分享:
分享到微信朋友圈
X
综述
磁共振成像与重复经颅磁刺激在广泛性焦虑障碍脑功能连接中的研究进展
张渝杭 刘冰倩 王梅云

Cite this article as: ZHANG Y H, LIU B Q, WANG M Y. Advances in the application of magnetic resonance imaging and repetitive transcranial magnetic stimulation for generalized anxiety disorder[J]. Chin J Magn Reson Imaging, 2025, 16(10): 114-118, 136.本文引用格式:张渝杭, 刘冰倩, 王梅云. 磁共振成像与重复经颅磁刺激在广泛性焦虑障碍脑功能连接中的研究进展[J]. 磁共振成像, 2025, 16(10): 114-118, 136. DOI:10.12015/issn.1674-8034.2025.10.018.


[摘要] 广泛性焦虑障碍(generalized anxiety disorder, GAD)属于精神疾病范畴,全球发病率较高,是焦虑症中最为常见的一种。作为非侵入性脑刺激技术之一的重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS),已经在GAD的治疗中展示出潜力。本文综述了磁共振成像技术在GAD患者脑功能异常连接中的研究以及磁共振成像技术在引导rTMS治疗GAD、揭示治疗的神经机制和评估其疗效方面的作用,指出了当前研究的局限性并展望了未来的研究方向,将磁共振成像技术与rTMS相结合,以期为GAD的个性化治疗提供新思路。
[Abstract] Generalized anxiety disorder (GAD), a psychiatric condition with a relatively high global prevalence, is one of the most common forms of anxiety disorders. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, has demonstrated potential in the treatment of GAD. This review summarizes research on aberrant functional connectivity in the brains of GAD patients using MRI, as well as the role of MRI in guiding rTMS therapy, elucidating its neural mechanisms, and evaluating treatment efficacy. Current limitations are discussed, and future research directions are proposed, highlighting the integration of MRI with rTMS to offer novel insights for personalized treatment of GAD.
[关键词] 广泛性焦虑障碍;磁共振成像;重复经颅磁刺激;功能连接;医学影像学
[Keywords] generalized anxiety disorder;magnetic resonance imaging;repetitive transcranial magnetic stimulation;functional connectivity;medical imaging

张渝杭 1, 2   刘冰倩 1, 2   王梅云 2, 3*  

1 河南大学人民医院医学影像科,郑州 450003

2 河南省人民医院医学影像科,郑州 450003

3 河南省科学院生物医学研究所,郑州 450046

通信作者:王梅云,E-mail:mywang@zzu.edu.cn

作者贡献声明:王梅云设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;张渝杭起草和撰写稿件,获取、分析和解释本研究的数据;刘冰倩获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82371934
收稿日期:2025-07-04
接受日期:2025-10-10
中图分类号:R445.2  R749.72 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.10.018
本文引用格式:张渝杭, 刘冰倩, 王梅云. 磁共振成像与重复经颅磁刺激在广泛性焦虑障碍脑功能连接中的研究进展[J]. 磁共振成像, 2025, 16(10): 114-118, 136. DOI:10.12015/issn.1674-8034.2025.10.018.

0 引言

       广泛性焦虑障碍(generalized anxiety disorder, GAD)的症状表现为难以控制的持续过度担心和焦虑[1],是成人常见的心理健康疾病[2]。GAD患者具有显著增高的自杀风险及心血管事件发生率,这些严重并发症不仅会对其生活质量造成毁灭性的影响,更会严重损害其社会功能,导致其日常活动能力显著下降[2, 3]。然而大约50%的GAD患者对一线治疗药物没有反应[4]。在神经科学领域获得持续关注的技术性方法中,经颅磁刺激(transcranial magnetic stimulation, TMS)的运用正日益增多,该技术具备非侵入式特性。有研究结果表明,TMS治疗可以显著降低GAD患者的焦虑评分[5],TMS利用磁场刺激大脑皮层,通过诱导神经可塑性产生治疗效果[6],但其治疗效果可能受限于不同的刺激参数和治疗靶点的选择。同时,磁共振成像特别是功能磁共振成像(functional magnetic resonance imaging, fMRI)是揭示GAD神经生物学原理的一种强有力的工具。磁共振成像技术不仅可以观察到患者的大脑解剖结构,还能结合fMRI深入解析特定脑区功能活动的异常模式[7]。现有综述多分别关注GAD的影像特征或重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)的疗效,而未能系统阐述如何利用脑功能连接(functional connectivity, FC)引导rTMS个体化治疗。为此,本文以脑FC为核心主线重点阐述了磁共振成像技术在GAD患者脑功能的异常连接中的研究以及多模态磁共振成像技术在引导rTMS治疗GAD并揭示治疗的神经机制和评估其疗效方面的作用,旨在从白质微结构、神经代谢等不同层面,为rTMS如何调控脑网络功能并最终缓解症状提供多维度的机制性解释和客观证据,从而推动个性化的治疗方案开发,为临床实践提供指导,并指出未来研究的潜在方向,推动GAD的临床治疗革新,提高患者的生活质量和功能水平。

