteogenic differentiation[J]. World J Stem Cells, 2023, 15(6): 502-513. DOI: 10.4252/wjsc.v15.i6.502.
[42]
BAO J F, LI Z Y, ZHANG Y, et al. Low unsaturated fatty acids level in the vertebral bone marrow of postmenopausal osteoporosis: A pilot 2D iDQC-MRS on 3.0 T study[J]. J Magn Reson Imaging, 2023, 57(5): 1423-1430. DOI: 10.1002/jmri.28383.
[43]
MISAKA T, HASHIMOTO Y, ASHIKAGA R, et al. Chemical shift-encoded MRI with compressed sensing combined with parallel imaging for proton density fat fraction measurement of the lumbar vertebral bone marrow[J/OL]. Medicine (Baltimore), 2024, 103(15): e37748 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/38608106/. DOI: 10.1097/MD.0000000000037748.
[44]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/37697287/. DOI: 10.1186/s12891-023-06846-4.
[45]
成东亮, 冯红梅, 文戈, 等. 磁共振脂肪定量技术IDEAL-IQ评价腰椎骨质疏松严重程度的价值[J]. 中国CT和MRI杂志, 2023, 21(5): 157-159. DOI: 10.3969/j.issn.1672-5131.2023.05.054.
CHENG D L, FENG H M, WEN G, et al. Value of MR IDEAL-IQ sequence in evaluating the severity of lumbar osteoporosis[J]. Chin J CT MRI, 2023, 21(5): 157-159. DOI: 10.3969/j.issn.1672-5131.2023.05.054.
[46]
LI X W, XIE Y X, LU R, et al. Q-Dixon and GRAPPATINI T2 mapping parameters: a whole spinal assessment of the relationship between osteoporosis and intervertebral disc degeneration[J]. J Magn Reson Imaging, 2022, 55(5): 1536-1546. DOI: 10.1002/jmri.27959.
[47]
LI X W, HU Y W, XIE Y X, et al. T2*-corrected Q-Dixon and reduced-FOV diffusion kurtosis imaging (DKI) parameters: correlation with QCT-derived bone mineral density (BMD) and ability to identify abnormal BMD and osteoporosis in postmenopausal women[J]. Quant Imaging Med Surg, 2023, 13(7): 4130-4146. DOI: 10.21037/qims-22-1247.
[48]
BORELLI C, VERGARA D, GUGLIELMI R, et al. Assessment of bone marrow fat by 3-Tesla magnetic resonance spectroscopy in patients with chronic kidney disease[J]. Quant Imaging Med Surg, 2023, 13(11): 7432-7443. DOI: 10.21037/qims-23-530.
[49]
ISMAIL U N, AZLAN C A, KHAIRULLAH S, et al. Marrow fat content and composition in β-thalassemia: a study using 1 H-MRS[J]. J Magn Reson Imaging, 2021, 53(1): 190-198. DOI: 10.1002/jmri.27294.
[50]
WOODS G N, EWING S K, SCHAFER A L, et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults[J]. J Bone Miner Res, 2022, 37(4): 700-710. DOI: 10.1002/jbmr.4504.

上一篇 深度学习和影像组学在卵巢癌的研究进展
下一篇 穴位贴敷联合耳穴压豆对BPPV残余头晕脑自发活动的影响:一项随机对照功能磁共振成像研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2