1 磁共振成像技术在GAD患者脑功能的异常连接中的研究

       磁共振成像技术揭示了GAD患者存在显著的脑FC异常[8],主要涉及默认网络(default mode network, DMN)、边缘系统-前额叶环路、显著网络(salience network, SN)及执行控制网络(executive control network, ECN)的协同功能障碍[9]。这些异常与持续性担忧、情绪调节失调及认知控制受损等核心症状密切相关[10]

1.1 DMN的异常连接

       DMN是静息态脑功能研究中被广泛关注的核心脑网络,由后扣带回皮质(posterior cingulate cortex, PCC)、内侧前额叶皮质(medial prefrontal cortex, mPFC)、双侧顶下小叶、角回及内侧颞叶等脑区构成[11, 12]。这些区域在无任务状态下呈现高同步神经活动,而在目标导向任务中活性降低,主要参与自我参照加工、情景记忆、未来规划及社会认知等高级认知过程[11, 13, 14, 15]。LI等[16]通过静息态功能磁共振成像(resting-state functional MRI, rs-fMRI)技术来对数据进行独立成分分析时发现DMN和后扣带回网络(posterior cingulate network, PCN)在GAD患者中表现出FC异常,这些网络的异常可能与GAD患者的情绪调节和记忆整合功能障碍有关。PCC作为DMN的核心枢纽,在GAD患者中与前额叶背外侧皮层(dorsolateral prefrontal cortex, DLPFC)及前扣带回(anterior cingulate cortex, ACC)的FC增强。GAD患者还可能会出现前额叶内侧区与PCC的连接增强,这可能是一种试图抑制过度担忧但未能成功的无效代偿机制。DMN这种与自我参照思维相关的网络的持续异常活跃,不仅直接导致了“反复思虑”的核心症状,也可能为其下游的情绪调节环路的功能失调埋下了伏笔。

1.2 边缘系统-前额叶环路失调

       边缘系统-前额叶环路的核心功能包括情绪调节、决策整合、应激适应、记忆调制等[17, 18, 19, 20],是调节情绪的关键神经基础[21],SHAN等[22]将结构磁共振成像(structural magnetic resonance imaging, sMRI)与fMRI数据相结合,分析了GAD患者和健康对照组的灰质体积(gray matter volume, GMV)和因果连接性,得出前额叶-边缘环路的因果连接性受到影响可能是导致GAD神经生物学改变的原因,尽管GMV属于结构影像学范畴,但其变化往往伴随FC的异常,共同构成GAD的神经环路失调,为理解焦虑症的脑网络异常及其与临床症状的关系提供了有价值的见解,DU等[23]通过rs-fMRI技术,比较了38名GAD患者的杏仁核FC与20名健康对照组的差异,研究结果表明,GAD患者存在广泛的杏仁核FC异常,杏仁核与喙部前扣带回皮质的连接在GAD的发病中起着关键作用。前额叶对边缘系统(如杏仁核)调控的失效,意味着GAD患者不仅沉浸在内在担忧中,更难以抑制由此产生的负面情绪。这种情绪调节的失败,进而对负责灵活切换注意力与认知控制的大尺度脑网络提出了更高要求,也暴露了其脆弱性。

1.3 神经网络协同障碍

       GAD还涉及多网络交互失衡,BECKMANN等[24]通过rs-fMRI数据分析,调查了共病 MDD(major depressive disorder, MDD)和GAD患者的静息态FC改变,研究发现与健康对照相比,共病MDD的GAD患者显示ECN-DMN切换功能受损,从而可能影响患者的情绪调节能力,且ECN内部连接减弱与工作记忆下降直接相关。HAO等[25]通过静息态脑电图微状态分析,发现了GAD患者SN-DMN转换增强的神经生理特征,SN与DMN的过度切换可能与GAD患者过度反刍和情绪调节困难有关,为理解GAD的认知和情绪功能障碍提供了新的神经机制解释。还有研究表明GAD患者的躯体性症状可能与SN内部连接增强有关,而心理性症状则与DMN内部连接增强以及SN与DMN之间的连接减弱有关,这一研究为精准治疗提供了新思路,例如可以通过rTMS针对性调节特定网络[26]

       综上所述,rs-fMRI等磁共振成像技术所揭示的GAD脑FC异常,其本身即为rTMS的潜在治疗靶点。传统rTMS治疗之所以疗效不一,正是由于其未能充分考虑上述个体化的网络异常。因此,基于这些特定的FC异常来精准定位刺激靶点,成为了提高rTMS治疗GAD疗效的关键所在。

2 磁共振成像技术在rTMS治疗GAD方面的研究

2.1 TMS的原理

       TMS是一种基于电磁感应原理的非侵入性脑调控技术,其核心机制是通过贴附于头皮的刺激线圈产生的脉冲磁场能够穿透颅骨而不衰减,深层脑组织中感应电场的形成由此得以实现[27]。三种主要模式构成TMS技术的临床应用体系:单脉冲式、双脉冲式以及重复经颅磁刺激模式,其中rTMS模式可能通过诱导突触可塑性来产生持久的神经调控效应[28],当局部神经元的轴突走向与感应电流方向一致时,将触发动作电位,实现局部神经元及关联脑网络的精准激活,rTMS就可调节皮质兴奋性并在运动皮质诱导突触可塑性的长期变化[29]。rTMS的治疗机制有赖于神经可塑性,即大脑在经历刺激后,神经环路的重组和适应能力。通过对特定脑区的反复刺激,rTMS可以促使突触传递的变化,增强或削弱相关神经通路的连接性,从而影响个体的情绪状态,这被认为是缓解焦虑症状的重要机制之一[27, 29, 30]。此外,调节GAD患者的脑网络功能的异常动态连接也可能是rTMS治疗GAD的机制之一[31, 32]。rTMS的疗效与刺激的频率也有关系,低频rTMS降低皮质的兴奋性,高频rTMS增加皮质的兴奋性[29, 30]。这种双向调节性也使其成为研究突触可塑性及神经精神疾病的有力工具,GAD、MDD等就常通过rTMS进行治疗[33]。根据皮质脊髓兴奋性诱导的变化方向,rTMS通常根据刺激频率进行分类包括:低频rTMS和高频rTMS。低频rTMS(≤1 Hz)多作用于右侧DLPFC或顶叶区域趋于降低皮质脊髓兴奋性,可能更加适合抑制过度活跃的神经通路[34, 35, 36],而高频rTMS(≥5 Hz)通常作用于左侧前额叶背外侧皮层则趋于增加皮质脊髓兴奋性[37, 38, 39, 40],无论是低频rTMS还是高频rTMS在治疗GAD方面都显示出巨大的前景。通过个性化参数的调整,rTMS治疗能够更有效地适应不同患者的需求,从而提高治疗的成功率和满意度[41]

2.2 磁共振成像技术对靶点的精准定位

       除了刺激频率外,rTMS的疗效也依赖于精准的刺激靶点定位,磁共振导航技术通过多模态成像显著提升定位精度。最近的许多研究已经开始使用基于任务态的和静息态的fMRI来确定大脑功能个性的单个皮层靶点[42]。与传统方法如传统的解剖定位相比基于fMRI的靶点定位更为精准,fMRI的功能分析可以通过在治疗前识别异常回路来进一步提高精度[31]。传统rTMS方法由于标准化的脑区选择和缺乏个体化的FC分析,导致患者反应不一致。GAD是一种神经生物学疾病,其病理生理特点通常涉及大脑特定区域的功能失调,尤其是前额叶皮层、后扣带回、颞叶等与情绪和焦虑调节相关的脑区[9, 43, 44],它的特征是选择性脑区的广泛缺陷,主要包括前额叶-颞叶-边缘网络,已被证明与行为抑制有关,另外GAD患者有多个FC异常的区域比如DMN和SN[26, 45]。有rs-fMRI研究显示,GAD患者的DMN和边缘网络之间的FC异常,表明情绪处理的神经回路可能失调,但无论采用何处作为治疗靶点,现有证据都支持针对特定大脑区域如DLPFC和腹外侧前额叶皮层(ventrolateral prefrontal cortex, VLPFC)进行治疗,疗效会更好的观点[45]。但事实上,也有许多患者对标准靶点DLPFC的刺激没有反应,并没有出现所有的症状消退的表现,可能因为不同的患者之间存在显著的异质性,这种异质性很可能与脑网络异常的FC有关[31]。因此,除DLPFC外,研究者将研究目光转向GAD中其他存在异常连接的网络节点。比如,隶属于边缘系统-前额叶环路且与情绪处理紧密相关的VLPFC,以及右侧顶叶皮层、DMN和ECN也作为TMS的刺激靶点并取得了显著疗效[31, 46, 47]。研究者如果可以根据不同的患者来设计个性化的治疗方案可能会增加rTMS治疗GAD的疗效。

       YOUNG等[31]使用rs-fMRI分析28名难治性广泛性焦虑障碍患者的异常FC,发现这些患者在左侧半球DMN的两个分区8Av区和PGs区表现出相对一致的FC异常,并选择这两个新的目标区域进行rTMS治疗以调节8Av区和PGs区的异常FC,结果表明通过针对这些区域的rTMS治疗,患者的焦虑症状显著改善,且副作用(如疲劳和头痛)较少。另外TANG等[32]人也使用rs-fMRI识别患者大脑FC异常区域,选择最显著的异常区域(左侧8Av区和PGs区)作为rTMS治疗的靶点,最终的治疗结果对GAD患者的睡眠质量、生活质量以及负性情绪症状的改善都是非常显著的,研究认为,这种基于个体FC异常的rTMS方法是一种安全且有潜力的治疗方法。用fMRI分析脑网络FC,找到显著异常的区域作为rTMS的靶点进行治疗为个体化的精准治疗提供了新思路,也进一步解释了rTMS治疗GAD的神经机制[48]

       然而,这种基于FC异常的个体化靶点策略面临一个核心挑战:“异常”阈值的量化标准尚未统一。目前研究多依赖于组水平统计对比,如何为单个患者设定有效的异常阈值并排除正常个体变异带来的假阳性,仍是未来研究需要解决的关键问题。

3 磁共振成像技术在rTMS治疗GAD疗效评估方面的研究

       迄今为止,几乎所有用rTMS对GAD的治疗效果都是使用汉密尔顿焦虑量表(Hamilton Anxiety Rating Scale, HAMA)、广泛性焦虑量表(Generalized Anxiety Disorder-7, GAD-7)等相关量表来评估的[49, 50, 51, 52]。但是不同量表对焦虑症状的敏感度存在差异。在评估治疗反应时,仅使用单一量表进行评估可能会遗漏其他量表所能检测到的病情改善或症状缓解情况[53]。且用量表评估疗效也易受到患者的主观状态和不同临床医生的判断的影响,因此这些量表虽然能有效捕捉核心焦虑症状,但在多维健康指标的综合评估中仍需依赖其他工具补充。因此,研究者们借助多模态磁共振成像技术,旨在更客观、多维度地捕捉rTMS对大脑的调控效应。这些效应最终都汇聚于脑网络FC的正常化,FC是其直接体现;结构连接和神经代谢的变化则为我们理解FC得以改善的微观基础提供了关键证据。DIEFENBACH等[54]就利用fMRI评估右侧DLPFC在治疗前后的变化,结果表明在经过rTMS治疗后的GAD患者的右侧DLPFC由低活动状态变为正常化,前额叶和边缘区之间的FC也由少变多。此外,有扩散张量成像(diffusion tensor imaging, DTI)研究结果显示,rTMS可以改变白质的微观结构,例如,高频rTMS刺激可以增加白质纤维束的各向异性分数(fractional anisotropy, FA),表明其对白质结构的长期影响,且GAD患者的白质纤维束确实也有所损伤[55, 56]。有磁共振波谱(magnetic resonance spectroscopy, MRS)研究表明,rTMS可以调节谷氨酸(glutamate, Glu)、γ-氨基丁酸(gamma-aminobutyric acid, GABA)以及多巴胺等神经递质的释放,GABA是一种抑制性的神经递质,而Glu是一种兴奋性的神经递质,GAD患者的GABA能活性降低,GABA/Glu比值失衡也会导致焦虑的发生[56, 57, 58, 59]。联合sMRI、fMRI、DTI和MRS等技术,全面解析rTMS对GAD患者脑的结构、功能、白质纤维和代谢的影响比单纯用量表评估GAD患者rTMS的疗效要更加的客观。

       然而,现有研究多局限于证实神经指标与临床症状的平行改善。未来需着力构建“刺激参数—神经生理变化—症状改善”的完整剂量-反应链条。通过验证特定参数是否与FA值升高或GABA/Glu比值正常化存在量效关系,并确认这些变化对症状缓解的中介效应,将极大提升对rTMS治疗机制的阐释精度。

4 问题与展望

       GAD作为一种心理健康疾病,其治疗手段的局限性长期困扰着患者及其家庭,rTMS作为一种非侵入性脑刺激方法,与磁共振成像技术相结合,通过选择性的靶点刺激有效调节神经元活动,已被证明在多种神经精神疾病治疗方面显示出显著效果。在GAD中,通过rTMS的精准靶点定位和多样刺激模式,能够有效改善焦虑症状。这为GAD患者提供了一种潜在的治疗选择,传统药物治疗方案效果不理想时尤其如此。尽管如此,当前研究依然有一些不足之处,比如最佳的刺激靶点与频率尚不能确定,用rTMS治疗GAD的具体神经机制也不够明了,评估患者疗效的方式过于单一等等。虽然有研究表明基于脑FC的靶点定位研究已初现曙光,但多数结论仍依赖于回顾性分析或小规模观察数据。未来仍需要开展大规模前瞻性随机对照试验加以验证相关结果。

       磁共振成像技术可以提供患者大脑结构乃至功能、分子层面的影像数据,是揭示GAD的神经机制以及rTMS的治疗原理的革命性工具。若能将sMRI、DTI、fMRI、MRS等多种磁共振成像技术相融合便可以更加深入地理解GAD的病理机制以及GAD患者的大脑结构从而进行个体化治疗靶点定位进而追踪GAD患者经rTMS治疗前后的大脑结构变化、FC变化甚至相关神经递质的变化,这两项技术的联合将有助于我们更好地理解和治疗GAD,开启神经精神领域的精准医疗新时代。

[1]
PENG J, YUAN S, WEI Z, et al. Temporal network of experience sampling methodology identifies sleep disturbance as a central symptom in generalized anxiety disorder[J/OL]. BMC Psychiatry, 2024, 24(1): 241 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38553683/. DOI: 10.1186/s12888-024-05698-z.
[2]
DEMARTINI J, PATEL G, FANCHER T L. Generalized Anxiety Disorder[J]. Ann Intern Med, 2019, 170(7): Itc49-itc64. DOI: 10.7326/aitc201904020.
[3]
FOLDES-BUSQUE G, DIONNE C E, TURCOTTE S, et al. Epidemiology and prognostic implications of panic disorder and generalized anxiety disorder in patients with coronary artery disease: rationale and design for a longitudinal cohort study[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 26 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/33435888/. DOI: 10.1186/s12872-021-01848-3.
[4]
ANSARA E D. Management of treatment-resistant generalized anxiety disorder[J]. Ment Health Clin, 2020, 10(6): 326-334. DOI: 10.9740/mhc.2020.11.326.
[5]
PARIKH T K, STRAWN J R, WALKUP J T, et al. Repetitive Transcranial Magnetic Stimulation for Generalized Anxiety Disorder: A Systematic Literature Review and Meta-Analysis[J]. Int J Neuropsychopharmacol, 2022, 25(2): 144-146. DOI: 10.1093/ijnp/pyab077.
[6]
FITZSIMMONS S, OOSTRA E, POSTMA T S, et al. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities[J]. Biol Psychiatry, 2024, 95(6): 592-600. DOI: 10.1016/j.biopsych.2023.11.016.
[7]
王乙翔, 康晓娜, 冉彬艳, 等. 针刺治疗广泛性焦虑症的功能性磁共振机制研究进展[J]. 中医药导报, 2022, 28(12): 227-232. DOI: 10.13862/j.cn43-1446/r.2022.12.047.
WANG Y X , KANG X N, RAN B Y, et al. Progress of Functional Magnetic Resonance Mechanism of Acupuncture in theTreatment of Generalized Anxiety Disorder[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacology, 2022, 28(12): 227-232. DOI: 10.13862/j.cn43-1446/r.2022.12.047.
[8]
WU C, FERREIRA F, FOX M, et al. Clinical applications of magnetic resonance imaging based functional and structural connectivity[J/OL]. Neuroimage, 2021, 244: 118649 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/34648960/. DOI: 10.1016/j.neuroimage.2021.118649.
[9]
TANG Q, ZHANG G, FAN Y S, et al. An investigation into the abnormal dynamic connection mechanism of generalized anxiety disorders based on non-homogeneous Markov models[J]. J Affect Disord, 2024, 354: 500-508. DOI: 10.1016/j.jad.2024.03.038.
[10]
LI Q, ZHANG T, MENG J, et al. Abnormal hemispheric specialization and inter-hemispheric functional cooperation in generalized anxiety disorder[J/OL]. Behav Brain Res, 2023, 455: 114660 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37690701/. DOI: 10.1016/j.bbr.2023.114660.
[11]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[12]
HE W, XIONG H, FANG J, et al. Impact of self-designed Ningxin Anshen Decoction on the resting-state network functional connectivity in patients with mild to moderate generalized anxiety disorders[J]. Ann Palliat Med, 2021, 10(2): 1313-1324. DOI: 10.21037/apm-20-300.
[13]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[14]
KATSUMI A, IWATA S, TSUKIURA T. Roles of the Default Mode Network in Different Aspects of Self-representation When Remembering Social Autobiographical Memories[J]. J Cogn Neurosci, 2024, 36(6): 1021-1036. DOI: 10.1162/jocn_a_02143.
[15]
SAMBUCO N. Cognition, emotion, and the default mode network[J/OL]. Brain Cogn, 2024, 182: 106229 [2025-06-30].https://pubmed.ncbi.nlm.nih.gov/39481259/. DOI: 10.1016/j.bandc.2024.106229.
[16]
LI W, CUI H, LI H, et al. Specific and common functional connectivity deficits in drug-free generalized anxiety disorder and panic disorder: A data-driven analysis[J/OL]. Psychiatry Res, 2023, 319: 114971 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/36459805/. DOI: 10.1016/j.psychres.2022.114971.
[17]
YAHYA K. The basal ganglia corticostriatal loops and conditional learning[J]. Rev Neurosci, 2021, 32(2): 181-190. DOI: 10.1515/revneuro-2020-0047.
[18]
SUN Y, TAKEHARA-NISHIUCHI K. The medial prefrontal cortex leaves the hippocampus when it prepares for the future[J/OL]. Sci Prog, 2024, 107(2): 368504241261833 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38872470/. DOI: 10.1177/00368504241261833.
[19]
ELSTON T W, WALLIS J D. Context-dependent decision-making in the primate hippocampal-prefrontal circuit[J]. Nat Neurosci, 2025, 28(2): 374-382. DOI: 10.1038/s41593-024-01839-5.
[20]
STOLL F M, RUDEBECK P H. Preferences reveal dissociable encoding across prefrontal-limbic circuits[J]. Neuron, 2024, 112(13): 2241-2256. DOI: 10.1016/j.neuron.2024.03.020.
[21]
LUO Y, LI J, ZHANG Y, et al. The scalp prefrontal-limbic functional connectivity moderates stress-related rumination effects on stress recovery[J/OL]. Psychophysiology, 2024, 61(3): e14462 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37990390/. DOI: 10.1111/psyp.14462.
[22]
SHAN X, YAN H, LI H, et al. Abnormal causal connectivity of prefrontal-limbic circuit by structural deficits in drug-naive anxiety disorders[J]. J Psychiatr Res, 2023, 163: 14-23. DOI: 10.1016/j.jpsychires.2023.05.010.
[23]
DU Y, LI H, XIAO H, et al. Illness Severity Moderated Association Between Trait Anxiety and Amygdala-Based Functional Connectivity in Generalized Anxiety Disorder[J/OL]. Front Behav Neurosci, 2021, 15: 637426 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/33867949/. DOI: 10.3389/fnbeh.2021.637426.
[24]
BECKMANN F E, GRUBER H, SEIDENBECHER S, et al. Specific alterations of resting-state functional connectivity in the triple network related to comorbid anxiety in major depressive disorder[J]. Eur J Neurosci, 2024, 59(7): 1819-1832. DOI: 10.1111/ejn.16249.
[25]
HAO X, MA M, MENG F, et al. Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis[J]. J Affect Disord, 2025, 373: 227-236. DOI: 10.1016/j.jad.2024.12.095.
[26]
LI R, SHEN F, SUN X, et al. Dissociable salience and default mode network modulation in generalized anxiety disorder: a connectome-wide association study[J]. Cereb Cortex, 2023, 33(10): 6354-6365. DOI: 10.1093/cercor/bhac509.
[27]
DUFOR T, LOHOF A M, SHERRARD R M. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms[J/OL]. Int J Mol Sci, 2023, 24(22): 16456 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38003643/. DOI: 10.3390/ijms242216456.
[28]
SHIROTA Y, UGAWA Y. Transcranial magnetic stimulation[J/OL]. Current Opinion in Behavioral Sciences, 2024, 58: 101396 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S2352154624000470. DOI: 10.1016/j.cobeha.2024.101396.
[29]
ADDICOTT M A, YOUNG J R, APPELBAUM L G. Effects of Transcranial Magnetic Stimulation on Cognitive-Affective Task-Based Functional Connectivity[J]. Brain Connect, 2025, 15(4): 153-161. DOI: 10.1089/brain.2024.0095.
[30]
BAI Z, ZHANG J, FONG K N K. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis[J/OL]. J Neuroeng Rehabil, 2022, 19(1): 24 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35193624/. DOI: 10.1186/s12984-022-00999-4.
[31]
YOUNG I M, TAYLOR H M, NICHOLAS P J, et al. An agile, data-driven approach for target selection in rTMS therapy for anxiety symptoms: Proof of concept and preliminary data for two novel targets[J/OL]. Brain Behav, 2023, 13(5): e2914 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/36949668/. DOI: 10.1002/brb3.2914.
[32]
TANG S J, HOLLE J, MOR S, et al. Improvements in Sleep Quality in Patients With Major Depressive and Generalized Anxiety Disorders Treated With Individualized, Parcel-Guided Transcranial Magnetic Stimulation[J/OL]. Brain Behav, 2024, 14(10): e70088 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/39415644/. DOI: 10.1002/brb3.70088.
[33]
FERRRAZ I, FILHO M F, FERRARIS A. P092 transcranial magnetic stimulation versus impulsivity: literature review[J/OL]. Neuromodulation: Technology at the Neural Interface, 2025, 28(1, Supplement): S216 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1094715924010420. DOI: 10.1016/j.neurom.2024.09.329.
[34]
LUK K Y, OUYANG H X, PANG M Y C. Low-Frequency rTMS over Contralesional M1 Increases Ipsilesional Cortical Excitability and Motor Function with Decreased Interhemispheric Asymmetry in Subacute Stroke: A Randomized Controlled Study[J/OL]. Neural Plast, 2022, 2022: 3815357 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35035473/. DOI: 10.1155/2022/3815357.
[35]
CAPARELLI E C, ABULSEOUD O A, GU H, et al. Low frequency repetitive transcranial magnetic stimulation to the right dorsolateral prefrontal cortex engages thalamus, striatum, and the default mode network[J/OL]. Front Neurosci, 2022, 16: 997259 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/36248660/. DOI: 10.3389/fnins.2022.997259.
[36]
WU J, ZHUANG S, ZHANG X, et al. Objective sleep enhancement in Parkinson's disease: A sham-controlled trial of low-frequency repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex[J/OL]. Parkinsonism Relat Disord, 2024, 126: 107050 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38986305/. DOI: 10.1016/j.parkreldis.2024.107050.
[37]
SZÜCS-BENCZE L, VÉKONY T, PESTHY O, et al. Modulating Visuomotor Sequence Learning by Repetitive Transcranial Magnetic Stimulation: What Do We Know So Far?[J/OL]. J Intell, 2023, 11(10): 201 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37888433/. DOI: 10.3390/jintelligence11100201.
[38]
WANG T, LIU X, WU X, et al. High-frequency rTMS of the left dorsolateral prefrontal cortex for post-stroke depression: A systematic review and meta-analysis[J]. Clin Neurophysiol, 2024, 157: 130-141. DOI: 10.1016/j.clinph.2023.11.019.
[39]
LI Y, PANG J, WANG J, et al. High-frequency rTMS over the left DLPFC improves the response inhibition control of young healthy participants: an ERP combined (1)H-MRS study[J/OL]. Front Psychol, 2023, 14: 1144757 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37275686/. DOI: 10.3389/fpsyg.2023.1144757.
[40]
DUNLOP K, NESTOR S. Comparing DLPFC 10 Hz and theta burst stimulation using interleaved TMS/fMRI[J/OL]. Brain Stimulation, 2023, 16(1): 178 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1935861X23001936. DOI: 10.1016/j.brs.2023.01.191.
[41]
GOGULSKI J, ROSS J M, TALBOT A, et al. Personalized Repetitive Transcranial Magnetic Stimulation for Depression[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(4): 351-360. DOI: 10.1016/j.bpsc.2022.10.006.
[42]
OATHES D J, BALDERSTON N L, KORDING K P, et al. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders[J/OL]. Wiley Interdiscip Rev Cogn Sci, 2021, 12(4): e1553 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/33470055/. DOI: 10.1002/wcs.1553.
[43]
XU M, LI B, WANG S, et al. The brain in chronic insomnia and anxiety disorder: a combined structural and functional fMRI study[J/OL]. Front Psychiatry, 2024, 15: 1364713 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38895035/. DOI: 10.3389/fpsyt.2024.1364713.
[44]
HAN Y, YAN H, SHAN X, et al. Shared and distinctive neural substrates of generalized anxiety disorder with or without depressive symptoms and their roles in prognostic prediction[J]. J Affect Disord, 2024, 348: 207-217. DOI: 10.1016/j.jad.2023.12.067.
[45]
MADONNA D, DELVECCHIO G, SOARES J C, et al. Structural and functional neuroimaging studies in generalized anxiety disorder: a systematic review[J]. Braz J Psychiatry, 2019, 41(4): 336-362. DOI: 10.1590/1516-4446-2018-0108.
[46]
NICODEMUS N E, PACKHAM H R, JORDAN S E, et al. Utilizing fMRI correlates of cognitive reappraisal to identify additional TMS targets for the treatment of GAD[J/OL]. Brain Stimulation, 2018, 11(6): e18 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1935861X18302390. DOI: 10.1016/j.brs.2018.07.035.
[47]
HUANG Z, LI Y, BIANCHI M T, et al. Repetitive transcranial magnetic stimulation of the right parietal cortex for comorbid generalized anxiety disorder and insomnia: A randomized, double-blind, sham-controlled pilot study[J]. Brain Stimul, 2018, 11(5): 1103-1109. DOI: 10.1016/j.brs.2018.05.016.
[48]
HAN X, ZHU Z, LUAN J, et al. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses[J/OL]. Eur J Radiol Open, 2023, 10: 100495 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37396489/. DOI: 10.1016/j.ejro.2023.100495.
[49]
ZENG S, TANG C, SU M, et al. Infralow-frequency transcranial magnetic stimulation as a therapy for generalized anxiety disorder: A randomized clinical trial[J/OL]. Compr Psychiatry, 2022, 117: 152332 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35763873/. DOI: 10.1016/j.comppsych.2022.152332.
[50]
SONG P, TONG H, ZHANG L, et al. Repetitive Transcranial Magnetic Stimulation Modulates Frontal and Temporal Time-Varying EEG Network in Generalized Anxiety Disorder: A Pilot Study[J/OL]. Front Psychiatry, 2021, 12: 779201 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35095597/. DOI: 10.3389/fpsyt.2021.779201.
[51]
DUAN N, ZHANG Y, WANG S, et al. Evaluating the efficacy and acceptability of non-invasive brain stimulation for generalized anxiety disorder: a systematic review and network meta-analysis[J/OL]. Psychiatry Res Neuroimaging, 2025, 349: 111989 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/40203547/. DOI: 10.1016/j.pscychresns.2025.111989.
[52]
CILLI S L, GOLDBERG M A, COSMO C, et al. Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder and Generalized Anxiety Disorder[J/OL]. Curr Top Behav Neurosci, 2024 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/39505816/. DOI: 10.1007/7854_2024_540.
[53]
LEUCHTER M, CITRENBAUM C, WILSON A, et al. Agreeing to disagree: inter-subject variability of mood rating scales during rtms treatment of depression[J/OL]. Brain Stimulation, 2023, 16(1): 324 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1935861X2300606X. DOI: 10.1016/j.brs.2023.01.604.
[54]
DIEFENBACH G J, BRAGDON L B, ZERTUCHE L, et al. Repetitive transcranial magnetic stimulation for generalised anxiety disorder: a pilot randomised, double-blind, sham-controlled trial[J]. Br J Psychiatry, 2016, 209(3): 222-228. DOI: 10.1192/bjp.bp.115.168203.
[55]
LUTTENBACHER I, PHILLIPS A, KAZEMI R, et al. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review[J]. J Psychiatr Res, 2022, 147: 324-348. DOI: 10.1016/j.jpsychires.2021.12.042.
[56]
ACEVES-SERRANO L, NEVA J L, DOUDET D J. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review[J/OL]. Front Neurosci, 2022, 16: 787403 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35264923/. DOI: 10.3389/fnins.2022.787403.
[57]
CHEN T, LIU W B, ZHU S J, et al. Differential modulation of pain and associated anxiety by GABAergic neuronal circuits in the lateral habenula[J/OL]. Proc Natl Acad Sci U S A, 2024, 121(48): e2409443121 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35264923/. DOI: 10.1073/pnas.2409443121.
[58]
ARORA I, MAL P, ARORA P, et al. GABAergic implications in anxiety and related disorders[J/OL]. Biochem Biophys Res Commun, 2024, 724: 150218 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38865810/. DOI: 10.1016/j.bbrc.2024.150218.
[59]
ZACHAROPOULOS G, SELLA F, COHEN KADOSH K, et al. The effect of parietal glutamate/GABA balance on test anxiety levels in early childhood in a cross-sectional and longitudinal study[J]. Cereb Cortex, 2022, 32(15): 3243-3253. DOI: 10.1093/cercor/bhab412.

上一篇 功能磁共振成像与机器学习在抑郁症脑网络机制及诊疗中的应用进展
下一篇 MRI评估类风湿关节炎患者脑结构特征及其与免疫炎症指标的关联研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2